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ABSTRACT Sharding technology is widely regarded as an effective way to solve blockchain scalability
limitations, such as lower throughput and longer delay time. However, sharding encounters challenges related
to high cross-shard transaction proportion and complex cross-shard transaction verification. Therefore,
a transaction sharding algorithm based on account-weighted graph is proposed. Firstly, an account-based
transaction sharding model is established from the viewpoint of data sharding. Secondly, based on this
model, an account-weighted graph is constructed with accounts as nodes and transaction frequency between
accounts as weights for the long-term accumulated transaction data of blockchain. The community discovery
algorithm is adopted, and the accounts with the largest modularity gain are selected and merged according to
the association relationship between the accounts, so a multi-shard blockchain is formed initially. Finally, the
multi-shard blockchain is adjusted and rebuilt by splitting and merging. The proposed algorithm is compared
with themodular sharding algorithm and the random sharding algorithm under the sharding granularity of 10.
The cross-shard transaction proportion is reduced by 78.8% and 78.7%, the average cross-shard transaction
delay of accounts is reduced by 36.1% and 44.5%, and the transaction throughput is increased by 93.1% and
122.1%. Under the other sharding granularities, the proposed algorithm also outperforms the two algorithms
in terms of cross-shard transaction proportion and account transaction delay. In conclusion, this method
effectively reduces the cross-shard transaction proportion and minimizes cross-shard transaction delay.

INDEX TERMS Scalability, transaction sharding, sharding granularity, cross-shard transaction proportion,
transaction delay.

I. INTRODUCTION
Blockchain technology is a technical solution that does
not rely on third parties and utilizes its own distributed
nodes for the storage, verification, transmission, and com-
munication of network data. Blockchain technology has the
characteristics of decentralization, traceability, and trans-
parency [1]. The diverse applications of blockchain tech-
nology will reshape traditional industries, create new busi-
ness models, and play a crucial role in applications such
as financial technology, product traceability, and privacy
protection [2].

However, in the development of blockchain technology,
the ‘‘impossible triangle’’ issue has always existed, as it is
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impossible to simultaneously achieve decentralization, secu-
rity, and scalability [3]. Scalability is currently the biggest
obstacle preventing blockchain systems from being suitable
for real-life applications [4], [5]. TPS (Transactions Per Sec-
ond) refers to the average number of transactions processed
per second by a system. Currently, the transaction throughput
of blockchain systems is relatively low. For example, in the
Bitcoin network, a block is packaged every 10 minutes, with
a maximum transaction throughput TPS of only about 7 TPS,
while the Ethereum platform has around 30 TPS, and during
the activity period of an internet shopping platform, it reaches
around 100,000 TPS. Clearly, in practical applications, the
low TPS and long transaction delay of blockchain systems
make them unsuitable for internet-level applications, severely
constraining the implementation of blockchain applications
[6], [7].
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To enhance the scalability of blockchain, researchers
have proposed various blockchain scalability solutions [8].
Existing blockchain scalability optimization schemes include
sharding technology [9], state channels [10], and directed
acyclic graph [11], [12]. Parallel process is extensively
used to increase processing speed in solving different sci-
entific problems, which plays a great role in the scala-
bility of blockchain technology. Parallelism is the main
method to achieve the required processing power [13]. Elas-
tico [14] introduced a concept called sharding, and since
then, blockchain sharding technology has become a popular
research direction [15]. As one of the mainstream meth-
ods of on-chain expansion, sharding technology is currently
the most effective expansion solution to achieve high per-
formance without sacrificing centralization [16]. It adopts
a divide-and-conquer approach, dividing nodes into small
groups called shards, which can process transactions in par-
allel and alleviate the storage overhead of each node [17].
Blockchain sharding technology is primarily divided into

network sharding, transaction sharding, and state shard-
ing [18]. Network sharding is a method of dividing
blockchain network into different shards through a specific
organizational approach, and these shards process transac-
tions in parallel, aiming to improve network performance and
processing capacity. Nodes in the network are allocated to
different shards through verifiable random functions, ensur-
ing fair node allocation while also considering the balance
of computing power after sharding. Transaction sharding is a
method to assign transactions to multiple shards, with each
shard responsible for receiving, validating, and processing
a portion of transactions. This helps reduce the burden on
each shard, thereby transaction processing speed is improved.
The primary challenge of transaction sharding lies in how to
partition transactions reasonably to ensure that dependencies
between transactions are met while maintaining efficient pro-
cessing. State sharding is the bottleneck of sharding technol-
ogy, making the verification process of cross-shard transac-
tions extremely difficult. Different shards require transaction
transfer or frequent cross-shard communication in a certain
way due to the storage of different ledgers. The complexity
of state sharding constrains the development of sharding
technology. Network sharding, as the foundation of sharding
technology, first focuses on the security issues of the system.
Existing network sharding strategies adopt the method of
randomly selecting nodes to partition sub-chains, avoiding
the problem of malicious node aggregation after sharding,
thereby ensuring the security of blockchain network [19].
How to better implement transaction sharding is currently a
noteworthy issue.

Several studies have applied sharding technology to
improve the overall throughput of blockchain systems,
such as Zilliqa [20], Omniledger [21], Monoxide [22], and
Ethereum 2.0 [23], [24]. These are classical mainstream
sharding schemes on blockchain, which use different shard-
ing strategies based on the account balance model [25] and
the UTXO model [26]. To ensure user randomness, these

projects use the modular sharding algorithm (MSA) and
the random sharding algorithm (RSA), which often ignore
the relationship between accounts. In these sharding strate-
gies, there is a significant increase in cross-shard trans-
actions, which may lead to delays in verifying and syn-
chronizing transaction states, network congestion, and poor
performance on blockchain. In extreme cases, all transac-
tions on blockchain are cross-shard transactions, which will
require additional communication, data synchronization, and
coordination between multiple shards. Some scholars have
considered the relationship between accounts. For example,
BrokerChain proposes an account-splitting mechanism that
stores account states among multiple shards to facilitate
coordination for participating in multiple cross-shard trans-
actions [27]. In FBTS [28], the frequency of transactions
between accounts is taken into account, and accounts with
high transaction frequencies are recursively placed in the
same shard. It can thus be seen, that the relationships between
accounts and the frequency of transactions directly impact the
number of cross-shard transactions on blockchain. To reduce
the cross-shard transaction proportion, a starting point could
be focusing on accounts since the complexity of transactions
varies between different accounts. Therefore, designing bet-
ter sharding strategies can effectively mitigate the negative
impact of cross-shard transactions when employing sharding
technology on blockchain.

In this paper, we propose a blockchain transaction shard-
ing algorithm based on account-weighted graph (AWSA)
that takes into account the relationships between accounts
from a global perspective. This method extracts transaction
relationships between accounts from historical transaction
data and abstracts account relationships as weighted graphs.
By reflecting account relationships intuitively in the account-
weighted graph, accounts can be assigned to different shards
to reduce the occurrence of cross-shard transaction propor-
tion after sharding.

The following is a summary of the main contributions of
this paper:

• From the perspective of transaction sharding, we pro-
pose an account-based transaction sharding model. This
model changes the strategy for processing transaction
data in traditional blockchains, aiming to partition trans-
action data from the perspective of sharding to achieve
parallel verification and processing, thereby improving
processing efficiency.

• The blockchain transaction sharding algorithm based
on account-weighted graph is proposed. Starting from
the association between accounts, we extract transaction
frequency information between accounts, use this fre-
quency as the weight to construct an account-weighted
graph, and place strong-correlated accounts in the same
shard. Therefore, a large number transactions occur in
the single shard and avoid the cross-shard operation.

• The performance of the proposed blockchain transaction
sharding algorithm based on account-weighted graph
is verified through simulation experiments. The final
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FIGURE 1. Account-based transaction sharding model.

simulation results show that, compared to existing algo-
rithms, this algorithm can effectively reduce the cross-
shard transaction proportion and minimize cross-shard
transaction delay.

The remainder of this paper is structured as follows: the
related works are reviewed and discussed in Section II, the
systemmodel is presented in Section III, the blockchain trans-
action sharding algorithm based on account-weighted graph
is presented in Section IV, the evaluation of our experimental
study is presented in Section V and the study is concluded in
Section VI.

II. RELATED WORK
The concept of blockchain sharding originates from the tra-
ditional database sharding concept [7], [29]. By transactions’
sharding on blockchain, the shards collaborate, allowingmul-
tiple tasks to be completed in parallel at the same time. This
characteristic, which linearly improves scalability with the
increase in the number of shards, significantly enhances the
throughput and performance of the entire blockchain [30].
In the Zilliqa project [20], the state information of each

account is uniquely accessed through the corresponding
account address, and each transaction in the network is ran-
domly mapped to a working shard for verification based on

the sender’s address. It was known as the random sharding
algorithm.

OmniLedger [21] is an innovative decentralized ledger
solution known for its high performance and long-term secu-
rity. It replaces PoW for selecting validator grouping with
a cryptographic lottery protocol and then uses a distributed
unbiased random number generation scheme to assign valida-
tors to different shards. It employs an anti-predictive public
randomness protocol to select large shards for transaction
processing to ensure these shards are statistically represen-
tative, known as the random sharding algorithm.

The Monoxide solution [22] replaces a single chain with
a concurrent multi-chain system, where each single chain is
called a consensus group that can work in parallel, sharing
the network’s throughput, computing, and storage pressure.
The selection of consensus groups is based on the first k bits
of the user’s address to determine which consensus group the
user belongs to, known as the modular sharding algorithm.

In Ethereum 2.0 [23], [24], the core is the beacon chain,
which acts as a central hub connecting various shards. Shard-
ing allows the network to process transactions in parallel,
enhancing overall processing capability. The beacon chain
generates random numbers regularly to allocate transactions
randomly to shards. The beacon chain is responsible for
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managing validators, maintaining consensus and time, and
coordinating cross-shard transaction verification. However,
the beacon chain may face performance bottlenecks when
handling a large number of cross-shard transactions. It was
known as the random sharding algorithm.

Brokerchain [27] uses broker accounts to store account
states in multiple shards and participate in the coordination of
several cross-shard transactions. These divided accounts have
the same account address, and the coordination mechanism
of brokers can reduce cross-shard communication based on
transfer-type transactions, thus increasing the throughput of
blockchain and reducing the average confirmation delay of
transactions. The main purpose of Brokerchain is to acceler-
ate the confirmation of cross-shard transactions.

The FBTS algorithm [28] considers the frequency between
accounts and selects transactions with high frequencies to be
placed in one shard to reduce cross-shard transaction propor-
tion. However, the intricate transaction relationships between
accounts are overlooked, and the account is not optimized for
sharding as a whole.

LB-Chain proposes an account migration strategy to adjust
the load balance between shards [31]. The account migration
strategy is mainly divided into account allocation and account
prediction. Account allocation predicts the transaction vol-
ume of each account based on the results of the random shard-
ing strategy used by Ethereum, using historical transaction
data. Then, the account allocation strategy is used to migrate
accounts. Table 1 shows a summary of related studies.

TABLE 1. Existing research on sharding methods.

The mainstream sharding schemes on blockchain have
two ways of account and transaction allocation. Zilliqa [20],
OmniLedger [21], Ethereum2.0 [23], [24], use the random
sharding algorithm, while Monoxide [22] uses the modular
sharding algorithm. Although [28] considers the transaction
frequency relationship of accounts, the analysis is not thor-
ough, and it does not analyze overall. Brokerchain [27] uses
themodular sharding algorithm used by theMonoxide project
as a comparison, but its main purpose is to accelerate the con-
firmation of cross-shard transactions by storing account states
as shards. LB-Chain [31] proposes a dynamic solution for

account migration based on the random sharding algorithm
used by Ethereum as a historical result.

It can be seen that in the long-term historical transaction
data migration, static algorithms do not optimize the sharding
of accounts from an overall perspective, ignoring the com-
plex transaction relationships between accounts, leading to
a high cross-shard transaction proportion. All accounts and
their transactions on blockchain constitute a social network,
and the relationships between accounts can be seen from
the intricate network. However, simple sharding strategies
can lead to a large number of cross-shard transactions and
imbalanced transaction volumes. In a multi-shard blockchain
network, each shard is similar to a community, containing
different accounts. A good community relationship ensures
that the vast majority of transactions are completed within the
community, greatly reducing the number of cross-shard trans-
actions. The accounts within each community need to com-
municate constantly, and the relationship between accounts
coincides with the graph structure in the data structures.
Therefore, Graph structure is an effective way to represent
relational relationships [32]. Based on the above, we abstract
the relationship between accounts as a weighted graph to
analyze the relationship between accounts more directly and
propose sharding algorithms to finish mapping each account
to a different shard.

III. SYSTEM MODEL
In the real transaction system of blockchain, the mainstream
models include the UTXO model used by Bitcoin [25] and
the account balance model used by Ethereum [26]. These
models facilitate real-time packaging of transactions for on-
chain processing. However, when migrating historical trans-
action data, the consideration shifts towards static sharding
models to reduce storage costs and enhance blockchain’s
capability for parallel transaction processing. Concurrently,
the features of historical transactions show better consistency
with the features of future transactions, and historical trans-
actions are representative in terms of transactions’ features.
Hence, an analysis of transactions’ features is imperative.
On blockchain, a transaction includes the account informa-
tion of both parties, transaction time, transaction location,
transaction amount, time intervals, and so on. Based on these
elements, a deeper understanding and analysis of transactions
can be achieved. In real transactions, the account of distri-
bution salaries and loan repayments are relatively fixed, and
transactions are launched at the appointed time. It reflects the
account aggregation of transactions from a time perspective.
Similarly, in real transactions, the cooperative relationships
and frequent transactions between accounts can reflect the
frequency aggregation and location aggregation of accounts.
The transaction patterns and behavioral characteristic trends
in a period are often relatively stable, and predictions based
on short-term historical transaction data typically can obtain
relatively accurate results. However, transactions sharded by
time and transactions by location also can result in traffic
overload between shards. The reasons are that they fail to
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consider the correlation between accounts, leading to uncer-
tainty in transaction data storage, and the issue of high
cross-shard transaction proportion. Therefore, transactions
sharded by account are superior to transactions sharded by
time and transactions by location in reducing cross-shard
transaction proportion. Based on the above, an analysis of
historical transaction data is conducted, taking into account
various transaction characteristics. An account-based trans-
action sharding model is proposed. This model aims to better
address the intricate and complex interrelationships among
accounts within a sophisticated transaction network, ulti-
mately enhancing the efficiency and security of transaction
processing.

Fig. 1 illustrates the account-based transaction sharding
model. On blockchain, Ac represents the set of accounts,
Ac = {ac1, ac2, . . . , acn}, Tx denotes the set of transac-
tions, Tx = {tx1, tx2, . . . , txk}, txk =

{
aci, acj, value

}
. The

account aci serves as the sender of the transaction and is
denoted as txi.sender = aci, Account acj serves as the
receiver of the transaction and is denoted as txi.receiver =

aci, where value signifies the transaction amount between
sender aci and receiver acj. The blockchain stores accumu-
lated transaction data over the years, and transaction shard-
ing involves distributing historical data to shards from the
perspective of storage optimization. The rules for allocating
data to shards involve transaction sharding strategies. The
account-based sharding model first extracts accounts from
historical transactions, then allocates the accounts to shards,
and subsequently maps the transactions to the working shards
based on the senders’ addresses. For any shard in a multi-
shards blockchain, nodes obtain the right to record through
the internal shard consensus protocol, and the transactions
are packaged into the block, according to specific block sizes,
and complete the on-chain process. Due to the unique account
addresses, the data in each shard consists of the collection
of all transactions initiated by the accounts in this shard.
Therefore, the same transaction will only be allocated to
one shard, and transactions initiated by the same account
will be assigned to the same shard. For each transaction, its
allocation in a particular shard is deterministic and unique,
without redundant storage across shards. However, a specific
block is assigned to shards, each node completes transac-
tion verification through consensus protocols. Nodes within
the shard save on-chain transaction data through redundant
accounting. Therefore, the on-chain process on amulti-shards
system is similar to that of traditional blockchains. Thus,
a multi-shard blockchain network can operate in parallel.
The evaluation of transaction sharding strategies includes
metrics such as cross-shard transaction proportion, account
proportion with different cross-shard number, account trans-
action delay with different cross-shard number, average
cross-shard transaction delay, average cross-shard number,
and transaction throughput. The metrics hold significant
importance in the evaluation of sharding strategies. When
designing transaction sharding strategies, efforts should be
made to minimize the occurrence of cross-shard transactions,

reduce the additional storage, and shorten querying costs for
transactions.

IV. THE PROPOSED METHOD
Based on the account-based transaction sharding model, this
section proposes a transaction sharding algorithm based on
account-weighted graph and provides the algorithm steps.

A. ALGORITHM DIAGRAM
Fig. 2 illustrates the schematic diagram of blockchain
transaction sharding algorithm based on account-weighted
graph. On blockchain, the association and frequency between
accounts precisely align with the weighted graph in data
structures. Therefore, we abstract the account relationships
into a weighted graph. Fig. 2(a) represents an abstract depic-
tion of real-world transaction accounts, where circles rep-
resent transaction accounts, and the weights on the edges
between accounts indicate the transaction frequency between
the parties. In real-life scenarios, a transaction is directional,
meaning that transactions from Alice to Bob and from Bob
to Alice are distinct. However, when designing transaction
sharding strategies, the verification and processing of a trans-
action only require consideration of the association between
accounts, without regard to the directionality of the trans-
actions. For the sake of research convenience, the account
association is abstracted as an undirected weighted graph.
Fig. 2(b) illustrates the preferred shard discovery and shard
merge. In this stage, a community detection algorithm is
applied to the account-weighted graph for preferred shard
selection and merging [33]. First, according to the account-
weighted graph, for any account, the modularity of the
accounts associated with it is calculated, and the associated
accounts with the largest modularity are selected and merged
to form an account set. Through multi-round operations,
the partitions and aggregation of accounts can be achieved
to form multi-shards. Subsequently, the process enters the
shard merge phase, compressing all accounts within each
shard into a single account, with the weights between shards
being transformed into weights between the new accounts.
Perform preferred shard discovery until the shards to which
all accounts belong no longer change. Fig. 2(c) depicts the
generated shard results, producing a multi-shard blockchain
network. According to the complexity of the transaction,
the account is divided into different shards. Each shard is
independent of the other and is responsible for processing the
transactions of its respective shard and maintaining the shard
status. Transaction information is verified and processed in
parallel between each shard, thereby significantly improving
the load-balancing capability and resource utilization effi-
ciency of the entire blockchain system. Thus, starting from
the relationships between accounts aids in optimizing the
shard system.

B. RELATED DEFINITIONS
We define our algorithm based on the account-based transac-
tion sharding model. Construct the account-weighted graph
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FIGURE 2. Schematic diagram of blockchain transaction sharding algorithm based on account-weighted graph.

G = (Ac,Tn), where Tn represents the set of transaction
frequencies on blockchain, Tn = {tn1, tn2, . . . , tns}, tni =

{aci, acj,Num(aci, acj)}, tni ∈ Tn, and calculate the cumu-
lative frequencies of transactions where aci is as a sender,
and acj is as a receiver, and denote it as Num(aci, acj).
The account-weighted graph G is denoted as M , M =
1
2

∑
i,j Num

(
aci, acj

)
. A multi-shard network is denoted as

Shard , Shard = {shard1, shard2, . . . , shardm}, where shardi
represents a set of accounts, shardi = {ac1, ac2, . . . , acn}.
For any given shardi, the sum weights of shardi is denoted
as wi =

∑
i,j Num(aci, acj), where aci ∈ shardi, acj ∈

shardi. For any given shardi, the sum of weights connected
to shardi is denoted as wshardi ,wshardi =

∑
i,j Num(aci, acj),

where aci ∈ shardi, acj /∈ shardi. Moreover, the weight
between shardi and shardj is denoted as wshardi,j ,wshardi,j =∑

i,j Num(aci, acj), where aci ∈ shardi, acj ∈ shardj. For
any given shardi, the associated shards of shardi are denoted
as Rshardi , where Rshardi = ∪shardj and wshardi,j ̸= 0.
According to community discovery algorithm con-

cepts [33], the formula for the gain obtained from shardi and
shardj is:

1Qi,j =
1
2M

(
wshardi,j −

wshardj × wshardi
M

)
(1)

Table 2 gives a brief description of the symbols of for-
mula (1).

At different shard granularitiesm, For ∀txk , txk ∈ Tx, txk ={
aci, acj, value

}
, if aci ∈ shardk , aci ∈ shardn, and shardk ̸=

shardn, then txk is referred to as a cross-shard transaction.
The total number of transactions is denoted as |Tx|, the cross-
shard transactions on blockchain are denoted as Txcross, and
the number of cross-shard transactions is denoted as |Txcross|.
Therefore, the cross-shard transaction proportion is denoted
as Cr .

Cr =
|Txcross|

|Tx|
(2)

For a multi-shard blockchain with the sharding granularity
of m, the set of cross-shard number is denoted as N ,N =

{0, 1, . . . ,m−1}. For any account aci, the cross-shard number
is denoted as naci , the set of accounts with the cross-shard
number n is denoted as An,An = {aci

∣∣naci = n }, aci ∈ Ac.

TABLE 2. A brief description of the symbols in formula 1.

The proportion of account with the cross-shard number n is
denoted as Arn .

Arn =
|An|
|Ac|

(3)

For account aci under the cross-shard number of n, the
cross-shard transaction delay is denoted as tnaci , and the
average cross-shard transaction delay under the cross-shard
number of n is denoted as tn.

tn =

∑ {
tnaci

∣∣naci = n
}

|An|
(4)

For blockchain, the average cross-shard delay of accounts
is denoted as tavg.

tavg =

∑i=|Ac|
i=1 tnaci
|Ac|

(5)

For blockchain, the average cross-shard number of
accounts is denoted as navg.

navg =

∑i=|Ac|
i=1 naci
|Ac|

(6)

The total number of cross-shard transactions for aci is
denoted as

∣∣acicross ∣∣, and the total number of transactions for
aci is denoted as |aci|, the cross-shard transaction proportion
for aci is denoted as cri .

cri =

∣∣acicross ∣∣
|aci|

(7)
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From a qualitative point of view, for account aci, it contains
cross-shard transactions and non-cross-shard transactions.
For non-cross-shard transactions, they only need to complete
the verification of the transaction in a single shard, the delay
of an account that does not involve cross-shard transactions is
denoted as t0aci ; For cross-shard transactions, the transactions
need several shards to collaborate to validate the transactions,
so we introduce the account weighted average cross-shard
delay taci .

taci = tnaci × cri + t0aci × (1 − cri ) (8)

On blockchain, the weighted average cross-shard transac-
tion delay for all accounts is denoted as t .

t =

∑i=|Ac|
i=1 taci
|Ac|

(9)

For blockchain networks, the transaction throughput is
denoted as T .

T =

∑i=k
i=1 tx i
t

(10)

C. ALGORITHM DESCRIPTION
Sharding technology has to some extent improved blockchain
performance, but it results in the problems of higher cross-
shard transactions, transaction validation difficulty, and
longer transaction delays on blockchain. The inter-account
transaction frequency is a primary factor affecting whether
cross-shard transactions occur frequently, so this paper pro-
poses a blockchain transaction sharding algorithm based on
account-weighted graph. Using the idea of community dis-
covery [33], the algorithm organizes accounts into clusters
through multiple rounds of preferred shard selection and
merges shards based on the association relationship between
accounts. The method encompasses two phases: (1) the pre-
ferred shard discovery and shard merge; (2) the shard granu-
larity adjustment.

In the preferred shard discovery and shard merge,
Algorithm 1 is executed. This algorithm analyzes the fre-
quency of transactions among transaction accounts and takes
the account-weighted graph as input. Firstly, it calculates the
weight M of the account-weighted graph. Secondly, it treats
each account as a shard and calculates wshardi,j , wshardi wshardj
and Rshardi . It proceeds to iterate through Rshardi , calculates
the modularity change 1Qi,j of the relevant shards, and
records the shard with the maximum modularity change.
If there exists a shard with a modularity greater than 0,
the account is added to that shard; otherwise, it remains
unchanged. Then, this process is repeated until no further
changes occur in the shards to which all accounts belong.
In the shard merge phase, it compresses the accounts within
each shard into a single account. For accounts in the inter-
nal shard, the weights between accounts within a shard are
updated to the weights of the new account ring, while for
accounts in the inter-shards, weights between shards are
updated to the weights between the new accounts. Finally,

Algorithm 1 Preferred Shard Discovery and Shard Merge
Input: Account-weighted graph G = (Ac,Tn), account

set Ac = {ac1, ac2, . . . , acn}, frequency set Tn =

{tn1, tn2, . . . , tns}, tnk = {aci, acj,Num
(
aci, acj

)
}

Output: Shard = {shard1, shard2, . . . , shards}
1: Shard = ∅, wshardi = 0, Rshardi = ∅

2: flag_init = True, flag_re = Flase
3: M =

1
2

∑
i,j Num

(
aci, acj

)
4: for (i = 1; i ≤ n; i+ +)
5: shardi = shardi ∪ aci
6: end for
7: while True
8: flag_init = Flase
9: for (i = 1; i ≤ n; i+ +)
10: Calculate wshardi,j , wshardi , wshardj , Rshardi
11: Max = −∞, q = 0
12: for

(
j = 1; j ≤

∣∣Rshardi ∣∣ ; j+ +
)

13: 1Qi,j =
1
2M

(
wshardi,j −

wshardj×wshardi
M

)
14: if 1Qi,j > Max then
15: Max = 1Qi,j, q = j
16: end if
17: end for
18: if Max > 0
19: shardq = shardq ∪ shardi, shardi = ∅

20: flag_init = True, flag_re = True
21: end if
22: end for
23: if flag_init = Flase
24: break
25: end if
26: Shard = {shard1, shard2, . . . , shards}
27: Restructure graph G = (Ac,Tn), Ac = Shard ,
Tn = {tn1, . . . , tnk , . . . , tns}, tnk = {shardi, shardj,wshardi,j }

28: if flag_re = True
29: go to 1
30: end if
31: return Shard = {shard1, shard2, . . . , shards}

re-enter the preferred shard discovery and repeat the process
until no further changes occur in the shards to which all
accounts belong. After completing the preferred shard dis-
covery and shard merge, the ideal state of the shard results
is generated. Algorithm 1 provides the pseudocode for the
preferred shard discovery and shard merge phase.

Algorithm 1 generates a multi-shard blockchain network
without any limitations on the number of shards that can
be used. Therefore, to better balance the number of shards,
we have specified a shard granularity to adjust the num-
ber of shards on a multi-shard blockchain network. In the
shard granularity adjustment, Algorithm 2 takes the execution
results of algorithm 1 and the specified shard granularity as
input. If the shard number after algorithm 1 processing is
greater than the specified shard granularity, the algorithm
iterates through the shard result and merges the two shards
with the smallest number of accounts into one shard. If the
shard result is smaller than the specified shard granularity,
the algorithm iterates through the shard result and splits the
shard with the largest number of accounts into a new shard.
It continues this process of iterating through the shard result
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Algorithm 2 Shard Granularity Adjustment
Input:Shard = {shard1, shard2, . . . , shards}, sharding

granularity m
Output: Shard = {shard1, shard2, . . . , shardm}

1: The accounts’ number of shardi is denoted as |shardi|,
Sort Shard in ascending order of |shardi| , Shard =

{shard1, shard2, . . . , shards}
2: if s > m then
3: for (i = 1; i ≤ s− m; i+ +)
4: shardi+1 = shardi+1 ∪ shardi
5: Sort Shard in ascending order of |shardi|, obtain Shard ={

shardi+1, shardi+2, . . . , shards
}

6: end for
7: end if
8: if s < m then
9: for (i = 1; i ≤ m− s; i+ +)
10: shards+i = shards/2
11: shards = shards − shards+i
12: Sort Shard in ascending order of |shardi|, obtain

Shard =
{
shard1, shard2, . . . , shards+i

}
13: end for
14: end if
15: return Shard = {shard1, shard2, . . . , shardm}

until the number of shards reaches the specified shard granu-
larity and then outputs the shard result. Algorithm 2 provides
the pseudocode for adjusting the shard granularity.

V. EXPERIMENTAL STUDY
Through the analysis in Section II of this paper, the current
classical mainstream sharding schemes on blockchain were
investigated, which use the MSA algorithm and the RSA
algorithm. Therefore, we selected the MSA algorithm and
the RSA algorithm for comparison with the proposed AWSA
algorithm. To verify the effectiveness of the algorithm,
we conducted simulation experiments of three algorithms
based on the proposed transaction sharding model and
analyzed the experimental results under different sharding
granularity. Three algorithms are evaluated in terms of per-
formance metrics such as cross-shard transaction propor-
tion, account proportion with different cross-shard number,
account transaction delay with different cross-shard number,
average cross-shard transaction delay of, average cross-shard
number, and transaction throughput.

The dataset used for our study was extracted from the
IEEE CSCloud 2023 with a total of 1,048,575 transactions
and 93,624 accounts. These algorithms were implemented
using the VSCode experimental platform, programmed in
python language, and executed on a 64-bit Windows operat-
ing system with an intel core i5-13500HX 2.50 GHz central
processing unit (CPU) and 16 GB of memory.

A. CROSS-SHARD TRANSACTION PROPORTION
From an overall qualitative perspective, the cross-shard trans-
action proportion is introduced to evaluate whether transac-
tions require cross-shard operations to be completed. Fig. 3
illustrates the cross-shard transaction proportion using three
different sharding algorithms MSA, RSA, and AWSA under

different shard granularities. Experiment results indicate that
the cross-shard transaction proportion for all three sharding
algorithms increases with the increment of shard granularity.
However, the AWSA algorithm exhibits an overall lower
cross-shard transaction proportion compared to the MSA
algorithm and the RSA algorithm. Specifically, at a shard
granularity of 5, the cross-shard transaction proportion for the
MSA algorithm and the RSA algorithm are 80% and 81%,
respectively, while that of the AWSA algorithm is 18%. At a
shard granularity of 10, the cross-shard transaction proportion
for the MSA algorithm and the RSA algorithm are 90.27%
and 89.57%, respectively, while that of the AWSA algorithm
is 19.17%. At a shard granularity of 20, the cross-shard
transaction proportion for the MSA algorithm and the RSA
algorithm reaches 93%, whereas that of the AWSA algorithm
is 20%. Overall, the AWSA algorithm reduces the cross-
shard transaction proportion by 62 to 73 percentage points
compared to the MSA algorithm and the RSA algorithm.
Moreover, it can be observed that the cross-shard transaction
proportion for the AWSA algorithm hardly increases with the
increase in shard granularity, owing to its consideration of the
relationship between the two parties involved in a transaction.
Therefore, the AWSA algorithm can effectively reduce the
cross-shard transaction proportion.

FIGURE 3. Cross-shard transaction proportion.

B. ACCOUNT PROPORTION WITH DIFFERENT
CROSS-SHARD NUMBER
The cross-shard transaction proportion is to determine
whether the transaction needs to be completed across shards
or not. However, for each account, the proportion of transac-
tions that require to be completed within a single shard and
the proportion that require to be completed between cross-
shard change. Therefore, the introduction of the account pro-
portion with different cross-shard number serves to quantita-
tively measure transaction complexity. The higher the cross-
shard number, the higher the transaction costs between the
accounts. If a majority of accounts in the system frequently
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FIGURE 4. Account proportion with different cross-shard number.

require cross-shard operation, the delay time for transaction
verification and completion might increase, which poten-
tially degrades the benefits of parallel processing transactions
brought by sharding technology. Fig. 4 shows the account
proportion with different cross-shard number using the three
sharding algorithms MSA, RSA, and AWSA under different
sharding granularities. The results indicate that the account
proportion for the MSA algorithm and the RSA algorithm
are concentrated in scenarios where the shards are 1 and 2,
accounting for over 80% of the total account transactions.
This implies that more than half of the accounts involve
only 2-3 shards in transaction verification. For the AWSA
algorithm, at a cross-shard number of 0, the account pro-
portion is around 65%, indicating that more than half of the
accounts can complete transactions within a single shard. At a
cross-shard number of 1, the account proportion is approxi-
mately 35%, suggesting that one-third of the accounts only
cross one shard to complete their transactions. Consequently,

the shards constructed by the AWSA algorithm rarely have
multiple cross-shard transactions. As the shard granular-
ity increases, the cross-shard number of 1 for the MSA
algorithm and the RSA algorithm decreases gradually from
54% to 38%, while for AWSA algorithm, the account pro-
portion increases slightly from 31% to 33%. This indi-
cates that the distribution of accounts remains relatively
stable under different shard granularities using the AWSA
algorithm. In summary, compared to the RSA algorithm
and the MSA algorithm, the proposed sharding algorithm
effectively reduces the cross-shard number for accounts and
minimizes the impact of high cross-shard transactions on
blockchain performance.

C. ACCOUNT TRANSACTION DELAY WITH DIFFERENT
CROSS-SHARD NUMBER
In practical applications, users are more concerned about how
quickly their transactions can be committed to the blockchain.
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FIGURE 5. Account transaction delay with different cross-shard number.

This is an important metric. For any account, there is a
certain correlation between the account transaction delay and
its cross-shard number. Therefore, we introduce the account
transaction delay with different cross-shard number. Fig. 5
shows the account transaction delay with different cross-
shard number using the MSA algorithm, the RSA algorithm,
and the AWSA algorithm with different shard granularities.
As depicted in Fig. 5, the cross-shard transaction delay for all
three algorithms undergoes an overall increasing trend with
the increasing cross-shard number. According to Fig. 5(a)
and Fig. 5(b), it is evident that the transaction delay of
the AWSA algorithm is consistently lower than that of the
MSA algorithm and the RSA algorithm under different shard
granularities. Transaction delay is not only related to the
cross-shard numbers but also to the transaction volume.
Table 3 presents the maximum transaction volume propor-
tion, the minimum transaction volume proportion, and the

variance of transaction volume of the three sharding algo-
rithms under different shard granularities. These values indi-
cate a correlation between transaction variances and account
transaction delay illustrated in Table 3. At shard granularities
of 15 and 20, as depicted in Fig. 5(c) and Fig. 5(d), the account
transaction delay under the AWSA algorithm exhibits greater
fluctuations and often surpasses the values of the other two
algorithms. The reason is revealed in Table 3 is that there
are significant disparities in transaction data proportion and
notable variances at shard granularities of 15 and 20.

Table 4 presents the transaction volume proportion of each
shard at a shard granularity of 15. The data in Table 4 demon-
strates that all three algorithms manifest an uneven distri-
bution of transaction volumes among shards. However, the
distribution of transaction volumes among shards under the
AWSA algorithm is more imbalanced compared to the other
two algorithms, resulting in a more pronounced occurrence of
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TABLE 3. Transaction volume analysis with different sharding granularities.

hot shard phenomena. This phenomenon implies an uneven
distribution of transaction volumes among shards, which
leads to different access delays for accessing different shards.
Nonetheless, under a high cross-shard number, the account
transaction delay under the AWSA algorithm is lower than
that under the other two algorithms. Hence, the AWSA
algorithm effectively reduces the account transaction delay
with different cross-shard number.

TABLE 4. The distribution of transaction volume under each algorithm
with the sharding granularity of 15.

D. AVERAGE CROSS-SHARD TRANSACTION DELAY AND
AVERAGE CROSS-SHARD NUMBER
The account proportion with different cross-shard number
and the account transaction delay with different cross-shard
number are analyzed concerning a specific shard granularity.
However, in practical application, we are more concerned
about the average delay on blockchain, rather than individual
account’s performance, such as the account transaction delay
and the account cross-chain number. Therefore, we intro-
duce the concepts of average cross-shard transaction delay
and average cross-shard number. These metrics provide an
intuitive understanding of the delay and cross-shard number
involved in completing transactions for an average account
under the sharding strategy.

The bar chart in Fig. 6 depicts the average cross-shard
transaction delay under different shard granularities, while
the scatter plot with connecting lines illustrates the aver-
age cross-shard number under different shard granularities.
A certain correlation exists between them. Overall, no matter
how shard granularity changes, the AWSA algorithm con-
sistently maintains a lower average cross-shard transaction

delay and average cross-shard number compared to the MSA
algorithm and the RSA algorithm. At a shard granularity of 3,
compared with the MSA algorithm and the RSA algorithm,
the average transaction delay of accounts of the AWSA
algorithm is reduced by 56% and 44%, so the difference in
transaction delay is the most obvious. At this granularity, the
average cross-shard number of accounts for both the MSA
algorithm and the RSA algorithm reaches 1, while for the
AWSA algorithm, it is 0.27. At a shard granularity of 10,
compared with the MSA algorithm and the RSA algorithm,
the average transaction delay of the AWSA algorithm is
reduced by 36.41% and 44.5%. At a shard granularity of
20, the average transaction delay of accounts stabilizes, and
AWSA demonstrates a reduction of 45% and 47% compared
to the MSA algorithm and the RSA algorithm. At this stage,
the average cross-shard number for the MSA algorithm and
the RSA algorithm increases to 1.84, while for the AWSA
algorithm, it is 0.43.

With the shard granularity increases, the average cross-
shard transaction delay of accounts decreases for all three
algorithms, and the change trends are essentially consistent.
This is primarily attributed to the larger shard granularity,
leading to more dispersed transactions with processed trans-
action data stored in various shards. Transaction verification
only requires processing within the shards where account
transactions exist, resulting in faster transaction validation
between accounts. However, this also leads to an increase
in the average cross-shard number of accounts. From the
change of the average cross-shard number of accounts, with
the increase of the shard granularity, the average cross-shard
number of accounts of the three sharding algorithms is gradu-
ally increasing. The AWSA algorithm consistently maintains
a lower average cross-shard number of accounts compared
to the MSA algorithm and the RSA algorithm, and the gap
becomes more obvious in higher shard granularity. Simulta-
neously, it is evident that the increasing trend in the average
cross-shard number of accounts for the MSA algorithm and
the RSA algorithm gradually slows down, while the average
cross-shard number of accounts for the AWSA algorithm
shows no significant change after a shard granularity of 5.
In summary, the AWSA algorithm demonstrates a better abil-
ity to reduce both the average cross-shard transaction delay
of accounts and the average cross-shard number of accounts.

E. TRANSACTION THROUGHPUT
Although sharding improves the throughput of blockchain,
due to the complexity and difficulties in cross-shard
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FIGURE 6. Average cross-shard transaction delay and average
cross-shard number.

interaction, there still exists a significant gap between
existing sharding protocols and the practical throughput
requirement. Ideally, transaction throughput should increase
proportionally with the shard granularity. To better validate
the relationship between shard granularity and transaction
throughput, we present a comparison of transaction through-
puts under different shard granularities. Fig. 7 illustrates
transaction throughput under different shard granularities.

FIGURE 7. Transaction throughput.

The results indicate that, with an increase in shard granular-
ity, the transaction throughput of all three algorithms exhibits
an increasing trend, with the AWSA algorithm consistently
outperforming the other two algorithms. At a shard granular-
ity of 3, there is little difference in transaction throughput.
Compared with the MSA algorithm and the RSA algorithm,
the AWSA algorithm improves the transaction throughput
by 94% and 150%. At a shard granularity of 10, compared
with the MSA algorithm and the RSA algorithm, the AWSA

algorithm improves the transaction throughput by 93% and
122%. As the transaction throughput stabilizes, specifically
at a shard granularity of 20, the AWSA algorithm improves
transaction throughput by 140% and 131% compared to
the MSA algorithm and the RSA algorithm. This demon-
strates a significant enhancement in transaction through-
put with the AWSA algorithm. For the AWSA algorithm,
there is a notable improvement in transaction throughput
as the shard granularity increases from 10 to 15. However,
from 15 to 20, there is no further improvement in transac-
tion throughput. This suggests that the intricate relationship
among accounts has approached a stable state, limiting the
improvement in blockchain performance. It is evident that as
transaction throughput reaches a certain level, the increasing
trend in transaction throughput becomes less pronounced.
This phenomenon is attributed to the diminishing benefits
of parallel processing due to the increased complexity of
cross-shard transactions with higher shard granularity. Exper-
imental results indicate that the AWSA algorithm effectively
enhances transaction throughput and improves blockchain
performance.

Our algorithm is suitable for scenarios where historical
transaction data accumulated over the long term is used for
data migration. The application of the community discovery
algorithm is a multi-round, step-by-step process of discover-
ing and merging to form account sets. Although the execution
process is complex, it only needs to be performed once. The
time and space complexity sacrifice are aimed at reducing
the cross-shard transaction proportion that is vital to impact
sharding performance.

VI. CONCLUSION
Sharding technology is widely employed to address the
scalability issues of blockchain, and minimizing cross-shard
transactions is a crucial aspect to improve sharding perfor-
mance. This paper proposed a blockchain transaction shard-
ing algorithm based on account-weighted graph to tackle
the issue of high cross-shard transaction proportion resulting
from the adoption of sharding technology on blockchain.
Firstly, the account-based transaction sharding model was
established, and transaction data was divided from the per-
spective of transaction sharding to realize sharding verifi-
cation and processing. Secondly, the blockchain transaction
sharding algorithm based on account-weighted graph is pro-
posed. The account-weighted graph, which takes the trans-
action frequency between accounts as the weight of the edge,
can indirectly show the correlation between accounts, and the
weighted graph is analyzed to place the strong-correlation
accounts in the same shard. We compare the proposed
AWSA algorithm with the classical sharding approaches,
namely the MSA algorithm and the RSA algorithm. The
proposed algorithm outperforms existing methods in vari-
ous performance metrics, including cross-shard transaction
proportion, account proportion with different cross-shard
number, account transaction delay with different cross-
shard number, average cross-shard transaction delay, average
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cross-shard number, and transaction throughput. Experimen-
tal results demonstrate that the AWSA algorithm can effec-
tively decrease the cross-shard transaction proportion and
reduce cross-shard transaction delay.

In future work, we will focus on the problem of hot data
aggregation after sharding, and consider the balance of shard-
ing transaction volume and dynamic sharding strategy to
improve sharding performance.
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