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ABSTRACT Many tasks performed by two humans require mutual interaction between arms such as
handing-over tools and objects. In order for a robotic arm to interact with a human in the same way,
it must reason about the location of the human arm in real-time. Furthermore, to acquire interaction in a
timely manner, the robot must be able predict the final target of the human in order to plan and initiate
motion beforehand. In this paper, we explore the use of a low-cost wearable device equipped with two
inertial measurement units (IMU) for learning reaching motion in real-time applications of Human-Robot
Collaboration (HRC). A wearable device can replace or be complementary to visual perception in cases of
bad lighting or occlusions in a cluttered environment. We first train a neural-network model to estimate the
current location of the arm. Then, we propose a novel model based on a recurrent neural-network to predict
the future target of the human arm during motion in real-time. Early prediction of the target grants the robot
with sufficient time to plan and initiate motion during the motion of the human. The accuracies of the models
are analyzed concerning the features included in the motion representation. Through experiments and real
demonstrations with a robotic arm, we show that sufficient accuracy is achieved for feasible HRC without
any visual perception. Once trained, the system can be deployed in various spaces with no additional effort.
The models exhibit high accuracy for various initial poses of the human arm. Moreover, the trained models
are shown to provide high success rates with additional human participants not included in the training of
the model.

INDEX TERMS Human–robot collaboration, intention recognition, wearable technology.

I. INTRODUCTION
When two humans perform a shared task, each has an
ability to predict intentions of his peer without verbal
communication. Once one human sees the motion of his
human fellow, usually his arms and manipulated objects,
the intended upcoming task can be predicted for further
interaction [1]. For instance, when a human is handing-
over an object, his fellow can infer about the reaching
target and initiate supporting motion to obtain it. In Human-
Robot Collaboration (HRC), a robot should act similarly to
support a human in completing shared tasks [2]. Having a
robot infer about human upper-limbs motion has applications
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in hand-over activities [3], [4], collaboration in shared
workspaces [5], collision avoidance by the robot [6] and
virtual reality [7].
Human motion inference and prediction have been given

much attention in the past few decades. Seminal work
by Flash and Hogen [8] has suggested that human arms
move from point to point in a smooth trajectory while
minimizing the mean-square jerk. Others proposed models
that include minimum torque [9] and position variances [10].
Oguz et al. [11] solved an inverse optimal control problem
in order to derive the true cost function that governs a set
of motions. The work in [12] predicted toward which object
the human hand is reaching. The target object was predicted
by observing arm motion with a camera in a discretized
workspace. Nevertheless, these models were demonstrated
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FIGURE 1. A human user and a robot share space W where they interact
or collaborate in a shared task.

in a limited and specific setting while human motion is
difficult to predict due to the randomness and complexity
of human behavior [13]. In addition, some of these models
may require calibration to the user and the acquisition of
musculoskeletal parameters that cannot be easily extracted.
Therefore, a significant amount of research has been put on
the use of Kalman filter variants [14], [15] and data-driven
models [16], [17], [18], [19], [20].

In an example for data-driven models, the work of
Landi et al. [21] combined the minimum jerk model with
an Artificial Neural-Network (ANN) to predict arm motion
based on camera perception. The work of Cheng et al. [19]
proposed the use of semi-adaptable ANN to learn a human
arm transition model and adapt it to time-varying human
behaviors. Another approach used Hidden Markov Models
to approximate human pose or occupied workspace based on
visual observations [16], [22]. The use of Recurrent Neural-
Networks (RNN) is also a common approach where sequen-
tial temporal data is used to predict motion trajectories [23],
[24]. Liu and Liu [25] combined a Modified Kalman Filter to
adapt an RNNmodel to changes in environmental conditions.
The work in [17] used a database of recorded human motions
in order to predict in real-time intended targets in reaching
motions. It is also worth mentioning extensive attempts
for pose and motion prediction of the entire human body
through visual perception [26], [27], [28]. Similarly, depth
camera such as Kinect is an alternative solution using spatial
point cloud [29]. However, all above methods rely on visual
perception in order to acquire human arm pose. Relying
on continuous visual feedback limits the performance of
various tasks in which visual uncertainty (e.g., poor lighting
or shadows) or occlusion may occur. Moreover, dealing with
visual sensing requires a large amount of data and strong
computing capabilities [30]. Achieving estimation solely
based on wearable sensing would enable further fusion with

vision for better estimation in unstructured or partly occluded
environments.

To bypass the challenges of vision, motion prediction
using wearable sensors has also been exhibited. For instance,
Electro-Myography (EMG) [31] and brain-computer inter-
face [32] have been tested for intention prediction of motor
behaviour. Wearable Inertial Measurement Units (IMU) have
also been proposed and yielded significant results [33]. The
work in [34] fused IMU measurements with depth camera
(Kinect) perception based on the Unscented Kalman Filter
(UKF). Yun and Bachmann [15], on the other hand, filtered
two IMU sensors on the upper-arm and forearm to approxi-
mate the orientation of the arm. Similarly, Atrsaei et al. [35]
used two IMU sensors on the upper-arm and forearm along
with UKF to approximate the pose of the arm.Wang et al. [36]
used an IMU to estimate the angular pose of the forearm
and EMG to sense the state of the fingers. With such a
configuration, along with natural language processing, a user
can teach a robot hand-over tasks. However, themethodswere
focused on approximating the current pose of the arm and did
not consider future arm trajectories. In addition, the ability of
the above methods to generalize to various participants has
not been demonstrated.

Some work has address the classification of future tasks
conducted by the user [37]. For instance, three IMU sensors
were used along the arm of the user to recognize a task
(e.g., tying shoe laces or putting on socks) for controlling
a prosthetic arm and using the Long Short Term Memory
(LSTM) [38]. A similar approach was taken to classify
future activities [39]. The prediction of reaching motion
was addressed in [40] while using EMG and gaze data
with a Kalman filter. A similar setting was demonstrated
by Tortora et al. [41] while combining IMU and EMG
sensors to classify between several discrete targets. In a work
more related to ours, two IMU’s were combined with EMG
and Mechanomyography (MMG) to predict future targets
among several discrete ones [42]. However, the reaching was
conducted only on a table with short trajectories to the targets
and while the user is sitting down. Also, the current pose of
the human arm is not considered such that the robot can plan
a collision-free path. In addition, none of the approaches have
demonstrated generability to new users.

In this paper, we aim to rely solely on a low-cost
wearable device directly strapped on the human arm to
provide an affordable solution. Achieving vision-free pose
estimation and prediction would enable further fusion with
vision for better estimation in unstructured or partly-occluded
environments. Therefore, we explore the sole use of an
IMU for learning reaching motions of a human arm. With
two IMU sensor located on the upper-arm and forearm,
we observe the required data and learning model to predict
the target of the reaching arm at early stages of motion in
real-time. A learning approach is proposed based on the
LSTM model. We investigate the use of raw data from the
IMU sensors along with temporal pose predictions of the
arm acquired from a secondary ANN model. Therefore, our
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proposed method does not require integrating the measured
accelerometers in order to predict the position. Integration
is often subject to drift and sensitive to typical noisy
signals [34]. Contrary to the common approach, our method
does not require the use of filters nor early calibration of the
wearable device. Hence, it can be used immediately upon
placement. The proposed approach estimates the current pose
of the human arm and uses it as additional information to
predict the reaching target. The current pose of the human
arm can also be used by the robot to plan a collision-free
path. The approach is shown to be robust to the uncertainties
in the positioning of the user and in different body poses.
We also observe the robustness of the method to taking-off
and re-positioning the device on the arm, and for several
users. Unlike prior work, we demonstrate and evaluate the
interaction with a robotic arm in human reaching motions.

The main contribution is an approach that enables real-
time target prediction in reaching motions of a human arm
using affordable, lightweight and easy to use hardware, and
without the need for visual perception. With early real-time
information, the robot could promptly plan and initiate a
response motion in order to interact in a timely manner. The
approach is also shown to be able to cope with variance in the
pose of the human user standing in front of the robot. While
we focus on collaboration with robotic arms, the approach
can also be applicable to interactions with prosthetic hands,
drones, teleoperation and virtual reality.

The remainder of this paper is organized as follows.
Section II establishes the addressed problem, the proposed
system and learning method. Furthermore, Section III
presents the data collection, experiments, analysis and
demonstration for reaching prediction. Finally, Section IV
concludes the paper.

II. METHOD
A. PROBLEM FORMULATION
A human user stands in front of a designated interaction-
spaceW ∈ R3. Interaction-spaceW is shared with a robotic
arm such that both user and robot can reach all points within
it (Fig. 1). Let the position of the human wrist at time t be
p(t) ∈ R3 relative to some coordinate frame onW . At time
t = 0, the wrist is at some arbitrary pose. The initial pose is
randomly selected close to the body of the user (e.g., side of
the hip or palm on the chest). The user then moves his arm to
reach some point p(tf ) ∈ W where tf < T for a pre-defined
upper-bound T .
Let x(t) ∈ Rn be the state vector of some n measurable

features on the human arm and denote p̃(t) ∈ R3 to be
the estimated position of the wrist at time t . In addition,
we denote p̃f (t) ∈ W to be the estimated destination of
the wrist approximated at time t < T . We set two goals.
First, we aim to localize the human wrist in real-time during
motion. Hence, we search for a map 0 : Rn

→ R3 that
approximates the wrist position p̃(t) = 0(x(t)) at time t .
Second, we aim to learn a map 8 : C → W that provides

FIGURE 2. System of two IMU sensors positioned on the wrist and
upper-arm along with three sets of markers on the shoulder, upper-arm
(not used) and wrist, observed by a motion capture system.

a prediction at time t of the expected wrist target at some
time tf . C is some unknown space based on measurable
features in x(t) that can provide accurate prediction. In this
work, we explore the formulation of C to acquire a sufficient
representation of p̃f (t) = 8(d(t)) for d(t) ∈ C.

B. SYSTEM
We have designed and fabricated an experimental wearable
device consisting of three main components: (a) wrist band
with IMU and reflective markers, (b) upper-arm band with
IMU and (c) a data acquisition (DAQ) system based on an
Arduino Uno board. We have also included shoulder and
upper-arm reflective markers for analysis and verification
while not used in the modeling. The system is seen in Fig. 2.
Each IMU provides 3-axes of acceleration, angular change
rate and orientation using accelerometer, gyroscope and a
magnetometer, respectively. Hence, two IMU sensors provide
a state vector x with maximum size of n = 18.
Measurements of a magnetometer are dependent on the

relative orientation to earth’s magnetic field. Without loss
of generality, we consider an interaction-space at the same
orientation relative to the standing position of the human.
Hence, we assume that all recordings are taken within a
limited orientation range of the human torso relative to
the interaction space. Nevertheless, simply having another
IMU on the human torso, magnetometer in particular, would
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enable relative measurements and additional interaction-
spaces around the user.

The acquisition configuration provides real-time data
stream of all the given sensors in a frequency of 60 Hz.
The reflective markers are tracked using a motion capture
system and provide the positions of the shoulder, upper-
arm and wrist bands. We note that the marker set is used
only for data collection and validation while not required
in the eventual system usage. Hence, the described system
is composed of low-cost and light-weight (325 g) hardware
which is appealing and suited for easy arm movements.

C. DATA COLLECTION AND FORMATION
Data is collected over a set ofK episodes. In each episode, the
user starts fromwrist position p(0) and moves the arm to final
wrist position p(tf ) ∈ W . During motion of episode j, sets
of states Xj = {xj(0), . . . , xj(tf )} and wrist positions Pj =

{pj(0), . . . ,pj(tf )} are recorded. For training model 0, data
from all episodes is pre-processed to have a labeled training
datasetM = {(xi,pi)}Ni=1. The pre-processing and formation
of the training data for target prediction will be discussed
later. In this work, we wish to explore the ability of data from
a single user to provide accurate models. It is assumed that
motion patterns of different users are sufficiently similar and
further evaluate this in experiments. Hence, data is collected
on a single user and later evaluated on other users.

D. WRIST POSITION MODEL
Let θelv and θyaw be elevation and yaw angles of the upper-
arm, respectively. Similarly, let φelv and φyaw be the forearm
elevation and yaw angles, respectively. The position of the
wrist p = (px , py, pz)T is acquired by forward kinematics as
given by Soechting and Flanders [43]:

px = lu sin θelv sin θyaw + lf sinφelv sinφyaw (1)

py = lu sin θelv cos θyaw + lf sinφelv cosφyaw (2)

pz = −lu cos θelv + lf cosφelv. (3)

where lu and lf are the lengths of the upper-arm and
forearm, respectively. Assuming lu and lf are known,
expressions (1)-(3) show that the position of the wrist can
be acquired by measuring the orientations of the upper-arm
and forearm. While these orientations can be measured by
the accelerometers of the two IMU’s when in a static pose,
the two magnetometers can also do so during arm motion.
Nevertheless, acceleration can add viable information for
reachingW .
Given training dataset M, we train a feed-forward ANN

to obtain map p̃j = 0θ (xj). Vector θ consists of the trained
parameters of the model. In such case, user lengths lu and
lf are embedded in M and explicit measurements are not
required. Furthermore, the features to be included in state xj
and its size n such that 0θ achieves highest accuracy would
be analyzed in the experimental section.

E. LONG-SHORT TERM MEMORY (LSTM)
LSTM is a class of Recurrent Neural-Networks (RNN) aimed
to learn sequential data [44]. RNN utilizes previous outputs
as inputs while including hidden states. For each time step t ,
the hidden state vector h(t) and the output y(t) are expressed
as

h(t) = g1(Wh(t − 1) + Ux(t) + bh) (4)

and

y(t) = g2(Vh(t) + by) (5)

where W ,U ,V are weight matrices and bh,by are bias
vectors. g1 and g2 are activation functions. The standard
RNN is usually not capable of handling long intervals where
back-propagating errors tend to vanish or explode [45].
LSTM, on the other hand, is capable of learning long-term
dependencies by utilizing memory about previous inputs for
an extended time duration [46]. Along with an hidden state
vector, LSTM maintains a cell state vector c(t). At each time
step, the process may choose to read from c(t), write to it or
reset the cell using an explicit gating mechanism. Each cell
unit has three gates of the same shape. The input gate controls
whether the memory cell is updated or, in other words, which
information will be stored. An LSTM cell can be formulated
with the following expressions:

i(t) = σ (Wi[h(t − 1), x(t)] + bi) (6)

f (t) = σ (Wf [h(t − 1), x(t)] + bf ) (7)

o(t) = σ (Wo[h(t − 1), x(t)] + bo) (8)

w hereWi,Wf andWo are weight matrices. bi, bf and bo are
bias vectors. Forget gate f (t) controls whether the memory
cell is reset and removes irrelevant information from the
cell state. Similarly, output gate o(t) controls whether the
information of the current cell state is made visible and adds
useful information to the cell state. Both gates have a Sigmoid
activation function σ . To modify the cell state, another vector
c̃(t) is defined as

c̃(t) = tanh(Wc[h(t − 1), x(t)] + bc) (9)

where Wc and b are weight matrix and bias vector, respec-
tively. The hyperbolic activation function tanh distributes
gradients and, therefore, prevents vanishing or exploding
gradients, and allows a cell state information to flow longer.
Vector c̃(t) is a new candidate that can be applied to the cell
state in case the forget state chooses to reset. Hence, the new
cell state c(t) is updated with

c(t) = f (t)c(t − 1) + i(t)c̃(t). (10)

Furthermore, the hidden state is updated according to

h(t) = tanh(c(t)) · o(t). (11)

The LSTM is trained using recorded data sequences with
back-propagation.
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FIGURE 3. (a) A scheme of an LSTM-Pos layer receiving a state sequence SH (t) = {x(t − H), . . . , x(t)} of length H with output vector hj (t). The
requirement for including the raw data with concatenation (denoted with symbol ⊕) would be further analysed. (b) The proposed LSTM-Pos network with
stacked layers followed by a feed-forward output layer. The network outputs the predicted target of the wrist p̃f (t) at time t .

F. TARGET PREDICTION MODEL
Prediction based on acceleration data requires the integration
of the signals along with position information. However, the
motion is non-linear and an analytical representation is not
available. Consequently and in addition to the sequential
nature of the data, we require learning the motion pattern over
some period. As noted above, LSTM has the ability to model
sequences by selectively remembering certain patterns over
some period and learn long-term dependencies. Therefore,
we utilize LSTM to explore the various feature and data size
requirements in order to predict targets.

Let SH (t) ∈ Rn
× . . .×Rn be the sequence ofH past states

up to time t given by

SH (t) = {x(t − H ), . . . , x(t − 1), x(t)}.

From each recorded episode {Xj,Pj}, we extract sequences
SH (H ), SH (H + 1) . . . SH (tf ) and their respected target label
p(tf ). Label p(tf ) is the last component of Pj. Consequently,
we acquire a training dataset from all episodes L =

{(SH ,i,pf ,i)}Mi=1 where SH ,i and pf ,i ∈ W are the ith sequence
and corresponding target label, respectively, in the dataset.

Using dataset L, we can directly train an LSTM model for
map 8 to predict wrist target. In such case, the input to the
LSTM would be a sequence of states where each state has a
maximum dimension of n = 18. In the experimental section,
we will further investigate the importance of IMU features to
the accuracy of the prediction. Nevertheless, we hypothesize
that the corresponding estimation (using trained model 0θ ) of
wrist positions included in the state sequence would provide
viable information for better accuracy. This is analogous to
including initial conditions when integrating acceleration.
Hence, we consider two alternatives for a new state input
x̄(t − k) to the LSTM. In the first, we would feed only the
approximated wrist positions to the LSTM

x̄(t − k) = 0θ (x(t − k))T . (12)

Alternatively, we observe the concatenation of the wrist
position and the original raw data. Hence, for each state in
input sequence SH (t), we concatenate the approximated wrist
position to generate a new state x̄(t − j) given by

x̄(t − k) =

(
xT (t − k), 0θ (x(t − k))T

)T
. (13)

Consequently, the input to the LSTM will now be the
sequence along with the corresponding approximated wrist
position. We would analyze these two alternatives in the
experimental section.

We denote LSTM with wrist position information as
LSTM-Pos. The architecture of an LSTM-Pos layer is seen
in Fig. 3a. The original state sequence SH (t) is the input
to the layer followed by concatenation (13) using trained
model 0θ . When considering state representation (12),
the concatenation does not occur and approximated wrist
positions are fed directly into the cells. A cell in the layer
receives vector x̄(t− k) and outputs hidden state vector h(t−
k) ∈ Rm wherem is an hyper-parameter. Hidden state vectors
are passed between the cells and additionally collected to
hidden state sequenceD(t) = {h(t−H ), . . . ,h(t)}. Sequence
D(t) is the output of the LSTM-Pos layer.

Fig. 3b illustrates the entire LSTM-Pos network. LSTM-
Pos has b rows while each row has a layers. a and b are
hyper-parameters of the network. Only the layers of the first
row are LSTM-Pos layers where each outputs an hidden
state sequence Dj(t) for j = 1, . . . , a. The other layers
are regular LSTM layers that receive hidden state sequences
and output updated ones. While all layers in a row have
similar architecture, they include a random dropout such that
Di(t) ̸= Dj(t) for any i, j ∈ {1, . . . , a} and i ̸= j. Furthermore,
only hidden states at time t are outputted from the last
row. Therefore, a hidden states h1(t), . . . ,ha(t) are used and
are the input to a standard Convolutional Neural-network
(CNN) and further to a fully-connected NN (FC-NN). The
FC-NN outputs the approximated target wrist position p̃f (t)
predicted at time t . In preliminary testings, training the model
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without a CNN failed to converge and is, therefore, essential.
In the experimental section, we compare the LSTM-Pos to
the standard LSTM which has the same architecture while
not including wrist position information.

G. CURRICULUM LEARNING
Preliminary testing has shown that training the models
directly with all data may lead to predictions converging
to the geometric center of the workspace. Hence, we use
Curriculum Learning (CL) [47]. The common approach is to
introduce themodel with data in an organized order from easy
samples to hard ones. Such approach commonly provides
better performance than random data shuffling.

We use preliminary insights on model performance to
tackle the problem of convergence to a local minima.
We propose to take a reverse CL approach and train with
harder samples first. In early studies, we have noticed that
it is harder to predict the wrist pose and target at early stages
of the reaching motion. This is due to low data variance when
initiating motion. Hence, we train a model with Ncl batches
along themotion starting from time t = 0. Once the loss value
of the model successfully reaches below some user-defined
value γcl , the next batch of further time frame is added to
the training. When optimizing the hyper-parameters of some
model, if value γcl is not reached for some batch, the model
is disqualified.

III. EXPERIMENTS
We use the experimental system described in Section II-B to
collect data and analyze the proposed approach. Collection
was performed by one human participant (participant 1) with
the system on his left arm. Arm lengths can be seen in Table 3.
To achieve uniform and guided data collection, a rectangular
collection board was mounted in front of the participant as
seen in Fig. 4. The board was equally divided into 42 squares.
The participant was asked to start from arbitrary arm locations
near the body and reach each of the squares several times.
In each square, sized 110 mm, the user could touch any
random location as desired. To acquire a robust model, the
participant also removed the system and re-positioned it on
the arm several times during recordings. It is important to note
that the proposed method processes raw data and uses relative
IMU signals. Therefore, calibration of the IMU sensors is
not required and the device can be used immediately upon
positioning.

A total of K = 840 reaching episodes were collected with
20 episodes for each square. Preliminary analysis has shown
that natural reaching motions in the described setup are no
longer than 2 seconds. Hence, each episode was recorded
in 60 Hz for T = 2 sec leading to 120 samples for an
episode. Therefore, a set of N = 100, 800 samples are
available for training a wrist position model. The participant
recorded reaching tasks with various torso orientations
including facing the collection board, body perpendicular to
the board and while sitting down. Hence, a large distribution
of shoulder motions during arm reaching can be seen in

TABLE 1. Approximation accuracy of wrist position during reaching
motion.

Fig. 5 showing high variance perturbations. Note however
that explicit information about the pose of the human during
reaching is not included in the training data.

A large testing dataset was also collected independent of
the training set and includes 336 episodes when reaching
eight episodes for each square in various torso poses. The
test set also included removing and re-positioning the device
between episodes in order to test robustness.We next evaluate
the training wrist position and target prediction models with
the data. The datasets generated during and analysed during
the current study are available in a designated repository1

A. WRIST POSITION PREDICTION EVALUATION
We now analyse the wrist position model 0 as discussed
in Section II-D. We analyze the accuracy of various ANN
models trained with different features in the data. We test the
ability of a model to predict the wrist position if only some
of the features are available including: only accelerometers,
only magnetometers, only gyroscopes, only accelerometers
and magnetometers, only wrist IMU band, only upper-
arm IMU band or all available sensors. For each variation,
we optimized the hyper-parameters of the ANN to minimize
the RMSE loss function along with the Adam optimizer.
The Optuna framework [48] was used for optimization of
the number of layers and hidden neurons. For example, the
optimal architecture for the model with all sensing features
included three hidden layers with 512 neurons each and
a rectified linear unit (ReLU) activation function. We also
compare between direct and CL training of the ANN. For the
CL, we manually optimized the batch size and loss threshold
yielding Ncl = 10 and γcl = 58 mm, respectively.

Table 1 summarizes the accuracy results for all variations.
It is clear that CL provides accuracy improvement in all
feature representations. Magnetometers (denoted Magn. in
the table) by themselves supposedly should provide enough
information to localize the arm. However and due to
variations in torso orientations, moderate accuracy is pro-
vided with only magnetometers. Only using accelerometers
(denoted Accel. in the table) reaches similar accuracy as
they are able to encapsulate motion flow patterns but lack
orientation information. Evidently, combining accelerom-
eters and magnetometers provides accuracy improvement.
Furthermore, using all available sensors of both IMU sensors

1Dataset available at: https://bit.ly/3COveC8

24860 VOLUME 12, 2024



N. D. Kahanowich, A. Sintov: Learning Human-Arm Reaching Motion Using a Wearable Device in HRC

FIGURE 4. Participant 1 collecting data of arm reaching in various torso orientations including facing the collection board, body perpendicular to the
board and while sitting down.

TABLE 2. Target prediction accuracy for LSTM and LSTM-Pos.

FIGURE 5. Shoulder positions relative to the board (at y = 0) before
initiating motion (blue) and during motions (red).

(including the gyroscopes) provides the lowest error. The
results also show that having only one IMU either on the
upper-arm or the wrist could provide fairly accurate wrist
position. We note that these results are similar to results
reported using the Unscented Kalman filter with an RMS
error of 49 mm [35].

B. TARGET PREDICTION EVALUATION
With the above NN models for approximating wrist position,
we analyze the prediction of the target in reaching motions
with the LSTM-Pos. We compare LSTM-Pos to an LSTM
without including explicit approximation of wrist positions.
Here also, we analyze the required features necessary to
achieve accurate prediction. The hyper-parameters of models

FIGURE 6. Target prediction error (mean and standard deviation) with
respect to the number of the past states H .

with different feature variations were optimized using the
Optuna framework to yield the lowest RMSE loss value. For
example, the optimal hyper-parameters for the model with all
sensing features include LSTM with a = 256 and b = 2,
m = 64, CNN with three convolutional layers and FC-NN
with one hidden layer of 14 nodes, yielding 42,291 trainable
parameters. In this part, all training is performed with CL
since it provides better learning as demonstrated previously.

We initially observed the required number of past states
H to acquire an accurate model. Fig. 6 shows the mean
prediction error over the test data when including all sensors
and with regards to H . Including more information provides,
as one would expect, better accuracy. Other feature variations
exhibit similar behaviour. Having a large H means that the
first prediction would arrive later in the reaching motion.
Hence, we face a trade-off between earlier prediction and
accuracy. In further analysis we choose to use H = 60 as
it provides low error along with first prediction at half-way
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FIGURE 7. Typical heat-map illustrating the mean error (in mm) across
the collection board when not including wrist position approximation of
LSTM-Pos. All models converged their prediction to the center of the
board.

through-out the reaching motion. The chosen prediction
horizon provides at least one second before the hand reaches
the target which is valuable for planning and initiating robot
motion. While not implemented in this work, these results
show that one could train several models with ascending H .
Hence, coarse accuracy would be provided at the beginning
of the episode (e.g., H = 10) for initial motion of the robot.
Then, accuracy would be improved with better models as
more information arrive.

Table 2 summarizes the target prediction errors (mean
and standard deviation) along the reaching motion of all
test data and for different feature variations. First, directly
using the data to train an LSTM (without including wrist
position approximation) fails to produce feasible predictions.
All LSTMmodels converged to the mean of the target labels.
Fig. 7 shows an heatmap illustrating the error distribution
across the collection board. Predictions for all test episodes
output the center position of the collection board leading to
low accuracy performance.

LSTM-Pos, on the other hand, provides much lower
prediction errors for all feature variations. In particular,
having only the sequence of approximated wrist positions
from the NN fed into the LSTM is sufficient to acquire
the best model. Including also the raw measurements from
all sensors fairly provides the same accuracy. The results
also indicate that having only one band can be sufficient for
moderate accuracy. Fig. 8 shows the mean error along the
test episodes for LSTM-Pos with only approximated wrist
positions and when including also raw sensor measurements
(all sensors). Similarly, Fig. 9 illustrates the mean errors
across the collection board through the motion time. The
above results achieve accuracy of approximately less than
70% of an adult human palm breadth (87.5 mm) [49]. In a
hand-over task, the user can slightly refine the position of the
hand at the last stage of the motion if required. Hence, such
an accuracy is sufficient for feasible HRC tasks as would be
demonstrated in the next section.

FIGURE 8. Target prediction error (mean and standard deviation) of
LSTM-Pos with respect to reaching motion time evaluated on all test
episodes.

TABLE 3. Arm lengths of all participants.

C. HRC DEMONSTRATION
We have conducted an HRC demonstration where a par-
ticipant reaches his arm towards a robotic arm. During
the reaching motion, the robotic arm receives continuous
stream of target predictions acquired from the trained model.
When acquiring the first prediction, the robot plans motion
for rendezvous and initiates motion. As a new prediction
arrives, the motion plan of the robot is updated accordingly.
Participant 1 along with two additional ones not included in
training participated in the demonstration. The participants
have different arm lengths as seen in Table 3. They were
instructed to stand in front of the robot at desired body poses
such that their wrist can reach the shared workspace. These
poses are roughly similar to the ones used for collecting
training data and within the same distribution. Furthermore,
the robot was not given any information regarding the pose
of the human participant. The participants were asked to
perform 15 reaching motions to arbitrary locations in front of
them. They were also instructed to initiate motion from any
desired arm pose. We define a successful trial as a one where
the robot reached within the vicinity of the human hand with
minimal distance of 60mm. The distance wasmeasured using
the motion capture system.

Table 4 provides the rendezvous success rate for the three
participants. The success for Participant 1 is the highest since
the model is trained on data collected from him. Nevertheless,
the two other participants achieved rather high success rates
considering that they have different arm lengths and did
not contribute data to model training. Hence, the model can
be transferred to a new user with relatively good accuracy.
The data collection process, which included re-applying the
system various times on the arm and the recording of different
body poses (evaluated in Fig. 5), enables the LSTM-Pos to
overcome uncertainties and learn general motion patterns that
are common to different individuals. In addition, the unique
architecture and CL training of the LSTM-Pos assist the
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FIGURE 9. Heat-maps illustrating the mean error (in mm) across the collection board over time and when considering all sensors. Mean error from left to
right: Error (t = 1 sec) = 116.98 mm, Error (t = 1.33 sec) = 62.41 mm, Error (t = 1.65 sec) = 46.86 mm and Error (t = 2 sec) = 44.47 mm.

FIGURE 10. Reaching test of participant 1.

FIGURE 11. Reaching test of participant 3.

TABLE 4. Success rate for reaching experiment.

learning of vital motion features. Hence, LSTM-Pos was able
to provide high performance to the new participants. Also,
while the participants were not instructed to stand in a specific
pose, yet the model was able to provide accurate predictions.
This can be explained by the ability of the model to infer
from motion patterns, not only regarding the trajectory of
the arm, but also about the human pose. In other words,
information regarding human pose is embedded within state
trajectories and the model can cope with pose variance for
successful HRC. Hence, the model is shown to provide
good accuracy within some implicit pose distributions of the
human participant.

We note that the robot arm reached the vicinity of the
human hand in all trials but with a distance larger than

FIGURE 12. Motion of participant 2 between two arm poses within the
interaction space while the robotic arm follows.

the defined bound. Target wrist prediction was achieved
in mid-motion and the robot initiated motion before the
participant reached the end of the episode. For safety
reasons, the velocity of the robot was maintained low.
Hence, the participant was required to shortly wait for the
arm. Nevertheless, having the robot move faster would
enable faster HRC tasks. Figures 10-12 show demonstration
snapshots of some reaching trials for the three participants
towards the robotic arm. Participant 3 in Fig. 12 demonstrated
the ability of the model to predict motion from various initial
poses of the arm. Fig. 13 shows a demonstration of handing
over a bottle to the robot using the system. These results show
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FIGURE 13. An HRC demonstration in which participant 1 hands-over a
bottle to the robot.

that a relatively small dataset of IMU data can be used to
train a sufficiently accurate model for feasible predictions
of reaching targets in HRC scenarios. All experiments and
demonstration videos can be seen in the supplementary video.

IV. CONCLUSION
We have presented the problem of learning human reaching
motions and predicting future target locations. We inves-
tigated the use of a wearable device composed of two
IMU sensors located on the upper-arm and wrist. First,
a simple ANN was trained to predict the current position of
the wrist. Then, an LSTM-based architecture was proposed
where approximation of the wrist position along some time
frame was included. Using data collected from a single
user, we have tested various features to be included in the
model. Results show that having all features from the sensors
along with curriculum learning achieve good accuracy for
approximating current wrist position. With such model and
without additional raw data, we reach sufficient accuracy for
early prediction of the target wrist position. Furthermore,
we have shown several reaching demonstrations where a
robot planned and moved towards the human arm in real-time
based solely on information from the wearable device. High
success rates were demonstrated from the participant whom
collected data and two other ones not included in the training.
Hence, a relatively small amount of collected data from one
user achieved sufficient accuracy for feasible predictions of
reaching targets in HRC scenarios. Once trained, the model
and system can be deployed in various spaces with no further
effort.

The results have shown some decline in performance when
using a single-user trained model for predicting motion of
new users. In order to provide a multi-user model, future
work may consider fine-tuning the existing model to a
new user based on a limited amount of collected data.
Alternatively, training data from several users may be used
to acquire a robust model. The system could also be fused
with additional sensors. For instance, an additional IMU
can be added on the human torso to provide information
regarding body orientation and upper body shift. Vision can
also be integrated in order to provide a complete solutions
when a line-of-sight is not continuous. Similarly, one could
integrate Force-Myography [50], [51] or EMG [31] to have
additional information about the pose of the palm and fingers.
An additional system on the other arm could enable the

classification of tasks performed by the human towards
assistance by a robot.
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