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ABSTRACT Network security situation awareness enables networks to actively and effectively defend
against network attacks, relying on the extraction of network situation elements as an initial and decisive
step. In existing studies, the stacked sparse autoencoder (SSAE) has been employed to extract features from
unlabeled network flows. However, obtaining the optimal hyperparameter combination is challenging due to
its numerous hyperparameters. To address this issue, we propose a novel approach named DBO-SSAE that
leverages dung beetle optimization (DBO) to select the optimal hyperparameters for SSAE automatically.
Applied to the well-known UNSW-NB15 dataset, our model yields an optimal feature subset, which is
evaluated across various binary classifiers with different metrics. Experimental results demonstrate that our
approach improves accuracy and F1-measure by 0.2% to 1.5% while reducing the false negative rate (FNR)
and false positive rate (FPR) by 0.06% to 7%, surpassing other feature extraction methods on the same
classifier for the UNSW-NB15 dataset. Particularly, in conjunction with a lightweight bidirectional long
short-term memory (BiLSTM), our model achieves metrics of 98.84% accuracy, 98.96% F-measure, 1.86%
FNR, and 0.6% FPR. This study could provide novel insights into the effective representation of network
situation elements and lay the groundwork for a high-efficiency intrusion detection system.

INDEX TERMS Dung beetle optimization, network security, network situation element extraction, stacked
sparse autoencoder.

I. INTRODUCTION By extracting and understanding the situation elements

Currently, with the continuous improvement of the Internet
infrastructure and the steady increase in the number of
Internet users, network security problems are increasingly
prominent, and network attacks gradually show the char-
acteristics of complexity, organization, and persistence [1].
Traditional network security defense devices, such as fire-
walls and intrusion detection systems (IDS), have problems
such as operating independently, passively defending against
unknown attacks, and being unable to cope with the current
large-scale and ever-changing network environment [2]. The
topic of how to effectively defend against network attacks has
become a hot topic in the field of network security.
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contained in multiple sources of information in the large-scale
network environment, network security situation awareness
(NSSA) [3] can evaluate the current network situation and
predict the future development trend of the network situation,
which can actively and effectively defend against network
attacks. NSSA consists of three layers: situation element
extraction, situation assessment, and situation prediction.
At present, most of the research on NSSA focuses on
the establishment of assessment or prediction models, but
the situation element extraction is even more important.
With the right features, most of the classifiers will perform
excellently, achieving high classification accuracy and fast
calculation speed simultaneously.

As the initial stage of NSSA, situation element extraction
aims at mining hidden features in the high-dimensional
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network traffic flow. The core problem is how to achieve
dimensionality reduction and feature extraction effectively.

For a long time, the researchers spent a lot of time
slowly hand-engineering the features for each dataset [4].
Ideally, we would like to extract the features automatically
for different datasets. The two most widely used automatic
feature extraction methods are principal component analysis
(PCA) and autoencoder (AE) [5]. Furthermore, the training
process for both methods does not require labels, which
solves the problem of manual labeling caused by the huge
network traffic.

PCA performs well in linear data, but the typical char-
acteristic of the network information flow is non-linear.
Compared with PCA, the use of AE for feature reduction
can better capture nonlinear relationships between features,
making it more suitable for deep learning model classifiers.
Thus, numerous AEs and their variants have been applied
for feature reduction in intrusion detection. As a variant of
AE, the stacked sparse autoencoder (SSAE) sets a sparsity
parameter close to 0 to compress the dimension of the
feature [6], and it has been proven to be useful in various
fields, including intrusion detection.

However, one challenge with SSAE is its numerous
hyperparameters. With different hyperparameters, the repre-
sentation ability of features outputted by SSAE varies. Many
researchers conduct numerous comparative experiments to
identify a relatively superior hyperparameter combination
based on their experience [7], [8], investing a considerable
amount of time. Swarm intelligence (SI) optimization algo-
rithms are well-suited for solving hyperparameter optimiza-
tion problems [9], [10], but there has been limited research on
SI-based hyperparameter optimization specifically for SSAE
in intrusion detection scenarios. Moreover, the existing lit-
erature faces several challenges. Firstly, many SI algorithms
are susceptible to being trapped in a local optimum, which
can impact the final solution [11]. Secondly, the number
of nodes in each latent layer influences the performance of
the SSAE, but this aspect is often neglected in optimization
efforts [12]. Lastly, the fitness function significantly impacts
solution quality, but it is often simplistically set as either
the loss or accuracy in previous works [13], leading to less
noticeable improvements in feature representation ability.

To address these issues, we employ a novel SI optimization
algorithm named dung beetle optimization (DBO) [14] and
introduce a more appropriate fitness function, optimizing
the critical hyperparameters of SSAE for network situation
element extraction. The main contributions of this paper are
as follows.

1) A novel feature reduction method named dung bee-
tle optimization-based stacked sparse autoencoder
(DBO-SSAE) is proposed to reduce the feature dimen-
sionality of network traffic flows, aiming to decrease
time costs while maintaining the accuracy of intrusion
detection.

2) A novel meta-heuristic DBO is used to automatically
tune four crucial hyperparameters (the number of nodes
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in each latent layer and the sparsity parameter) of
the SSAE. DBO is chosen because of its competitive
performance in terms of convergence speed and
searching accuracy.

3) The quadratic sum of losses, rather than the sum of
losses in each layer of SSAE described in previous
works, is set as the fitness function of DBO to obtain
the feature subset with the least loss.

4) The performance of DBO-SSAE is evaluated in
comparison to two other extraction methods (SSAE
with manually tuned parameters and PCA) on the
benchmark dataset UNSW-NB15 using six machine
learning models, demonstrating the superior feature
extraction capability of DBO-SSAE.

5) The proposed DBO-SSAE, combined with a
lightweight bidirectional long short-term memory
(BiLSTM), outperforms many other advanced
approaches on the UNSW-NB 15 dataset in binary clas-
sification, further evidencing its superior performance.

The remainder of this paper is arranged as follows:

Section II provides a review of existing work, while
Section III introduces the methods of SSAE, DBO, and the
proposed model DBO-SSAE. In Section IV, we describe the
procedures for the overall experiment and analyze the results.
Section V discusses the limitations of the proposed method.
Finally, Section VI presents the conclusions of this paper and
outlines future work.

Il. RELATED WORKS
In this section, we present an overview of automatic network
traffic feature extraction and SI-based hyperparameter opti-
mization for both traditional machine learning models and
deep learning models.

A. AUTOMATIC FEATURE EXTRACTION

Automatic feature extraction methods help researchers break
free from extensive and tedious data analysis tasks, making
them more convenient to use. Among various methods, PCA
and AE have been extensively utilized in the field of network
security.

Some works [15], [16], [17] used PCA to reduce the
dimension of network flows and then fed the feature subset
into a support vector machine (SVM) classifier on the
benchmark datasets (KDD Cup 99 [18], NSL-KDD [19],
UNSW-NBI15 [20]) for intrusion detection, illustrating the
effectiveness of the method. In [21], improved PCA was used
to reduce data pollution, combined with a Gaussian naive
Bayes (GNB) classifier for the detection of network intrusion.
Waskle et al. [22] fused PCA and random forest (RF) on the
KDD Cup 99 dataset, enhancing the accuracy and efficiency
of classification simultaneously. Hadri et al. [23] adopted
fuzzy PCA to keep the most relevant features of network traf-
fic data, and the experimental results showed that compared
with standard PCA, fuzzy PCA performs better on the KDD
Cup 99 dataset. Elkhadir et al. [24] applied kernel techniques
to PCA for feature reduction and then fed the feature
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subset to a k-nearest neighbor (kNN) classifier for network
traffic data classification. Mashuri et al. [25] combined PCA
with Hotelling’s 72 chart to reduce feature dimensions and
computational complexity in intrusion classification while
maintaining detection accuracy. Abdulkareem et al. [26]
identified the most important features before applying PCA
for feature reduction, resulting in a reduced feature set
from 36 to 5 while maintaining classification accuracy on
the Bot-IoT dataset. Udas et al. [27] constructed a hybrid
recurrent neural network (RNN) model, adopting PCA as the
feature reduction method. T experimental results showed that
the model performed well on the NSL-KDD and UNSW-
NB15 datasets in anomaly detection. Paper [28] incorporated
probabilistic PCA with a generalized additive model (GAM)
for feature reduction and capturing non-linear relationships,
thereby enhancing the comprehension of intrusion detection.
Zong et al. [5] visualized the datasets in a 3D space and
extracted the features using AE and PCA, respectively. The
result showed that the features extracted by AE perform
better than PCA on three classifiers, namely, decision tree
(DT), kNN, and Multi-layer Perceptron (MLP) for intrusion
detection.

More and more researchers have been using AE and
its variants for feature dimensionality reduction in network
intrusion detection due to their excellent performance in
capturing non-linear relationships among features. Paper [29]
introduced a hybrid model that combined AE and density
estimation in anomaly detection. Yousefi-Azar et al. [30]
stacked several restricted Boltzmann machine (RBM) blocks
to build an AE in the pre-training phase for feature reduction
in the field of malware classification and network anomaly
detection. Mushtaq et al. [31] adopted a deep AE for
dimensionality reduction before using the long short-term
memory (LSTM) model for network traffic detection. Basati
and Faghih [32] proposed a feature reduction model that
comprises two parallel AEs. Besides the traditional AE
components, one AE includes eight conventional convolution
filters to extract the local information while the other
AE incorporates eight dilated convolution filters to extract
the surrounding information of network flows. Papers [33]
utilized a multi-layer stacked denoising autoencoder (DAE)
model in malicious software classification and can handle
the case of O-day or unknown attacks. Lopes et al. [34]
implemented a DAE to compress the feature dimensionality,
and then used a deep neural network (DNN) classifier for
intrusion detection on the CICIDS2018 dataset, achieving
above 99.6% on many metrics. An and Cho [35] utilized a
variational autoencoder (VAE) model to reduce the noise in
the network traffic information, enhancing the performance
of network traffic classification. Monshizadeh et al. [36]
applied a conditional constraint on the input of a VAE model
to extract the discriminative features from the network flows,
achieving more efficient feature dimensionality reduction.
He et al. [37] combined a conditional Wasserstein VAE
and a generative adversarial network (GAN) to reduce
feature dimensionality while addressing the issue of class
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imbalance in multi-classification for intrusion detection
scenarios. Zhang et al. [38] employed the SSAE model
to reduce dimension and learn the latent representation
of the original network traffic flow. Yan and Han [39]
constructed a four-layer SSAE model to reduce dimension
and then used three basic classifiers to perform comparative
experiments, proving the advanced nature of the SSAE
in feature reduction. In reference [7], a three-layer SSAE
model was used for extracting security situation elements,
followed by a recurrent neural network model, achieving an
accuracy of over 95% on the testing set. Zhang et al. [8]
proposed a feature reduction method that combines the
Person correlation coefficient with an SSAE, achieving both
linear and non-linear dimensionality reduction. The optimal
feature set is then fed into an improved Gaussian mixture
model. Experimental results showed that the model achieves
an accuracy of 99.36% on the UNSW-NB 15 dataset. Previous
related work has indicated that a more efficient representation
of data can be achieved by stacking AEs. However, this also
entails the need to set more hyperparameters.

B. SI-BASED HYPERPARAMETERS OPTIMIZATION

The extraction of situation elements ultimately serves
to classify network traffic. After feature extraction, the
appropriate features are fed to a machine learning model.
Nevertheless, the performance of various machine learning
models, including SVM, kNN, RF, XGBoost, and all deep
learning models, relies heavily on the accurate determination
of their hyperparameters.

For traditional machine learning models. To enhance SVM
classifiers, various SI algorithms such as particle swarm opti-
mization (PSO) [40], genetic algorithm (GA) [41], artificial
bee colony (ABC) [42], bat algorithm (BA) [43], physarum
network (PN) combined with ant colony optimization
(ACO) [44], chaos theory based PSO [45], improved whale
optimization algorithm (WOA) [46], gray wolf optimization
(GWO) combined with PSO [47], grasshopper optimization
algorithm (GOA) [48], and Harris hawks optimization (HHO)
combined with PSO [49] were used to optimize the hyper-
parameters of SVM classifiers, resulting in better improve-
ments over regular SVM on the benchmarked datasets
for intrusion detection. Turukmane and Devendiran [10]
adopted the mud ring algorithm (MRA) to optimize the
hyperparameters of a multi-layer SVM classifier, resulting
in better improvement on both the CSE-CIC-IDS 2018 and
UNSW-NBI15 datasets for multi-class intrusion detection.
Canbay and Sagiroglu [50] hybridized GA and kNN to
detect attacks, GA was used to select k neighbors from an
input sample. Liu et al. [51] utilized an improved arithmetic
optimization algorithm (AOA) on the kNN classifier to find
the optimal hyperparameters of k neighbors and distance
weight. Tahira and Nurdan [52] tuned the hyperparameters
of SVM, RF, and kNN on the NSL-KDD dataset using
PSO and ABC algorithms, respectively, and finally figured
out that kNN outperformed the others in the context of
intrusion detection. Assiri [53] utilized GA to optimize
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the hyperparameters of the RF classifier, improving the
performance in network attack detection compared with the
standard RF classifier. Jiang et al. [54] proposed a PSO-
XGBoost model, which used PSO to search for optimal
hyperparameters of the ensemble classifier named XGBoost.
The results showed that PSO-XGBoost performs better than
RF, Bagging, and AdaBoost on the NSL-KDD dataset.
Zivkovic et al. [55] adopted an improved firefly algorithm
(FA) to optimize all six hyperparameters of the XGBoost
classifier. The experimental results showed that the proposed
method performs best compared to standard XGBoost, PSO-
XGBoost, and FA-XGBoost on both the NSL-KDD and
UNSW-NBIS5 datasets.

The above section outlines the application of traditional
machine learning models optimized by SI algorithms in
the field of intrusion detection. With the ongoing progress
in deep learning technology and hardware advancements,
an increasing number of scholars are employing SI algorithms
to optimize deep learning models for intrusion detection.

For deep learning models. The convolutional neural
network (CNN) with hyperparameters optimized by SI
excels at capturing spatial features in network flow samples.
Kan et al. [56] utilized an adaptive PSO to search a
10D space to find the optimal hyperparameters for the
ID-CNN. In comparison to the other three classifiers,
the proposed APSO-CNN model outperforms in terms of
accuracy, Haming loss, and kappa coefficient in the context
of the Internet of Things (IoT) network intrusion detection.
Kilichev and Kim [9] optimized the hyperparameters of 1D-
CNN by utilizing GA and PSO in a 9D space, respectively,
reaching an accuracy exceeding 99% on three benchmark
datasets. Ponmalar and Dhanakoti [57] adopted a hybrid
whale tabu optimization (HWTO) algorithm to search for the
optimal six hyperparameters of CNN, thereby enhancing per-
formance across three benchmark datasets. Kumar et al. [58]
proposed a deep residual convolutional neural network
(DRCNN) with hyperparameters optimized by an improved
gazelle optimization algorithm (IGOA) to attain superior IDS
performance. The RNN with hyperparameters optimized by
SI excels at capturing temporal information, which is more
critical in network flow detection. Deore and Bhosale [59]
optimized the hyperparameters of LSTM with a combination
of chicken swarm optimization (CSO) and chimp optimiza-
tion algorithm (ChOA), termed ChCSO, resulting in an
accuracy of 95.96% on the NSL-KDD dataset and 99.17% on
the BoT-IoT dataset, respectively. Awad et al. [60] combined
the chaotic butterfly optimization algorithm (CBOA) with
the PSO algorithm to enhance the accuracy of LSTM, demon-
strating significant improvements compared with standard
LSTM on both the NSL-KDD and LITNET-2020 datasets.
Ma et al. [61] elevated the classification performance of
the gated recurrent units (GRU) RNN model using an
improved seagull optimization algorithm (ISOA), resulting
in an accuracy of up to 98.6% on the NSL-KDD dataset.
Combining CNN and RNN allows for the simultaneous
capture of spatial and temporal features. Kim and Cho [62]
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devised a hybrid CNN and LSTM model for data security,
using PSO to optimize the nine hyperparameters of the
proposed CNN-LSTM. Karthic and Kumar [11] developed
an enhanced conditional random field-based CNN-LSTM,
optimizing its hyperparameters with an adaptive golden eagle
optimization (GEO) algorithm. Experimental results showed
that the proposed approach outperforms other popular ML
classifiers on the NSL-KDD and UNSW-NBI15 datasets.
Pustokhina et al. [63] presented a CNN-BiLSTM network
with hyperparameters optimized by an improved GA, show-
casing effectual improvements on the UNSW-NB15 datasets.
Several scholars explore the use of SI algorithm to optimize
the hyperparameters in other deep learning models, yielding
effective outcomes. Elmasry et al. [64] employed a two-step
PSO process to classify attack flows and normal flows.
Initially, PSO was utilized to select the feature subset. The
selected features were then fed into a deep belief network
(DBN) with hyperparameters optimized by a second PSO.
Saheed et al. [65] proposed a HAEMPSO model, which
utilized an autoencoder for feature extraction. Subsequently,
PSO was adopted to optimize the hyperparameters of a
self-built deep neural network, achieving competitive results
in terms of detection rate and accuracy on the BoT-IoT
dataset for IoT anomaly detection. Cao and Qu [12] adopted
a structurally fixed stacked AE with weights and the sparsity
parameter optimized by the WOA for feature extraction.
The optimal features were then fed into a GRU network for
intrusion detection, achieving an accuracy of 98.69% on the
NSL-KDD dataset. Sekhar et al. [13] adopted the fruitfly
optimization algorithm (FOA) to optimize the hidden neurons
of a deep AE for feature extraction. The extracted features
were subsequently fed into a backpropagation network,
resulting in an accuracy of 94% on the UNSW-NB 15 dataset.

However, there has been limited research on hyperparam-
eter optimization for the SSAE in the context of intrusion
detection. Many researchers set these hyperparameters on
the basis of their experience. For instance, in reference [7],
the authors conducted numerous tests to identify the most
suitable hyperparameters, including the number of layers,
the number of neurons in each latent layer, and the sparsity
parameter for SSAE, achieving better performance. Thus,
we will propose using an SI optimization algorithm to select
the best hyperparameters for SSAE automatically in this
work.

Ill. METHODOLOGY

This section introduces the SSAE model, the DBO algorithm,
and then outlines the overall framework of the proposed
model.

A. SSAE NETWORK

AE, illustrated in Fig. 1, is an unsupervised neural network
comprising an encoder and a decoder. The former identifies
correlations between features, enabling input data dimen-
sionality reduction. Subsequently, the latter reconstructs the
original data from the reduced features. The assessment of
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FIGURE 1. Structure of AE.

reduced features involves measuring the reconstruction error
between the input and output.

Suppose that the unlabeled input data is x with N examples,
the formulas for the encoder phase and decoder phase are as
follows:

h=fx) = o0.(Wex + b.) ey
y=1%=gh) =04(Wah+ ba) @

where £ is the output of the hidden layer, o, and o, are
the activation functions, which are chosen to be non-linear
functions, such as sigmoid, ReLU, or tanh. W, is the weight
of the encoder, W is the weight of the decoder; b, is the bias
of the encoder, and b, is the bias of the decoder. The output
is denoted as y. The error of the AE, commonly referred to
as loss, is typically quantified using the mean squared error
(MSE) function:

1
LW, b) =~ > (v =) 3)

The target of an AE is to make y approximate the input x,
in other words, to minimize the constructed error L(W, b).

Sparse AE (SAE) adds a sparsity constraint on AE to
suppress the output of most hidden layer neurons, achieving
the effect of sparsity and feature dimension reduction.
To achieve the above effect, the sparsity parameter p is
generally taken to be a value near O (typically 0.05), which
represents the activated proportion of neurons in the hidden
layer:

1 N
p=h= > fitx) @)
i=1

where f;(-) represents the input of the hidden unit j. Then the
KL-divergence is used to penalize p; deviating from p, the
formula is given as follows:

A 0 1—p
KL(p || pj) = plog = + (1 — p)log ~ (5
0; 1 —p;
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FIGURE 2. A three-layer SSAE model.

The constructed error of SAE can be expressed as

k

Lsparse(W’ b) = J(W, b) + ,3 ZKL(/) ” /5/) (6)
j=1

Here, L(W,b) is as defined in (3), B is the penalty
parameter belonging to (0, 1), and & is the number of neurons
in the hidden layer.

If multiple hidden layers are added directly to SAE, it may
lead to the loss of certain feature elements. A more commonly
used approach is to stack multiple SAE encoding structures,
i.e. SSAE, where the hidden layer output of the previous SAE
becomes the input of the next SAE. The SAEs are trained
layer by layer in an unsupervised manner, employing a greedy
algorithm approach to minimize the loss between the input
and output of each SAE, which helps to reduce the loss rate of
feature elements. Fig. 2 illustrates a stacked three-layer SAE
model.

B. DBO ALGORITHM

The DBO algorithm was recently proposed by Xue and
Shen [14], inspired by the behaviors of dung beetles. As a
new swarm intelligence optimization algorithm, DBO is
superior to other optimization algorithms on almost all of
the CEC-BC-2017 test functions. This superiority arises from
its consideration of not only the impact of the global best
individual but also that of the global worst individual. In this
algorithm, individuals are regarded as dung beetles in a
multidimensional search space, and each dung beetle is a
potential solution to the optimization problem. The DBO
algorithm consists of five steps.
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FIGURE 3. The distribution of dung beetles [14].

1) INITIALIZATION
Suppose that n agents are in a d-dimensional space, then the
population X is expressed as follows:

X1,1 X1,2 X1,d
X2,1 X222 ... X2d

X=1| . ) . ) @)
Xn, 1 Xn,2 -e- Xnd

All dung beetles should be distributed across the entire
solution space initially, to avoid missing out on the optimal
solution.

2) CALCULATE FITNESS VALUE

In this stage, the fitness values of all agents are calculated.
Thus, the global best dung beetle corresponds to the minimum
fitness value, and the fitness function depends on the problem
to be solved.

3) UPDATE LOCATIONS

All dung beetles are divided into four types, namely, ball-
rolling dung beetle, brood ball, small dung beetle, and thief,
which increase the diversity of updated locations. Fig. 3
shows the suggested proportion of each type. Suppose that
the number of the initial population is 30, among them, 6 are
ball-rolling dung beetles, 6 are brood balls, 7 are small dung
beetles, and the rest of them are thieves. Each type updates its
position according to different formulas.

a: BALL-ROLLING DUNG BEETLE

There is a 90% possibility that the ball-rolling dung beetles
will roll the ball. They update their positions following the
formula:

0+ 1) =x) +a xkxx—D+bx \x (8
Ax = |x,~(t)—XW| 9)

Here, X" denotes the position of the global worst dung
beetle up to the previous iteration. « is assigned 1 or —1.
k and b are constants valued within the interval (0, 0.2] and
(0, 1), respectively. x;(¢#) means the location of the i-th dung
beetle at iteration ¢.

A 10% possibility that they will dance and update their
locations as follows:

xi(t + 1) = x;(t) + tan(9) |x;(¢) — x;(z — D] (10)

Here, 6 is randomly valued from a uniform distribution
over the interval [0, 7], representing the angle of deflection.
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b: BROOD BALL
The dung beetles of brood ball type update their locations as
follows:
xi(t + 1) = X* 4 by x (x;(t) — Lb*)
+ by x (x;(t) — Ub") (11)
Here, X* is the best position among n dung beetles at the
current iteration, that is, the local best location. The spawning
area is restricted by [Lb*, Ub*]. by and by are random

vectors of size 1 x d, uniformly distributed over the interval
O, 1).

¢: SMALL DUNG BEETLE

The small dung beetles update their locations following the
formula:

xi(t + 1) = x;(t) + C) x (xi(1) — Lb®)
+ Cy x (xi(r) — UB") (12)

Here, C; is randomly valued following a Gaussian
distribution, C» is a random value over the interval (0, 1), and
the optimal foraging area is restricted by [Lbb , Ubb ]

d: THIEF

The thieves update their locations following the formula:
xi(t+ 1) =X"+5§ X g

x (|xi(t) — X*| +

s0-X) a3

Here, X” denotes the best position of the dung beetles until
now, that is, the global best location. S represents a constant
value, and g is a random vector sampled from a Gaussian
distribution with a size of 1 x d.

4) JUDGE IF OUT OF BOUNDARY

After the last phase, each dung beetle updates to the new
location. However, some agents may be outside the boundary
of the solution space. In this case, these agents will be set to
the value of the boundary.

5) LOOP OR TERMINATE
Repeat from the beginning of step 2 until the termination
condition is met.

C. DBO-SSAE MODEL

Considering the training effect and algorithm time complex-
ity comprehensively, a three-layer stacked SSAE structure is
designed in this paper, as shown in Fig. 2. With different
hyperparameters for SSAE, the performance of extracting
network situation elements varies, leading to different classi-
fication effects when fed into the network intrusion detection
model. Lin et al. [7] designed 12 comparison experiments to
confirm the optimal combination of SSAE hyperparameters,
containing the number of layers, the number of neurons
in each latent layer, and the sparsity parameter. As an
improvement, we use the DBO algorithm for this task.
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Each dung beetle individual, acting on the SSAE model,
is represented by a four-dimensional vector containing the
sparsity parameter and the number of hidden neurons for all
three layers. The formula for the location of the i-th dung
beetle is:

xi = [pi, 11;, 124, 13;] (14)

where p; is the sparsity parameter, /1;, [2;, and [3; represent
the number of neurons in the first, second, and third hidden
layers, respectively.

The fitness function is set to the quadratic sum of the loss of
SSAE’s every layer, rather than the sum of losses, to prevent
the loss of a certain layer from being too large and other layers
too small. Consider a scenario where the loss of one layer is
large, while the losses of the other two layers are close to zero.
In this case, the sum of the losses for the three layers might
be small, but it could still result in significant feature loss.
The utilization of squared error helps avoid this situation,
ensuring that the error for each layer remains relatively small,
contributing to a small sum of squared errors. The loss of
SSAE corresponding to the i-th dung beetle is represented as
follows:

3
f(x;) = Lossq = ZLossizj (15)

j=1
Here, Loss;; represents the MSE loss of the j-th layer in
SSAE corresponding to the i-th dung beetle. The current
best dung beetle corresponds to the minimum fitness value
among f(x;). The global best dung beetle is the individual
with the minimum fitness value among all the individuals
up to now. After initializing the dung beetles and calculating
their initial fitness, we update the locations of the agents
via (8)—(13) according to their types. Subsequently, we feed
the location of the agent to the SSAE model and use the vector
as the hyperparameters of SSAE. Next, the fitness value is
calculated via (15), and the current and global best dung
beetles are updated. Repeat this process until the termination
condition is met. Finally, output the global best dung beetle
and the feature subset. The flowchart of the DBO-SSAE

process is illustrated in Fig. 4.

IV. EXPERIMENT AND RESULTS

The work presented in this article is divided into two main
parts. The first part focuses on obtaining the optimal hyperpa-
rameters of the SSAE model, as detailed in Section III. In the
second part, the feature subset resulting from dimensionality
reduction using SSAE is fed into the machine learning model.
The quality of these features is assessed by evaluating their
classification performance using various classifies on the
network benchmark dataset, as depicted in Fig. 5.

We implemented the experiments on a machine configured
with Intel(R) Xeon(R) Gold 5318Y CPU, NVIDIA GeForce
RTX 4090 GPU, Ubuntu 18.04.1 LTS operation system,
Python 3.8, and Pycharm Community 2020.3. The model was
set up with Tensorflow-gpu 2.5.0, Keras 2.4.3, Pandas, and
scikit-learn modules using Python programming language.
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A. EXPERIMENTAL PROCEDURE

1) DATASET DESCRIPTION

Moustafa et al. [20] generated UNSW-NB15 from real-world
network flows, establishing it as one of the new bench-
mark datasets in the field of network intrusion detection.
UNSW-NBI5 is divided into a training set with 175,341
samples and a testing set with 82,332 samples. These samples
are categorized into normal traffic flows and attack traffic
flows, as outlined in Fig. 6. The distribution of the training
set is as follows: 31.9% for Normal and 68.1% for Attack.
Meanwhile, the distribution of the testing set is as follows:
44.9% for Normal and 55.1% for Attack. Therefore, the
UNSW-NBI15 dataset is suitable for binary classification
without any issues of unbalanced samples. Each sample of
UNSW-NBI15 consists of 43 features and 2 labels.

2) DATASET PREPROCESSING
Since SSAE can filter features automatically, it is only
necessary to modify features to a format that can be processed
by classifiers during the data preprocessing stage. Three
features of UNSW-NB15, such as proto, service, and state,
are non-numeric. Therefore, they need to be transformed
into numerical characteristics before they can be fed into
most classifiers. In this paper, we adopt one-hot encoding
for this purpose. We also removed the id since it does
not contribute to the classification. Since this paper focuses
solely on binary classification, the attack_cat was removed,
as it provides detailed descriptions of traffic categories.
Furthermore, we utilized min-max normalization to scale the
features within the range of [0, 1]. After feature scaling, these
features were transformed as follows:

X — Xmin

= (16)

Xmax — Xmin

After preprocessing, all samples in the UNSW-NBI5
dataset consist of 196 features and 1 label with two values,
where 0 represents normal and 1 for attack.

3) DBO-SSAE TRAINING

At this stage, we employed the DBO algorithm to generate the
hyperparameters of each SSAE model. Subsequently, these
SSAE models were individually trained. During training,
the weights and biases of each layer in the SSAE were
adjusted to minimize the MSE loss, and this process followed
a greedy layer-wise training method. The parameters of
DBO are shown in Table 1. The initial size of the dung
beetle swarm was N = 30, among them, 6 were ball-rolling
dung beetles, 6 were brood balls, 7 were small dung
beetles, and the remaining 11 were thieves. The maximum
number of iterations was ¢ = 20 (involving 630 calls
to the fitness function, including the initialization). The
hyperparameter ranges of the SSAE were determined through
a combination of experiments and a comprehensive literature
review, as outlined in Table 2. After DBO-SSAE training, the
feature dimension was greatly reduced.
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FIGURE 4. Flowchart of proposed DBO-SSAE.

TABLE 1. Parameters of DBO.

Train the SSAE and calculate
y iy B3l 357 [p”,/]”,IZH,I3”] }> its Loss,y as fitness value.

TABLE 3. Hyperparameters of LSTM and BiLSTM.

LSTM BiLSTM

Dense(32, ReLLU)
LSTM(16, tanh)
Dropout(0.3)
Dense(10, ReLLU)
Dense(1, sigmoid)

BiLSTM(24, tanh)
Dropout(0.5)
BiLSTM(12, tanh)
Dropout(0.5)
Dense(6, ReLU)

Population | Iterative Dimension
size times of search
30 20 4 0.1 0.3
TABLE 2. Ranges of SSAE’s hyperparameters.
p 1 2 13
[0.01, 0.1] [101, 160] [61, 100] [20, 60]

4) CLASSIFIER TRAINING

The anomaly traffic detection in this paper can be regarded as
a binary classification task. The classifier was trained using a
training set consisting of features with lower dimensions and
one label, and its performance was verified by a testing set.

Additionally, to assess the effectiveness of feature extrac-
tion by the DBO-SSAE model, various classifiers were
trained based on features extracted by PCA, features
extracted by the SSAE model with hyperparameters set to
[0.04, 128, 32, 32] as confirmed in [7], and features extracted
by the DBO-SSAE model.

Six different classifiers, namely, DT, logic regression (LR),
RF, kNN, LSTM, and BiLSTM were employed to assess the
performance of the three feature extraction methods above
on the UNSW-NB15 dataset. The random_state in both DT
and RF was set to 10; the k in kNN was set to 3. The core
hyperparameters of LSTM and BiLSTM are listed in Table 3.
The structure of LSTM was simple: a single LSTM layer,
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. Dense(1, sigmoid)
Adam Adam

a fully connected layer, and an output layer. By contrast,
the structure of BiLSTM was more complex: two BiLSTM
layers, the first of whose refurn_sequence was set to True,
followed by a fully connected layer and an output layer.
Besides, to take advantage of the time serial nature of network
flow, the time_step of BILSTM was set to 8.

5) EVALUATION

In this paper, we use four metrics to evaluate the performance
of the classification. The most commonly used performance
measure for a binary classifier is accuracy. High accuracy
indicates that the model possesses a strong predictive ability.
Furthermore, for intrusion detection tasks, the false negative
rate (FNR) and false positive rate (FPR) are also significant
and should be as small as possible. If the FNR is 0, it means
that the classifier can detect all the attack traffic, while
an FPR of 0 means that the classifier does not misjudge
any normal traffic as attack traffic. Nevertheless, there are
instances where we must strike a balance among accuracy,
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FIGURE 5. The overall framework of the experiment.
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FIGURE 6. The distribution of UNSW-NB15, (a) Training set distribution,
(b) Testing set distribution.

FNR, and FPR. In such cases, using the F|-measure becomes
essential as it provides a comprehensive measure of binary
classification tasks, and the F-measure should be as high as
possible.

These metrics are calculated based on the confusion matrix
as depicted in Table 4, and the formulas are as follows:

TP +TN
accuracy = (17)
TP+ TN + FP 4+ FN
FN
FNR = —— (18)
TP + FN
FP
FPR= ———— (19)
FP+ TN
2 x TP

F (20)

T 2xTP+FP+FN
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TABLE 4. Confusion matrix.

. Predict
Reality Attack Normal
Attack TP TN
Normal FP FN
TABLE 5. Top 3 of the best agents.
item 1 2 3
Fitness value 0.01543 0.016548 0.01663
p 0.0104065 0.0103366 0.010546
1 159 155 139
2 100 91 96
13 57 42 51
Call 277th 457th 417th
Rho Optim

0.0112 A

0.0110 A

0.0108 -

0.0106 -

0.0104 -

0.0102 -

0o 2 4 6 8 10 12 14 16 18 20

Iteration

FIGURE 7. The variation of the sparsity parameter p.

6) EXPERIMENTAL RESULTS

After 630 calls to the fitness function, the top 3 small-
est fitness values were 0.01543, 0.01663, and 0.016548,
respectively, corresponding to the positions of the dung
beetles listed in Table 5. The best combination of the SSAE
hyperparameters was identified at the 277tk function call.
Fig. 7 to Fig. 10 show the variation of the global best
hyperparameters in 20 iterations.

The results of the UNSW-NB15 testing set are presented
in Table 6. To demonstrate performance differences, the
columns of features via PCA correspond to the outcomes of
classifiers using features extracted by PCA (n_components =
57, random_state = 10). The columns of features via SSAE
correspond to the outcomes of classifiers using features
extracted by the SSAE with manually tuned hyperparameters
set to [0.04, 128, 32, 32]. The columns labeled features via
DBO-SSAE correspond to the results of classifiers that utilize
the features extracted by the proposed DBO-SSAE model.

Fig. 7 to Fig. 10 show that after 9 iterations of DBO,
the hyperparameters of the SSAE model finally stabilize at
[0.010406519792, 159, 100, 57] with the minimum fitness
equal to 0.01543. From these figures we can observe that the
DBO algorithm was able to find the best hyperparameters
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TABLE 6. Comparison with the other two feature extraction methods on the testing set of UNSW-NB15.

Classifier Features via PCA Features via SSAE Features via DBO-SSAE
Metric Accuracy | FNR FPR Fq Accuracy | FNR FPR F1 Accuracy | FNR FPR F1
DT 84.77% 2691% |5.7% 87.2% 84.91% 27.18% | 5.22% 87.4% 85.19% 26.99% | 4.87 % 87.6%
RF 84.9% 30.94% | 2.18% 87.7% 84.38% 32.23% | 2.06% 87.3% 85.29% 30.71% | 1.64% 88.04%
kNN 85.17% 28.17% | 3.94% 87.7% 84.48% 29.01% |4.51% 87.13% | 85.64% 27.92% |3.29% 88.12%
LR 80.6% 40.25% | 2.39% 84.7% 80.32% 40.71% | 2.52% 84.51% | 82.52% 36.99% |1.55% 86.12%
LSTM 88.15% 24.29% | 1.68% 90.13% | 88.89% 20.69% | 3.29% 90.55% | 90.37% 17.72% | 3.02% 91.7 %
BiLSTM 97.8% 4.11% 0.66% 98.03% | 98.01% 3.61% 0.68% 98.22% | 98.84% 1.86% 0.60 % 98.96 %
The First Hidden Nodes Optim The Third Hidden Nodes Optim
160 1
55 1
150 1
50 1
140 A
45 1
130 A
40
120 4 35 1
110 A 30
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Iteration

FIGURE 8. The variation of the number of neurons in the first layer.

The Second Hidden Nodes Optim

100 4

98 1

96 1

94

92 1

90 1

88 1

0o 2 4 6 8 10 12 14
Iteration

16 18 20
FIGURE 9. The variation of the number of neurons in the second layer.

within 9 iterations, indicating its fast convergence speed.
Even after 9 more iterations, the randomness of the DBO
agents remained significant, for example, the variation range
of p reached a maximum of approximately 0.095 and a
minimum of approximately 0.01004. This implies that the
DBO algorithm has the advantage of being easy to escape
from the local optimal.

In Table 6, we observe that the features extracted by SSAE
with manually tuned hyperparameters and PCA performed
well across all six classification algorithms, achieving an
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FIGURE 10. The variation of the number of neurons in the third layer.

F1-measure that exceeds 84%, respectively. Notably, when
using the BiLSTM, the Fi-measure reached 98.22% and
98.03%, respectively. However, the features extracted by the
DBO-SSAE proposed in this paper outperformed others in
almost all metric terms for all classifiers: higher accuracy,
higher Fi-measure, lower FNR, and lower FPR. This
indicates that the proposed feature extraction method has
stronger generalization capabilities than the other two feature
extraction methods. The exception was observed in the
case of FPR when using LSTM with features extracted
by PCA. Nevertheless, when the accuracy is lower but
the FPR is either lower, we use the Fi-measure as the
composite indicator. The F|-measure of features extracted by
DBO-SSAE was 1.5% higher than that of features extracted
by PCA. Furthermore, the highest F|-measure of the same
classifier was obtained from the features extracted by DBO-
SSAE. It can also be seen that the LSTM and BiLSTM models
performed better than the four other traditional classifiers.
This is because network traffic records can be viewed as
time series data, making it more appropriate to use the
RNN model, such as LSTM and BiLSTM, for classification.
In particular, when BiLSTM was used after utilizing the
features extracted by DBO-SSAE, we achieved an accuracy
and F'1-measure of 98.84% and 98.96%, with FNR and FPR
at only 1.86% and 0.6%, respectively. Fig. 11 shows the
confusion matrix by BiLSTM using the features extracted
through DBO-SSAE on the UNSW-NB15 testing set.
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FIGURE 11. Confusion matrix of DBO-SSAE-BiLSTM on UNSW-NB15.

TABLE 7. Comparison with other advanced approaches for binary
classification on UNSW-NB15.

Method Fi Year
SSAE-BiGRU [7] 98.33% 2019
FA-AE-BNP [13] 92.84% 2021
SPIDER [27] 86.12% 2022
GA-1D-CNN [9]] 98% 2023
SIGMOD [8] 96.07% 2023
GRU-BWFA [67] 98.79% 2023
ME-Net [66] 91.4% 2024
Proposed

DBpO-SSAE-BiLSTM 98.96% 2024

Table 7 presents a comparison between the DBO-SSAE-
BiLSTM model and recently advanced approaches. To ensure
fairness, we utilized the comprehensive Fi-measure
metric on the same dataset for binary classification.
Among these approaches, SSAE-BiGRU [7], FA-AE-
BNP [13], SIGMOD [8], and MF-Net [66] adopted AEs
for feature reduction. SSAE-BiGRU [7], SPIDER [27],
GRU-BWFA [67], and MF-Net [66] utilized RNNs as
classifiers; FA-AE-BNP [13], GA-1D-CNN [9], and GRU-
BWFA [67] leveraged SI optimization algorithms to
optimize hyperparameters of the deep learning models. It is
evident that the proposed DBO-SSAE-BiLSTM achieves the
highest Fi-measure of 98.96% among the listed methods,
underscoring its advantage in intrusion detection.

V. DISCCUSION

The presented experimental results underscore the effective-
ness of the DBO-SSAE model. Applying DBO to optimize
the hyperparameters of SSAE in a network situation element
extraction scenario, we could obtain an optimal feature
set in comparison to other feature extraction methods.
Accuracy, Fi-measure, FNR, and FPR were compared by
inputting the features extracted by DBO-SSAE, SSAE with
manually tuned hyperparameters, and PCA into several
classifiers, indicating the stronger feature extraction ability of
DBO-SSAE. Furthermore, when combined with a BILSTM
network, the DBO-SSAE enhanced the performance of
intrusion detection.
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SSAE has been widely adopted for feature extraction in
previous literature. Although Reference [7] invested time
in tuning the hyperparameters of SSAE through numerous
experiments, the representation ability of the resulting
features is still lower than that of our proposed DBO-SSAE
method. This difference can be attributed to the strong and
fast search capability of the DBO algorithm, enabling it to
automatically find the optimal hyperparameters for SSAE.
Reference [13] utilized an SI algorithm FA to optimize
the neuron number of each hidden layer in the deep AE.
However, the F|-measure still fell short by 6.12% compared
to our proposed method. This disparity may be attributed
to the superior nature of DBO over FA. Unlike FA, DBO
considers not only the best individual but also the worst
individual, making it less prone to being trapped in a local
optimum. Moreover, we used the quadratic sum of losses
in each layer as the fitness function, rather than the sum of
losses, to obtain the optimal feature set with the least loss.
Furthermore, we applied SSAE with sparsity constraint to
mitigate overfitting issues associated with deep AE, thereby
enhancing the classification performance on the testing set.

Despite the experimental results are encouraging, it is
crucial to acknowledge certain limitations of our proposed
method.

A. LONG TRAINING TIME OF DBO-SSAE

In this paper, the DBO algorithm is employed to optimize
the hyperparameters of SSAE. However, limited by the
inherent characteristics of SI, it requires hundreds of function
calls to achieve the goal. In the experiments, approximately
58 seconds are needed for each training instance of a three-
layer SSAE. Across the 630 training instances studied in
this study, the total training time exceeds 30,000 seconds.
Although the training time of DBO-SSAE is significantly
higher compared to PCA, the resulting features are superior,
making the investment worthwhile.

B. NUMEROUS PARAMETERS OF DBO ITSELF

The variety of individual types and locations of DBO makes
it easy to escape from a local optimal, but it also implies
that more parameters need to be set. In this paper, the default
parameter settings from reference [14] are used. If a better
feature subset is to be obtained, these parameters should be
set prudently.

VI. CONCLUSION

In this paper, we proposed a novel method for automati-
cally extracting network security situation elements, named
DBO-SSAE. This method leverages the strengths of the DBO
algorithm to automatically optimize the hyperparameters
of the SSAE network without manual tuning, thereby
achieving effective and robust generalized feature extraction
for network security situations. Experimental results demon-
strated that DBO-SSAE outperforms other feature extraction
methods in the realm of network security. In particular, when
combined with the BILSTM RNN, our research outperformed
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many other works on the UNSW-NB15 dataset in terms of
Fi-measure.

The successful application of DBO-SSAE extends beyond
its immediate contributions to network intrusion detection. Its
ability to autonomously extract salient features from network
data holds promise for various applications within the broader
field of machine learning. Furthermore, the integration of
the DBO algorithm for hyperparameter tuning in the SSAE
introduces a novel perspective to optimization algorithms in
the realm of deep learning.

However, this study has several limitations. Firstly, training
the DBO-SSAE requires a significant amount of time.
Considering the success of the attention mechanism in the
natural language processing field, we will focus on further
enhancing SSAE by adding the attention mechanism to
address this issue. Secondly, DBO has numerous parameters
to set. To overcome this, we will hybridize it with another
SI algorithm with fewer parameters, such as PSO, to find
the optimal parameters for DBO. Furthermore, we will
explore how to extract features from raw network flows using
DBO-SSAE and then apply them in real-world intrusion
detection scenarios.
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