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ABSTRACT As an essential metal, copper has the advantages of electrical conductivity and ductility,
which is widely used in power transmission, electronics manufacturing and machining. The fluctuation of
copper price has a great impact on the industry, especially on the development of the national economy,
so predicting copper price has a great significance for economic development. However, traditional time
series prediction models’ prediction accuracy is low. Therefore, this paper proposes a Shanghai copper
price forecasting model based on Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN), Convolutional Neural Network (CNN), Self Attention Gated Unit (SAGU), named
CEEMDAN-CNN-SAGU. CEEMDAN decomposes and reconstructs the Shanghai copper price data. In
this paper, the zero-cross rate of the Intrinsic Mode Function (IMF) components is calculated, the IMF
component with large noise is removed, and the remaining IMFs and Residual term (Res) are reorganized
to obtain the high-frequency and low-frequency components. CNN performs convolution operations on the
reconstructed components to extract time series features. SAGU is a new time series data prediction model
proposed in this paper. SAGU includes two gated units (a forgetting gate and an input gate), and two data
processing modules (Self Attention (SA) and Transition (Tra)). The SAmodule is responsible for processing
the input data, redistributing the weight coefficients of different data, and improving the model’s attention
to important information. The Tra module improves the low limit of the forgetting gate’s output so that the
gated unit can keep the cell state from the previous moment to the current moment as much as possible.
This paper uses Shanghai copper trading data from Shanghai Futures Exchange as experimental data. The
comparison experiment with the other eleven prediction models shows that the CEEMDAN-CNN-SAGU
model outperforms other models in all evaluation indexes.

INDEX TERMS SAGU, CEEMDAN, CNN, Shanghai copper.

I. INTRODUCTION
As a vital metal, copper plays an essential role in production
and daily life, particularly in construction and electricity
[1]. Fluctuations of copper price can significantly impact
the production and operations of numerous manufactur-
ing industries, ultimately influencing economic development
[2], [3]. Forecasting the Shanghai copper futures’ price is
paramount to mitigating the risks associated with copper
price fluctuations.

The associate editor coordinating the review of this manuscript and

approving it for publication was Usama Mir .

Shanghai copper futures price data belongs to the cate-
gory of time series data, characterized by nonlinearity. The
decomposition of time series data can improve the capture
of trends of different frequencies and patterns and enhance
the flexibility and performance of prediction models. Huang
et al. introduced the Empirical Mode Decomposition (EMD),
which adaptively decomposes data into IMFs based on local
data characteristics [4]. However, EMD’s effectiveness can
be hindered by noise interference, leading to significant
errors [5]. In response to these limitations, Ensemble Empir-
ical Mode Decomposition (EEMD) was proposed, which
involves the addition of white noise and its even distribu-
tion across the entire time-frequency space [6]. Nevertheless,
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EEMD may introduce refactoring errors due to the increas-
ing white noise. To improve decomposition efficiency while
maintaining adaptability, CEEMDAN was introduced [7].
CEEMDAN’s adaptive decomposition produces IMF com-
ponent sequences with varying time feature scales. These
IMFs exhibit regularity, reducing the model’s prediction
difficulties [8]. Subsequently, CNN are applied to perform
one-dimensional convolution operations on the decomposed
CEEMDAN components. This step extracts time series fea-
tures from the input data, enhancing the model’s learning
capabilities [9].

The SA mechanism, as an integral part of the model,
facilitates data-related interactions across different locations
within a data series by applying weighting coefficients. These
coefficients reflect the significance of different data points
[10]. Within the SA module in SAGU, input data undergoes
calculation and weight coefficient redistribution, enabling the
model to discern the data with the most substantial impact
on prediction. Notably, the input data for the forgetting gate
and the input gate in SAGU include the previous time’s cell
state, the previous time’s hidden state, and the SA module’s
output data at the current time. Using knowledge from past
time steps, the forgetting gate and input gate process the cur-
rent data, thereby enhancing the model’s learning capability
[11]. The Tra data processing module in SAGU adjusts the
minimum threshold for the forgetting gate’s output, striving
to maintain the previous time’s cell state as much as possible
in the current time step.

This paper presents several notable contributions and
innovations:
(1) This paper proposes a new gated unit, SAGU, which

includes a forgetting gate, an input gate, an SA module,
and a Tra module. SAGU makes full use of past learn-
ing experiences to process the input data at the current
moment to improve the model’s prediction accuracy,
and has outperformed LSTM and GRU in predicting
Shanghai copper price.

(2) This paper introduces an innovative restructuring
method to recombine the IMFs and Res generated by
CEEMDAN decomposition. Based on the zero-crossing
rate and comparative experiments, the noisy IMF com-
ponent is removed. The remaining IMFs and Res are
merged into high-frequency and low-frequency compo-
nents. The influence of noisy data on model prediction is
effectively reduced, thus reducing the learning difficulty
of the model.

(3) A new hybrid model of CEEMDAN-CNN-SAGU is
proposed to predict Shanghai copper price. The exper-
imental results show that the prediction performance
of the hybrid model is better than that of the eleven
comparison models, such as LSTM, CNN-SAGU, and
CEEMDAN-CNN-LSTM.

II. RELATED WORK
Bathla et al. used LSTM to predict stock prices. The experi-
mental results indicated that LSTM outperformed traditional

statistical forecasting methods [12]. The three gated units in
LSTMcould capture the dependency between time series data
and improve LSTM’s learning ability [13]. Vo et al. used
Bi-LSTM to predict the Brent crude oil’s price with high
accuracy [14]. The model consisted of two modules, the first
module used a Bi-LSTM network to save basic information
about input features, and the second used a fully connected
layer to predict oil prices. Bi-LSTM processes forward and
backward input data to better capture feature relationships in
time series [15], [16]. The prediction effect of this model is
good, but there are a lot of parameters in the model that need
to be trained, and the calculation is large.

Kim et al. proposed the SAM-LSTM model to predict
the cryptocurrency price. The experimental findings demon-
strated that the model achieved a good prediction accuracy
[17]. SAM enhances the model’s focus on key information,
which is relevant to the self attention mechanism we studied.
The self attention increases the model’s attention to important
information [18].
Guo et al. proposed the CEEMDAN-LSTM model to

forecast the annual precipitation of Zhengzhou City, which
had better prediction performance than other models [19].
CEEMDAN’s effectiveness in mitigating modal confusion
and reducing residual noise align with our utilization of
CEEMDAN in our research. CEEMDAN solves the problem
of modal confusion in EEMD decomposition and improves
the problem of residual noise to a certain extent [20]. Kala
et al. used the CEEMDAN-LSTM model to predict monthly
rainfall across India. Compared with the LSTM, the effec-
tiveness of adding the CEEMDANmodule was verified [21].
After CEEMDAN decomposes the original sequence, the
sequence obtained after decomposition has certain regularity
and smoothness, which is conducive to LSTM prediction.

Li et al. proposed the CEEMDAN-SE-LSTM for power
forecasting. CEEMDAN decomposed the power data, recon-
structed it into two component sequences based on sam-
ple entropy analysis, and then predicted respectively. The
power data was decomposed into data of different frequen-
cies and then predicted, which greatly improves the model’s
prediction accuracy [22]. Wu et al. proposed a CEEMDAN-
FE-LSTM to predict the Air Quality Index (AQI), which
achieved an excellent fitting effect. The original AQI data
series fluctuates greatly and contains noise. The actual data
sequence was decomposed into several relatively stable sub-
sequences by CEEMDAN, and then the subsequences were
predicted by LSTM. Finally, the prediction result of AQI was
obtained by adding the predicted value of the subsequence
[23]. Their approach of decomposing the noisy AQI data
into stable subsequences using CEEMDAN is akin to our
method for handling noisy data. Unlike previous studies,
in our research, CEEMDAN-CNN-SAGU uses CEEMDAN
to decompose the data and further optimizes the data by
removing the IMF component, which contains more noise.
This step plays a key role in reducing noise interference and
improving the model’s performance and prediction accuracy
and is unique to our study.
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FIGURE 1. Decomposition results of the training set.

III. MODELS
A. CEEMDAN
CEEMDAN makes further improvements for EEMD. Adap-
tive white noise is added to each decomposition to smooth
the interference pulse, making the decomposition process
completer andmore efficient, and reducing the reconstruction
error. The specific decomposition process of CEEMDAN is
as follows:

1) By adding Gaussian white noise with the mean of
0 to the original signal x (t), the preprocessing sequence
xi (t) , (i = 1, 2, . . . . . . , k) is obtained.

xi (t) = x (t) + εδi(t) (1)

where ε is the weight coefficient of adding Gaussian white
noise; δi(t) is the white Gaussian noise added at the i time of
processing.

2) The EMDalgorithm is used to decompose xi(t) sequence
for k times, and k decomposition results are obtained, namely
IMF i1(t),(i = 1, 2, . . . . . . , k). The first IMF component I1(t)
is obtained by calculating the mean using the formula (2).

I1(t) =
1
k

·

∑k

i=1
IMF i1(t) (2)

r1(t) = x (t) − I1(t) (3)

where r1 (t) is the residual component obtained after the first
decomposition.

3) After adding Gaussian white noise to the residual
sequence of j-th stage, the EMD decomposition is continued.

Ij(t) =
1
k

·

∑k

i=1
E1(rj−1(t) + εj−1 · Ej−1(δi(t))) (4)

rj(t) = rj−1(t) − Ij(t) (5)

where Ij (t) is the j-th IMF component obtained by CEEM-
DAN decomposition; rj−1 (t) is the residual component
obtained at the j-1 stage; εj−1 is the noise factor added by
CEEMDAN to the residual component of the j-1 stage. Ej−1
is the j-1 IMF component obtained after the EMD decompo-
sition of the sequence.

4) Repeat the above steps. If rj (t) has become a monotone
function or constant, or if the amplitude falls below a given
threshold and IMF cannot be extracted further, the decom-
position process ends. Otherwise, rj (t) is regarded as the
sequence x(t) to be decomposed, and the iterative process of
steps 1 to 3 is re-performed.

The Shanghai copper price data is decomposed, and the
decomposition results of the training set, verification set, and
test set are shown in Figures 1-3. The Shanghai copper price
data in the training set is decomposed into six IMFs and
one Res. The horizontal axis represents the time number of
the sequence in days. The vertical axis of the topmost chart
in Figure 1 shows the range of Shanghai copper price. The
remaining vertical axis represents the value range from IMF1
to Res.
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FIGURE 2. Decomposition results of the validation set.

FIGURE 3. Decomposition results of the test set.

B. SAGU
Through the in-depth study of LSTM, GRU and SA, this
paper introduces a novel gated unit named SAGU. The gated

unit consists of an SA module, an input gate, a forgetting
gate, and a Tra module. The SA calculates the input data
xt and assigns higher weight to the input data that has a
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greater impact on the prediction result. The input and the
forgetting gates’ input data include the previous moment’s
hidden state output ht−1, the output data at of the SA module
of the current moment, and the previous moment’s cell state
ct−1. The input gate is responsible for processing the current
moment’s input data and selectively passing the input data
to the current moment’s cell state. The forgetting gate is
responsible for selectively forgetting the previous moment’s
cell state, preserving the remaining previous moment’s cell
state to the cell state of the current moment. The input data
of the input gate and the forgetting gate include the cell state
of the previous moment, which is beneficial for the current
moment’s cell to use the previous moment’s information to
process the current moment’s input data, which is conducive
to the learning of the gated unit and enhances the model’s
predictive accuracy. The forgetting gate’s output value range
is [0,1]. After the calculation of the Tra module, the range
of the output values is changed to [0.24,1]. The structure
diagram of SAGU is shown in Figure 4.

FIGURE 4. SAGU structure diagram.

The following describes the formula for calculating the SA
module.

qi = wq · ai (6)

k i = wk · ai (7)

vi = wv · ai (8)

where qi is the Query vector with the i-th eigenvalue, k i, vi

is its Key vector and Value vector separately. wq, wk , and wv

are the corresponding weight coefficient vectors. ai is the i-th
eigenvector.

aij =
qi · k j
√
d

(9)

aij is the similarity between the i-th eigenvector and the j-
th eigenvector. d is the dimension of the i-th eigenvalue Key
vector.

a′
ij is the weight coefficient between the i-th eigenvector

and the j-th eigenvector.

a′
ij =

exp(aij)∑n
j=0 exp(aij)

(10)

bi =

∑n

i=0
a′
ij · v

i (11)

bi is the output of the SA.
The SA calculates the input data xt and assigns higher

weights to the input data that has a more significant influence
on the prediction result, allowing the model to learn which
data is important.

The forgetting gate in SAGU controls how much of the
previous moment’s cell state ct−1 is kept in the current
moment’s cell state ct . The forgetting gate processes the
previous moment’s hidden state ht−1, the previous moment’s
cell state ct−1, and the output data at of the SA module of the
current moment through the sigmoid function. The sigmoid
function’s output is constrained within the range of 0 to 1.
When the output value is 0, the previous moment’s cell state
is completely discarded. When the output value is 1, the
previous moment’s cell state is completely preserved to the
current moment’s cell state. The forgetting gate’s calculation
formula is shown in formula 12.

ft = σ (wfh · ht−1 + wfa · at + wfc · ct−1 + bf ) (12)

where ft represents the forgetting gate’s output for the current
moment.

The Tra module in SAGU mainly changes the forgetting
gate’s output value and then changes the proportion of retain-
ing the cell state from the previous moment to the current
moment. The output value of the forgetting gate is between
[0,1]. When the input data is in [0,1], the tanh function’s
output value range is in [0,0.76], and 1-tanh function’s output
value range is in [0.24,1]. After the Tra module is used, the
forgetting gate’s value range changes to [0.24,1], and the
previous moment’s cell state is retained as much as possible.
The current moment’s gated unit can leverage the knowledge
acquired from the previous moment to effectively process the
current moment’s input data, thereby enhancing the model’s
learning capability. The computational expression for the Tra
data processing module is depicted in formula 13.

Tra = 1 − tanh(ft ) (13)

where Tra is the output value of Tra module.
The input gate controls how much of the current time’s

input data is retained in the current time’s cell state. The
input gate processes the previous moment’s hidden state,
the previous moment’s cell state and the data processed by
the SA module of the current moment through the sigmoid
function. When the sigmoid’s output value is 0, the cur-
rent moment’s input data is completely discarded. When the
sigmoid’s output value is 1, the input data of the current
moment is completely retained in the current moment’s cell
state. Formula 14 represents the computational formula for
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the input gate.

it = σ (wih · ht−1 + wia · at + wic · ct−1 + bf ) (14)

where it represents the input gate’s output for the current
moment.

The current moment’s cell state ct is obtained by multiply-
ing the output of the Tra module with the previous moment’s
cell state, and then adding the output value of the input gate
at the current moment. The current moment’s cell state is
calculated by the formula 15.

ct = Tra · ct−1 + it (15)

The current moment’s hidden state ht is the current
moment’s output value of SAGU, and the calculation formula
is shown in formula 16.

ht = tanh(ct ) (16)

C. CEEMDAN-CNN-SAGU
The CNN-SAGU prediction model’s structure is shown in
Figure 5.

FIGURE 5. Structure of CNN-SAGU prediction model.

The corresponding weight file is obtained after the
CEEMDAN-CNN-SAGU model is trained according to the
training set data. The model loads weight file to predict future
Shanghai copper price. The prediction formula is shown in
formula 17.

Y = fSAGU (fCNN (fCEEMDAN (X ,WCEEMDAN ) ,WCNN ) ,WSAGU )

(17)

where Y is the predicted output; fSAGU is the SAGU model;
fCNN is the CNNmodel; fCEEMDAN is the CEEMDAN decom-
position and reconstruction process; WCEEMDAN , WCNN , and
WSAGU are the parameters of the corresponding models.
The CEEMDAN-CNN-SAGU prediction model’s struc-

ture is shown in Figure 6.

CEEMDAN layer: CEEMDAN decomposes Shanghai
copper price data into IMFs with different frequencies and
amplitudes to reduce noise in the original data.

IMFs recombination layer: The IMF component with large
noise is removed according to the zero-crossing rate, and the
remaining IMFs and Res are reorganized into high-frequency
and low-frequency components.

Data preprocessing layer: Normalize the data, scale the
data to the [0,1], and eliminate the impact of data value
distribution differences on model learning.

Feature extraction layer: CNN carries out convolution
operations on high-frequency and low-frequency compo-
nents, respectively, to capture data features in different
components.

Price forecast layer: SAGU captures time dependencies in
different component sequences and makes predictions based
on learned data law.

Predicted value plus layer: The SAGU’s forecast results for
low-frequency and high-frequency components are added to
get the forecast result of Shanghai copper price.

Predicted result output value: The predicted result of
Shanghai copper price is outputted by reverse normalization.

IV. EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENT
The operating system of the server used in this experi-
ment is Windows 11, the CPU is 12th Gen Intel Core
i7-12700H 2.30GHz. The development tool used in this
experiment is PyCharm 2020.1.3, the programming language
is Python3.7.0, and the software base platform is Anaconda
4.5.11.

B. DATA ACQUISITION
The experimental data selected in this experiment is the
Shanghai copper trading data from January 2, 2018, to April
28, 2023, with 1297 pieces of data. The experimental data
is obtained from the Tushare data service platform website
through the third-party data interface. Daily trading data
includes the Shanghai copper futures’ opening price, the
highest price, the lowest price, the closing price, the set-
tlement price, the price change, the volume, and the day’s
revenue. Shanghai copper price fluctuates between 37,200
yuan and 77,720 yuan, which is volatile and difficult to
predict. Table 1 shows some Shanghai copper price data.
In table 1, trade-date indicates the trade time; open stands

for Shanghai copper’s opening price on the same day; high
stands for the highest price of the day; low stands for the
lowest price of the day; close stands for the closing price of
Shanghai copper of the day; settle stands for the settlement
price of the day; change stands for the rise or fall; vol stands
for Shanghai copper’s volume of the day; oi stands for the
day’s revenue.

To select the impact factors that affect the price of Shanghai
copper, this paper chooses the grey relation analysis method
to calculate the correlation between different impact factors
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FIGURE 6. Structure of CEEMDAN-CNN-SAGU prediction model.

TABLE 1. Shanghai copper price data table.

TABLE 2. Correlation coefficient of influence factors.

and Shanghai copper price [24]. The calculated correlation
coefficient evaluates the correlation between different influ-
encing factors and the Shanghai copper price. A higher

correlation coefficient indicates a higher correlation between
them. The relationship between various influencing factors
and Shanghai copper price is calculated by selecting several
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TABLE 3. Impact factor data table.

influencing factors. Table 2 presents the correlation coeffi-
cient between various impact factors and the Shanghai copper
price. The final selected impact factors are SPX500, JPN225,
SHCI, HK, and UK100.

SPX500 represents the Standard & Poor’s 500 Index;
JPN225 represents Nikkei 225 Index; SHCI represents
Shanghai Financial Index; HK represents Hong Kong Hang
Seng Index; UK100 represents FTSE 100 Index.

Table 3 shows the data of the selected impact factors in this
paper.

C. DATA PREPROCESSING
Because the value range of different data varies greatly,
to avoid the excessive influence of some feature data on
model training. This paper uses the method of mean nor-
malization to scale all data to [0,1], which makes the weight
update more balanced and beneficial to the model’s training
[25]. The first 908 pieces of data are selected as the training
dataset, 258 pieces of data between 909-1167 are selected as
the verification dataset, and the remaining 130 pieces of data
are selected as the test dataset.

D. 3D Construction of Data
The dataset can be represented by S = {X1,X2, . . . ,Xn,
where n is the number of pieces of data. Xn is a d-dimensional
vector representing the price data of Shanghai copper data
on a certain day. Therefore, the dimension of this dataset is
(n,D). The time series sample set generated by this dataset is
three-dimensional data with dimensions (n,T ,D). Where n
represents the time slices’ number, T represents the time step
in each sample, andD represents the data items’ number con-
tained in a Shanghai copper price data. Assuming that there
is n items in the experimental data, 3D data is constructed
according to the setting of step size 1 and sequence length 3.
Data from the first to the third forms the first layer (Y1 layer),
then data from items 2 to 4 forms the second layer (Y2 layer),
and so on. A total of n−2 layers (Y1,Y2, . . . ,Yn−2) structure,
each layer contains 3 pieces of data, that is, to complete the
construction of three-dimensional data. The prediction model
is characterized by the first two data of each side, and the third
copper price data is the target of prediction evaluation. The
time series construction process is shown in Figure 7.

E. MODEL PARAMETERS
The model’s prediction performance is significantly affected
by the selection of hyperparameters. This experiment consid-
ers the selection of several hyperparameters, among which

FIGURE 7. Time sequence construction process.

specifically introduce three major hyperparameters: the can-
didate values of the ‘units’ parameter are {128, 160, 192, 224,
256}; Candidate values for the ‘filters’ parameter are {16,
24, 32, 40, 48, 56, 64}; Candidate values for the ‘epsilon’
parameter are {0.001, 0.0005, 0.0001}. To determine the
optimal hyperparameter combinations of different models,
this experiment uses a grid search method, which helps to
comprehensively consider various hyperparameter combina-
tions while maintaining the fairness of the experiment. Three
evaluation indexes are used to measure the predictive per-
formance of models, namely, Mean Absolute Error (MAE),
Explained Variance Score (EVS), R Squared (R2). These
evaluation indexes are helpful in evaluating the model com-
prehensively. Through the grid search method, the optimal
hyperparameters of different models are shown in Table 4.

F. EXPERIMENTAL RESULTS
To properly reduce the complexity of the CEEMDAN-
CNN-SAGU model, IMFs and Res components obtained
from CEEMDAN decomposition are reorganized into
high-frequency and low-frequency components. In order
to test the contained noise in each IMF component, zero-
crossing analysis is performed for the IMFs and the Res.
The results of the zero-crossing rate table of the training set,
verification set, and test set are shown in Table 5-7.

To reduce the complexity of the CEEMDAN-CNN-SAGU
prediction model and avoid overfitting, the six IMF com-
ponents and one Res generated after the decomposition of
the training set are reorganized. The zero-crossing rate table
shows that the IMF1 component contains large noise, so the
IMF1 component is deleted. To verify whether the IMF1
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TABLE 4. Table of model hyperparameters.

TABLE 5. Zero-Crossing rate table of the training set.

TABLE 6. Zero-Crossing rate table of the verification set.

TABLE 7. Zero-Crossing rate table of the test set.

component is removed, a comparative experiment is con-
ducted in this paper. The comparative experimental results of
whether to remove the IMF1 component are shown in Table 8.

TABLE 8. Results of IMF1 comparison experiment.

Comparative experiments verify the effectiveness of
removing IMF1. To verify the optimal combination of

high-frequency components, comparative experiments are
conducted on different IMF component combinations, and
the experiment results of different high-frequency combina-
tions are shown in Table 9.

TABLE 9. Experiment results of different high-frequency combinations.

As shown in Table 9, the best combination of
high-frequency component is IMF2+IMF3+IMF4. Remov-
ing the noisy IMF1 component reduces the prediction diffi-
culty. The high-frequency component used in this experiment
is IFM2+IMF3+IMF4, and the low-frequency component is
IMF5+IMF6+Res. To verify the CEEMDAN-CNN-SAGU’s
validity, eleven other models are selected for comparative
tests, and MAE, EVS, R2 evaluation indexes measure dif-
ferent models’s prediction performance. The high-frequency
component of CEEMDAN-LSTM, CEEMDAN-CNN-
LSTM, CEEMDAN-CNN-GRU and CEEMDAN-CNN-
SAGU prediction models is IMF2+IMF3+IMF4, and the
low-frequency component is IMF5+IMF6+Res. The reorga-
nization method of the verification and test sets is the same as
that of the training set. IMF1 is removed both in verification
and test sets. The high-frequency of the verification set is
IMF2+IMF3, and the low-frequency is IMF4+IMF5+Res.
The high-frequency of the test set is IMF2+IMF3, and the
low-frequency is IMF4+Res. The different models’ predic-
tion results for Shanghai copper price are shown in Table 10.
From the prediction results, the CEEMDAN-CNN-SAGU
model has the best performance. Figures 8-10 illustrate the
comparisons of MAE, EVS, and R2, respectively.

TABLE 10. Shanghai copper price prediction results table.

The prediction effect of Multilayer Perceptron (MLP) and
Support Vector Regression (SVR) on Shanghai copper price
is poor, and the fitting degree only reaches 0.734340 and
0.694947, respectively. The fitting degree of LSTM, GRU,
and SAGU reaches 0.847631, 0.855420, and 0.862098,
respectively. The SA module in SAGU processes the input
data, redistributes the different data’s weight, and assigns a
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larger weight coefficient to the input data that has a more
significant influence on the prediction result. By reassigning
weight coefficients, the model can learn which data is impor-
tant and improve the model’s learning ability. The input data
of the forgetting gate and the input gate in SAGU includes the
previous moment’s cell state, the output data of the SA mod-
ule at the current moment, and the previous moment’s hidden
state. The two gated units improve the model’s learning abil-
ity by learning from the previous moment’s experience to
calculate the current moment’s input data. The output value
of the forgetting gate is in [0,1], and the Tra module increases
the output range of this value to [0.24,1], which preserves the
previous moment’s cell state to the current moment to a large
extent so that the model can fully learn the previous moment’s
experience to calculate the current moment’s input.

FIGURE 8. MAE comparison.

FIGURE 9. EVS comparison.

CNN uses the convolution and pooling layers to extract
local features from Shanghai copper price data. CNN extracts
local features from Shanghai copper trading data, and LSTM,
GRU, or SAGU captures the time series rules in Shanghai
copper trading data. It is shown in Table 10 that the CNN-
combined model’s prediction performance is better than that
of the single model.

The Shanghai copper price data is non-linear and non-
stationary. CEEMDAN can decompose the Shanghai copper

FIGURE 10. R2 comparison.

price data into IMFs and a Res. CEEMDAN can decompose
data on different time scales, reducing the model’s predic-
tion difficulty. According to the zero-crossing rate analysis,
the IMF1 component contains large noise, which has a bad
effect on the model prediction of Shanghai copper price. The
IMF1 component containing more noise is removed, and the
remaining components are reorganized into high-frequency
and low-frequency components, which reduces the model
prediction’s difficulty. Table 10 shows that adding CEEM-
DAN improves the model’s prediction accuracy.

To verify the overfitting and validity of the model, the
trained CEEMDAN-CNN-SAGU model is used to forecast
the Shanghai copper price in May 2023. The prediction result
is shown in the table 11.

TABLE 11. Prediction results table.

G. MODEL GENERALIZATION
To verify the CEEMDAN-CNN-SAGU’s generalization, the
trading data of Shanghai silver is selected as experimen-
tal data for the prediction experiment. According to the
prediction results of Shanghai silver price, the CEEMDAN-
CNN-SAGU is better than other models. Table 12 shows the
experimental results for predicting the Shanghai silver price.

TABLE 12. Shanghai silver price forecast experiment results table.

V. DISCUSSION
Compared with other models, the CEEMDAN-CNN-SAGU
proposed in this paper performs best in Shanghai copper
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price prediction. The CEEMDAN module decomposes the
Shanghai copper price data into IMFs and a Res. According
to the zero-crossing rate, the IMF component with high noise
is removed, and the remaining IMFs and Res are combined to
obtain high-frequency and low-frequency components. CNN
calculates the recombination components to extract the data
rules in different frequency components. The SAGU calcu-
lates the convolution data, mines the time series rules in
the data, makes predictions. The final Shanghai copper price
prediction result is obtained by adding the high-frequency and
low-frequency components. The reasons for CEEMDAN-
CNN-SAGU’s high prediction accuracy for the Shanghai
copper price forecast are as follows:
(1) The SAmodule in SAGU processes the input data, redis-

tributes the weight coefficients of different input data,
and assigns larger weight coefficients to the input data
that have a greater impact on the prediction results so
that the model can learn which input data are important
data, thus improving the model’s learning ability. The
input data of the forgetting gate and the input gate in
SAGU includes the previous moment’s cell state, the
previous moment’s hidden state output, and the out-
put of the SA module at the current moment. SAGU
improves the learning ability of the model by fully learn-
ing from the previous moment’s experience to process
the current moment’s input data. The Tra module in
SAGU changes the forgetting gate’s output value, ele-
vates the output range of [0,1] to [0.24,1], and preserves
the cell state of the previous moment to the current
moment to a large extent.

(2) The addition of the CEEMDAN module can decom-
pose Shanghai copper data into multiple IMFs and
a Res. According to the zero-crossing rate, the IMF
component containing large noise is removed. Then
the remaining IMFs and Res are recombined to obtain
the high-frequency and low-frequency components. By
recombining the IMFs and Res, the difficulty of predict-
ing the Shanghai copper price is reduced.

(3) CNN can effectively learn the temporal correlation in
time series data through the sliding window operation
of the convolution kernel.

VI. CONCLUSION
Due to the high nonlinearity and non-stationarity of Shanghai
copper price data, this paper constructs a hybrid model based
on CEEMDAN-CNN-SAGU to forecast Shanghai copper
price. CEEMDAN decomposes and reorganizes the Shanghai
copper price data, removes the IMF component with larger
noise, and reorganizes the remaining IMFs and Res to obtain
high-frequency and low-frequency components with less
noise, which reduces the difficulty of the model’s prediction
of Shanghai copper price. Through CNN convolution, the
time series features of Shanghai copper price data are effec-
tively extracted. The SA module in SAGU redistributes the
weight coefficients of different input data, which is beneficial
for the model to learn which input data greatly influences the

prediction results. SAGU keeps the learning experience of the
previous moment as much as possible to process the current
moment’s input data, which improves the model’s learning
ability. In the comparison experiment, the CEEMDAN-CNN-
SAGU model has the best performance. The prediction of
Shanghai silver shows that CEEMDAN-CNN-SAGU has
good generalization.

However, the computational complexity of CEEMDAN is
relatively high, especially when processing large-scale time
series data. The need for multiple decomposition and recon-
struction operations, it will lead to high computing resource
consumption. In future work, we should consider integrating
different types of time series models, make full use of the
advantages of different models, respectively predict different
sequences obtained after CEEMDAN decomposition, and
then add different models’ prediction results to get the final
prediction results. Thus, the composite model’s prediction
performance will be improved.
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