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ABSTRACT With the emergence of cyber-physical systems (CPSs) in utility systems like electricity, water,
and gas networks, data collection has become more prevalent. While data collection in these systems
has numerous advantages, it also raises concerns about privacy as it can potentially reveal sensitive
information about users. To address this issue, we propose a Bayesian approach to control the adversarial
inference and mitigate the physical-layer privacy problem in CPSs. Specifically, we develop a control
strategy for the worst-case scenario where an adversary has perfect knowledge of the user’s control
strategy. For finite state-space problems, we derive the fixed-point Bellman’s equation for an optimal
stationary strategy and discuss a few practical approaches to solve it using optimization-based control design.
Addressing the computational complexity, we propose a reinforcement learning approach based on the
Actor-Critic architecture. To also support smart meter privacy research, we present a publicly accessible
‘‘Co-LivEn’’ dataset with comprehensive electrical measurements of appliances in a co-living household.
Using this dataset, we benchmark the proposed reinforcement learning approach. The results demonstrate
its effectiveness in reducing privacy leakage. Our work provides valuable insights and practical solutions for
managing adversarial inference in cyber-physical systems, with a particular focus on enhancing privacy in
smart meter applications.

INDEX TERMS Adversarial inference, Bayesian control, cyber-physical systems, deep reinforcement
learning, privacy control, smart meters.

I. INTRODUCTION
A cyber-physical system (CPS) integrates physical compo-
nents with computational and communication elements to
enable real-time monitoring and control of physical systems.
CPSs provide substantial advantages in utility systems
such as electricity grids, water and gas supply networks,
and transportation systems, including enhanced efficiency,
stability, and automated network control. For instance, smart
electric grids can use CPSs to monitor power usage and
adjust supply and demand in real time, reducing energy
waste and costs. However, the integration of CPSs in utility
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systems can also pose potential privacy risks as the usage
patterns of resources can reveal sensitive private information
about users to anyone with access to the data. For example,
energy consumption data from smart meters (SMs) can be
used to infer the types of household appliances [1] and
their usage patterns, thereby disclosing sensitive private
information about users, including presence or absence and
the number of occupants, daily routines, and entertainment
habits of occupants, medical equipment usage [2]. This
information is susceptible to exploitation by malicious actors
or unauthorized third parties for various purposes, such as
targeted advertising or surveillance. The General Data Pro-
tection Regulation (GDPR) in Europe establishes stringent
guidelines for handling data containing sensitive personal
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information. Specifically, the GDPR forbids processing data
that could disclose such information without obtaining users’
informed consent. For instance, this means that, when using
SM data, one should not be able to infer appliance usage
patterns that may reveal the religious beliefs of consumers
without their explicit consent. Hence, it is crucial to develop
privacy-enhancing methods for CPSs that safeguard users’
privacy while still enabling their benefits.

Consider a hypothetical scenario where a third-party
energy service provider is not only aware of the user’s energy
consumption patterns but also has perfect knowledge of the
privacy-enhancing control strategy employed by the user.
This situation presents a significant challenge for the user
as the adversary is well-equipped to exploit any weaknesses
in the control strategy, potentially leading to the exposure
of private information about the user’s habits, preferences,
or lifestyle. In our previous work [3], we studied the problem
of optimally controlling the sequential Bayesian hypothesis
testing (SBHT) of an adversary who is unaware of the
presence of a control system. In this work, we address an
even stronger privacy question: How can a user protect their
privacy against an adversary who has perfect knowledge
about the control strategy employed by the user? By
addressing this question, we aim to design conservative
privacy control strategies against a worst-case adversary
performing SBHT, which can serve as a benchmark.

A. RELATED WORKS
Addressing the privacy risks associated with smart meter
data, several privacy-enhancing techniques have been pro-
posed in the literature to protect sensitive user information
without compromising the overall utility and benefits of smart
meters. These techniques can be broadly classified into two
approaches: Data Manipulation and Demand Shaping.

1) DATA MANIPULATION
Data manipulation techniques aim to protect user privacy
by altering measured smart meter data before transmission.
[4] presents a privacy-preserving smart metering approach
using homomorphic encryption that allows computation of
the aggregated energy consumption of a given set of users
without accessing individual user data directly. In [5], the
authors present a more efficient and scalable approach
for data aggregation using Secure Multi-Party Computation
(SMPC) cryptographic technique. The authors in [6] propose
a privacy-preserving protocol using zero-knowledge proofs
that enables billing with time-of-use tariffs without disclosing
the actual consumption profile to the supplier. In [7], a simple
and efficient method to preserve differential privacy is
proposed by adding noise to the SM data in such a way
that makes it difficult to learn anything about an individual,
but still allows for accurate statistics to be computed.
More recently, in [8] a data obfuscation method utilizing
both differential privacy preserving data perturbation and a
cryptographic noise distribution.

Data manipulation techniques, while useful, have certain
drawbacks. First, altering the reported values may reduce
their usefulness for grid management and load prediction,
ultimately undermining the benefits of smart meters. Second,
since these techniques do not address the issue at the physical
layer level, adversaries with access to power lines could have
potentially installed separate sensors, thereby circumventing
the privacy protection offered by such methods.

2) DEMAND SHAPING
Demand shaping techniques physically alter the actual user
energy demand from the grid in real-time to obfuscate
sensitive information that can be inferred from SM data. This
is achieved using energy storage systems (ESSs), flexible
loads such as heating systems, and renewable energy sources.
These physical layer techniques are highly effective in
enhancing privacy since they limit information leakage even
before data generation.

Several analytical techniques have been proposed in
literature that quantify privacy using differential privacy
measures [9], information-theoretic measures such as mutual
information [10], [11], [12], [13], conditional entropy [14],
and others, providing axiomatic guarantees on the maximum
possible information leakage. Detection-theoretic privacy-
enhancing techniques, on the other hand, offer operational
privacy guarantees, such as protection against hypothesis
tests [3], [15], [16], [17]. Related to controller-aware adver-
sarial hypothesis testing, few attempts have been made in the
literature to develop control policies to worsen adversarial
detection performance. Li et al. [15] presented an optimal
control strategy against a greedy and informed adversary
conducting independent single-shot hypothesis tests. In [17],
an informed adversary performing hypothesis tests on a static
binary state is studied, and fundamental limits on achievable
privacy are presented. In [16], the authors formulate a
partially observable Markov decision process (POMDP)
control problem, where the belief state of an informed
adversary is optimally controlled over a given horizon,
and the adversary is assumed to perform instantaneous
hypothesis tests using only current observation. In another
system setting, Liao et al. [13] proposed a privacy-enhancing
mechanism to aid hypothesis testing while constrained by
mutual information privacy measure, which differs from our
work where hypothesis testing is used to model the adversary.
In another related work, Salehkalaibar et al. [18] define
a binary hypothesis state at the control level, where the
controller is either in idle or privacy-enhancing state, and
analyze hypothesis testing at the utility provider with access
to some side information.

Heuristic-based computationally efficient techniques have
also been proposed in literature. Notable approaches are the
Best Effort Moderation approach [19] that aims to maintain
a constant metered load by using a battery, and the Lazy
stepping approach [20] that provides privacy by increasing
the quantization error of the smart meter data by converting
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the grid load into a step function using an arbitrary number
of quantization levels. While these heuristic approaches are
easier to implement in practice, their ability to provide formal
privacy guarantees and comply with legal standards could be
limited due to their reliance on simplistic and pre-defined
rules, especially when faced with adversaries with knowledge
about these rules.

B. CONTRIBUTIONS
In this paper, we address a strong physical layer privacy
case by considering an adversary with complete knowledge
of the user’s control strategy and modeling the adversary’s
inferences using the SBHT inference model. Using the
Markov decision process (MDP) framework, we measure
privacy leakage in the physical layer using the Bayesian
risk (adversarial reward) in the SBHT. For a finite state-
space system, we derive a fixed-point equation for an optimal
stationary strategy that minimizes the discounted aggregate
value of the infinite-horizon Bayesian risk. The fixed-point
equation is similar to Bellman’s fixed-point equation of a
continuous MDP with infinite state and action spaces and
with a non-linear objective function that is impractical to
solve exactly without making simplifying approximations.
In this paper, we present a few practical approaches to solve
it using optimization-based control design, highlighting their
computational complexities.

Although exact optimal policies are theoretically com-
putable using optimization-based approaches, they become
intractable for high-dimensional state-space problems.
To tackle the computational complexity, we introduce an
actor-critic reinforcement learning (RL) algorithm named
Adversarial Model-based Deterministic Policy Gradient
(AMDPG). In an actor-critic RL, the actor is parameterized
using a neural network, which can be used to generate
continuous actions easily without the need for optimization
procedures. The critic provides a low-variance performance
knowledge of the actor by parameterizing the expected return
of its actions [21]. This model-free approach allows us to
handle the complex and dynamic nature of cyber-physical
systems effectively where traditional MDP dynamic pro-
gramming approaches are intractable. The proposed AMDPG
algorithm is inspired by the Deep Deterministic Policy
Gradient (DDPG) method [22]. A key difference between our
proposedAMDPGand theDDPG algorithms can be observed
in the noise generation process. In AMDPG, we not only
integrate randomly generated noise into the actor output but
also add noise obtained from the solution of an optimization
problem, which computes an instantaneously optimal policy.
This modification is intuitively expected to encourage more
effective policy exploration and take into account long-term
rewards by functioning near instantaneously optimal control
during the learning process.

Furthermore, to facilitate smart meter privacy research,
we introduce the publicly accessible ‘‘Co-LivEn’’ dataset,

which contains detailed electrical measurements of appli-
ances in a co-living household. This dataset provides a valu-
able resource for studying the privacy implications of NILM
and the effectiveness of various privacy-enhancing tech-
niques. Finally, we benchmark the proposed reinforcement
approach using the presented household energy consumption
data. The results show the effectiveness of the proposed
control strategy in reducing the privacy leakage even in the
worst-case scenario when the adversary is aware of the exact
control strategy employed by the user.

The important contributions of the paper can be summa-
rized as follows:

1) A novel and implementable RL approach to address a
worst-case adversary with complete knowledge of the
user’s control strategy.

2) Derivation of a fixed-point equation for an optimal
stationary strategy that minimizes the discounted
aggregate value of the infinite-horizon Bayesian risk
and practical approaches to solve it.

3) A publicly accessible energy consumption dataset that
includes comprehensive electrical measurements of
appliances in a co-living household.

4) Benchmarking of the proposed strategies using both
synthetic and real data.

C. ORGANIZATION OF THE PAPER
The rest of the paper is organized as follows. In Section II,
we present an overview of the system along with its
modeling. In Section III, we present the preliminaries on the
adversarial inference using SBHT framework. In Section IV,
we formulate the optimal inference control problem. Subse-
quently, in Section V, we present several optimization-based
approaches to achieve adversarial inference control. Using
reinforcement learning, we present a novel control approach
in Section VI. Furthermore, numerical studies using synthetic
and real data are presented in Section VII and Section VIII.
Lastly, we conclude the paper in Section IX.

In this paper, unless otherwise stated, we use capital
letters to denote random variables, lowercase letters for
their realizations, and calligraphic letters for their alphabets.
We use Ak:k+i to denote the vector [Ak ,Ak+1, . . . ,Ak+i]⊺,
and Ak:k+i to denote the Cartesian product Ak × Ak+1 ×

· · · × Ak+i. The expectation operator is denoted by E[·],
and the matrix transpose operator by (·)⊺. PA(a) denotes a
probability distribution function, and I denotes an indicator
function with Ia = 1 if a is true, and 0 otherwise. 0n
and 1n are n-dimensional vectors with all entries as zeros
and ones, respectively. 1n denotes an (n − 1)-dimensional
simplex. In summations, if not otherwise specified, the
domain of a variable is its complete alphabet. Throughout
the paper, we use the term policy to refer to a map from
some information set to some action at a certain time
instance, and the term strategy to refer to a sequence of
policies.
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FIGURE 1. The proposed metering system that enables physical layer user
privacy by altering the actual consumption using a storage. Here, the solid
lines denote the physical resource flow and the dotted lines denote the
information flow.

II. SYSTEM MODEL
We consider a privacy-concerned user consuming resource in
a cyber-physical system as shown in Fig. 1. At the beginning
of each slot k ∈ N in a discrete-time infinite-horizon N =
{1, 2, . . . }, the user’s consumption is altered by a control
strategy using a storage system. We restrict our analysis
to discrete-time and discrete resource levels, designing a
control strategy for systems with digital signal processing
capabilities. We define random variables Xk and Dk on finite
alphabets X and D, respectively, where Xk represents the
user’s resource consumption, Dk represents the additional
demand or usage of the stored resource specified by the
control strategy, and Yk := Xk +Dk denotes the consumption
measured by the sensor on a finite alphabet Y = {x+d : x ∈
X , d ∈ D}.
We model the storage system’s state transitions using a

first-order Markov model characterized by the conditional
distribution PZk+1|Zk ,Dk , where Zk represents the quantized
value of the storage system state on a finite discrete alphabet
Z . We estimate the conditional distribution PZk+1|Zk ,Dk
using Monte Carlo simulations and a sample-based density
estimation approach [3]. In this work, we further simplify
the storage system model by parametrizing the conditional
distribution PZk+1|Zk ,Dk for each (zk , dk ) ∈ Z × D using the
beta distribution.

Moreover, to capture the sensitivity of user behavior,
we introduce a privacy-sensitive state denoted byHk , defined
on a finite alphabetH. This state, referred to as the hypothesis
state, can represent various user activities such as cooking,
taking a shower, and more, which are potentially of interest
to an adversary seeking to infer personal information.

We model the dependency between the sequence of user
demands and hypothesis states [H1:N ,X1:N ] corresponding to
the horizon N using a first-order time-homogeneous hidden
Markov model (HMM) characterized by a set of parameters
denoted as θ and is given by

θ := {PXk |Hk ,PHk |Hk−1 ,PH0 : k ∈ N},

where PXk |Hk represents the observation probability of user
demands, PHk |Hk−1 represents the transition probability of

hypothesis states, and PH0 represents the prior probability of
hypothesis states.

As we will discuss in the subsequent analysis, the statistics
of the ESS state Zk are also relevant to the adversary
when attempting to guess the hypothesis state. For analytical
simplicity, we replace the state pair (Zk ,Hk ) with a 1-
dimensional random variable Ak . Let A := {1, . . . , |Z| ×
|H|} denote the alphabet of Ak . We define Ik as the causal
information available to the controller at the start of slot k ,
which is a discrete set defined on Ik = (X × Y × A)k−1
and includes [X1:k−1,Y1:k−1,A1:k−1]. Let µk ∈ Uk denote a
randomized control policy which represents the conditional
distribution PYk |Xk ,Hk ,Ik , where Uk denotes the set of all
randomized control policies.

III. ADVERSARIAL INFERENCE
Here we assume a strong adversary who knows the HMM
parameter set θ , the storage system state transition probability
PZk |Zk−1,Dk , and the exact control strategy µ1:∞ employed
by the user. We model the adversary’s inferences about the
hypothesis state Hk in the infinite-horizon case using the
SBHT framework. Let Ĥk denote the hypothesis state esti-
mate of the adversary, which is defined onH. We also define
a randomized detection policy for the adversary, denoted
by ζk ∈ Ck , which represents the conditional distribution
PĤk |Y1:k

, where Ck denotes the set of all randomized detection
policies for the adversary.

In the SBHT framework [23], a reward is assigned to each
possible test outcome denoted by c(h, ĥ) with h, ĥ ∈ H.
An optimal detection strategy is designed by maximizing the
expected reward. The expected reward at time slot k , known
as the Bayesian reward, is denoted by rk and is given by

rk = E
[
c(Hk , Ĥk )

]
=

∑
(hk ,ĥk )

c(hk , ĥk )PHk ,Ĥk (hk , ĥk ). (1)

where PHk ,Ĥk is the joint distribution of the hypothesis state
estimate Ĥk and the true hypothesis state Hk . Note that rk
represents the Bayesian risk, which is the average privacy
cost for the user given a fixed function c(h, ĥ). In this work,
we assume that c(h, ĥ) ≥ 0 and that the reward for a
correct guess is greater than that for an incorrect guess. As a
result, the adversary seeks to maximize the average Bayesian
reward, while the user aims to minimize it.

For any finite horizon KN = {1, 2, . . . ,N } of arbitrary
length N , an optimal detection strategy of the adversary
for any given control strategy µ1:N , denoted by ζ ∗1:N , that
maximizes the average Bayesian reward can be expressed as

ζ ∗1:N (µ1:N ) = argmax
ζ1:N∈C1:N

[
1
N

N∑
k=1

rk (ζk , µ1:k )
]

= argmax
ζ1:N∈C1:N

[
E

[ N∑
k=1

rk|k (Y1:k ; ζk , µ1:k )
]]
, (2)
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where rk|k denotes the conditional Bayesian reward of the
adversary given the causal data y1:k ∈ Yk , expressed as

rk|k (y1:k ; ζk , µ1:k )

= E
[
c(Hk , Ĥk )

∣∣Y1:k = y1:k
]

=
∑

(hk ,ĥk )
c(hk , ĥk )PHk ,Ĥk |Y1:k

(hk , ĥk |y1:k ). (3)

Lemma 1: Let π̂k denote the belief state of the adversary
at time slot k, which represents the conditional probability
vector PAk |Y1:k . For any given data y1:k and control strategy
µ1:k , the belief state of the adversary evolves according to the
recursion:

π̂k (yk , µ̄k , π̂k−1) =
Mπ̂

(
yk , µ̄k

)
· π̂k−1

1⊺
|A| ·Mπ̂

(
yk , µ̄k

)
· π̂k−1

, (4)

=
Mµ̄

(
yk , π̂k−1

)
· µ̄k

1⊺
|A| ·Mµ̄

(
yk , π̂k−1

)
· µ̄k

, (5)

where Mπ̂ and Mµ̄ are |A| × |A| and |A| × |W| dimensional
matrices respectively, and µ̄k denotes the control sub-policy,
which represents the conditional probability PWk |Y1:k−1 , and
Wk denotes the conditional random variable Yk |Xk ,Hk ,Ak−1
defined on the alphabetW := {1, . . . , |Y × X ×H×A|}.
The proof of Lemma 1 can be found in Appendix A. Note that
the conditional Bayesian reward rk|k depends on the causal
data y1:k−1 only through the sub-policy µ̄k and the belief
state π̂k−1. Furthermore, for a fixed control strategy µ1:N ,
the sub-policy µ̄k and the belief state π̂k−1 do not depend
on the detection strategy ζ1:N . Therefore, the optimization
problem for the optimal SBHT adversarial detection strategy
ζ ∗1:N in (2) can be decomposed into N linear programs:

ζ ∗k (yk , µ̄k , π̂k−1) = argmax
ĥk∈H

[
c⊺(ĥk ) · π̂k (yk , µ̄k , π̂k−1)

]
,

(6)

where c(ĥk ) is a |A|-dimensional vector with its elements
defined as [c(ĥk )]a = c(fH(a), ĥk ) and fH : A → H
is any deterministic function that maps the state Ak to its
corresponding hypothesis state Hk . The adversarial detection
policy given by (6) can be represented using a time-invariant
and deterministic decision rule ζ ∗ : 1|A|→ H given by

ζ ∗(π̂k ) = argmax
ĥk∈H

[
c⊺(ĥk ) · π̂k

]
. (7)

Remark 1: In the computation of the belief state using (4)
and (5), the current belief state π̂k depends on the past
observations y1:k−1 only through the sub-policy µ̄k and the
previous belief state π̂k−1. However, the computation of the
sub-policy µ̄k using (47) requires complete data y1:k−1 at
each time slot k if the control policy µk is explicitly designed
in the form PYk |Xk ,Hk ,Ik . As we will show in the coming
section, using a control policy in this form with complete
historical data does not help the user in minimizing the
average Bayesian reward.

The information flow in the adversarial SBHT detection
process is illustrated in Fig. 2. The optimization problem

FIGURE 2. Information flow in the adversarial SBHT detection process
with a control policy of the form PYk |Xk ,Hk ,Ik

.

in (7) defining the adversarial decision rule ζ ∗ can also be
represented using polyhedral decision regions in the simplex
space 1|A|. For each hypothesis state h ∈ H, the optimal
adversarial decision regionRh is defined by

Rh=

{
π̂k ∈ 1|A| :

[
c⊺(h′)− c⊺(h)

]
π̂k < 0, ∀h′ ∈ H \ h

}
.

The set of all decision regions is denoted by R := {Rh :

h ∈ H}, and it satisfies ∪h∈HRh = 1|A|. Since the
adversarial detection policy ζ ∗ given in (7) is time-invariant,
the stationary strategy ζ ∗1:∞ := [ζ ∗, ζ ∗, . . . ] also maximizes
both the average and discounted Bayesian rewards, denoted
by w̄ and wρ respectively. Specifically, for a given control
strategy µ1:∞, the average and discounted Bayesian rewards
of the informed adversary can be expressed as

w̄(µ1:∞) = lim
N→∞

1
N

N∑
k=1

rk (ζ ∗, µ1:k ), (8)

wρ(µ1:∞) =
∞∑
k=1

ρk−1 rk (ζ ∗, µ1:k ), (9)

where ρ ∈ [0, 1) is a discount factor.

IV. INFERENCE CONTROL PROBLEM FORMULATION
The SBHT adversarial inference poses a significant threat
to the privacy of users in CPSs. To mitigate this threat,
we aim to find a stationary control strategy for the infinite
horizon N that minimizes the discounted Bayesian risk wρ .
While the infinite horizon average Bayesian risk w̄ is also
a suitable optimization objective, it may not perform well
in practice due to the dynamic nature of user demands.
Therefore, we focus on minimizing wρ to derive an optimal
control policy that ensures the privacy of the CPS.

Given any control strategy µ1:∞ and any ϵ > 0, for a
bounded reward function c(h, ĥ) and a sufficiently large N ,
we have

∞∑
k=N+1

ρk−1rk (ζ ∗, µ1:k ) < ϵ, (10)

since ρk−1 → 0 as k → ∞. Hence, we approximate
the minimum discounted Bayesian risk, denoted by w∗ρ ,
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FIGURE 3. Information flow in the control system with the policy
designed using the sufficient statistic π̂k .

as follows:

w∗ρ ≈ min
µ1:N

[ N∑
k=1

ρk−1 rk (ζ ∗, µ1:k )
]

= min
µ1:N

[
E

[ N∑
k=1

ρk−1 rk|k− (Y1:k−1; ζ
∗, µ1:k )

]]
. (11)

Here, rk|k− denotes the conditional Bayesian risk given any
y1:k−1 ∈ Yk−1, which is expressed as

rk|k− (y1:k−1; ζ
∗, µ1:k )=E

[
c(Hk , Ĥk )

∣∣Y1:k−1 = y1:k−1
]

=c⊺(ĥ∗k ) ·Mπ̂

(
yk , µ̄k

)
· π̂k−1 (12)

=c⊺(ĥ∗k ) ·Mµ̄

(
yk , π̂k−1

)
· µ̄k , (13)

where ĥ∗k = ζ ∗(π̂k ) is the optimal hypothesis guess of
the adversary given the belief state π̂k which is updated
according to (4) or (5) given (yk , µ̄k , π̂k−1). As mentioned
in Remark 1, computing µ̄k when the control policy µk
is explicitly designed in the form PYk |Xk ,Hk ,Ik requires the
complete data y1:k−1 at each k . In Theorem 1, we show that
the belief state π̂k−1 is a sufficient statistic of the information
vector ik for finding an optimal control strategy that achieves
the minimum achievable discounted Bayesian risk. Thus,
using policies that rely on the entire data history y1:k−1
does not provide any performance improvement against the
adversary.
Theorem 1: Let Ũ = {µ̃ : 1|A|→ Ū} denote the set of all

mappings from1|A| to Ū . For any discount factor ρ ∈ (0, 1],
at each k ∈ KN , there exists an optimal policy µ̃∗k ∈ Ũ that
achieves the minimum discounted Bayesian risk achievable
by any policy µk ∈ Uk and is given by

µ̃∗k (π̂k−1)=argmin
µ̄k∈Ū

[
π̂

⊺
k−1

[
Mc(ζ̄ ∗k )+ρMv(v̄n−1)

]
µ̄k

]
, (14)

vn(π̂k−1) = min
µ̄k∈Ū

[
π̂

⊺
k−1

[
Mc(ζ̄ ∗k )+ ρMv(v̄n−1)

]
µ̄k

]
, (15)

where n = N − k+1 is the backward iteration index starting
from k = N for some arbitrarily large N . Here, vn, known
as the value function, is the aggregate value of discounted
conditional Bayesian risk due to optimal strategy µ̃∗k:N .
The proof of Theorem 1 can be found in Appendix B. Fig. 3

illustrates the information flow in the control system with the
policy µ̃k ∈ Ũ designed using the sufficient statistic π̂k .
Corollary 1: For any discount factor ρ ∈ (0, 1), there

exists a unique fixed point value function v∗ : 1|A| →

R+ to which the Bellman’s recursion in (15) converges.
Consequently, the optimal stationary policy µ̃∗ ∈ Ũ that
achieves the minimum discounted Bayesian risk w∗ρ is the
solution to the fixed point equation:

v∗(π̂k−1)

= min
µ̄k∈Ū

[
π̂

⊺
k−1

[
Mc(ζ̄ ∗k )+ ρMv(v̄∗)

]
µ̄k

]
= min
µ̄k∈Ū

[
max
ζ̄∈H|Y|

[
π̂

⊺
k−1Mc(ζ̄ )µ̄k

]
+ ρπ̂

⊺
k−1Mv(v̄∗)µ̄k

]
,

(16)

where [v̄∗]y = v∗
(
π̂k (y, µ̄k , π̂k−1)

)
.

Proof: Due to the monotonicity and contraction proper-
ties of the Bellman’s recursion [24], the Banach’s fixed point
theorem [25] implies that there exists a unique fixed point
v∗ ∈ V to which the Bellman’s recursion in (15) converges.□
Remark 2: The optimal SBHT control problem of mini-

mizing the infinite-horizon discounted Bayesian risk can be
formulated as a POMDPproblemwith continuous state π̂k−1,
continuous action µ̄k , and a piecewise-linear convex cost
function: maxζ̄

[
π̂

⊺
k−1 ·Mc(ζ̄ ) · µ̄k

]
.

V. OPTIMIZATION-BASED CONTROL
In this section, we discuss several practical optimization-
based approaches for solving the inference control prob-
lem (16) introduced in Section IV. These approaches take
advantage of the problem’s structure and apply various
constraints on the discount factor, control policy space, and
belief state space to simplify the optimization problem. These
methods are particularly useful for scenarios where the state
and action spaces of the system model are small. We also
provide a discussion on the computational complexity of each
approach.

A. INSTANTANEOUSLY-OPTIMAL CONTROL
An empirical upper bound on the minimum discounted
Bayesian riskw∗ρ can be obtained by using the instantaneously-
optimal control policy with ρ = 0. The objective function
in (16) becomes piecewise-linear with respect to (π̂k−1, µ̄k )
when ρ = 0, enabling efficient computation of an exact
instantaneously-optimal policy. The minimum instantaneous
risk, denoted by r∗k|k− is given by

r∗k|k− (π̂k−1) = min
µ̄k∈Ū

[
max
ζ̄∈H|Y|

[
π̂

⊺
k−1Mc(ζ̄ )µ̄k

]]
= min

ζ̄∈H|Y|,
µ̄k∈Ūr (ζ̄ ,π̂k−1)

[
π̂

⊺
k−1Mc

(
ζ̄

)
µ̄k

]
, (17)

where Ūr (ζ̄ , π̂k−1) denotes the set of all policies µ̄k ∈ Ū that
satisfy the set of constraints imposed by the decision regions
R corresponding to the decision vector ζ̄ and the belief state
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π̂k−1, given by

Ūr (ζ̄ , π̂k−1)

=

{
µ̄k ∈ Ū : π̂k (y, µ̄k , π̂k−1) ∈ Rh, h = [ζ̄ ]y, y ∈ Y

}
.

(18)

Note that Ūr (ζ̄ , π̂k−1) is a polyhedron in R|W |+ since the
belief state π̂k−1 evolves to π̂k following the linear-fractional
transformation given in (4) and the adversarial decision
regions R are also polyhedrons in the belief space 1|A|.
As a result, the exact instantaneously-optimal policy can be
obtained in real-time by solving a linear program for the
observed belief state π̂k−1.
Remark 3: Computing the exact instantaneously-optimal

policy requires solving a piecewise minimum over the set
H|Y | as given in (17). Therefore, the worst-case time
complexity of the instantaneously-optimal control policy is
O(H|Y |), which may grow exponentially with the size of the
observation space |Y|.

B. OPTIMAL CONTROL WITH FINITE SUB-POLICY SPACE
Here, we present an approach to solve the SBHT control
problem by restricting the feasible space of the control
policies in (15) to a finite set of control sub-policies, denoted
by ŪF . For example, ŪF can be chosen to be the finite set of
all degenerate sub-policies. With a finite control sub-policy
space, for each π̂k−1 ∈ 1|A|, the Bellman’s equation in (15)
can be rewritten as

vn(π̂k−1)= min
µ̄k∈ŪF

[
π̂

⊺
k−1 · γk (µ̄k , π̂k−1, vn−1)

]
, (19)

where γk (µ̄k , π̂k−1, vn−1) is a vector inR|A|+ with its elements
given by[
γk (µ̄k , π̂k−1, vn−1)

]
ak−1

=
∑

(hk ,ak ,yk ) PHk ,Ak ,Yk |Ak−1 ×
[
c(hk , ζ ∗(π̂k (yk , µ̄k , π̂k−1))

+ ρvn−1(π̂k (yk , µ̄k , π̂k−1))
]
.

The set of all hyperplanes in R|A|+ that define the boundaries
of the decision regionsR is denoted by B̄, and is given by

B̄=
{[
c⊺(ĥ′)− c⊺(ĥ)

]
b = 0 : (h, h′) ∈ H2, h ̸= h′

}
. (20)

Let B̄0
= B̄ and for n ≥ 1, B̄n denotes the set of all

hyperplanes in R|A|+ given by

B̄n =
{
β

⊺
i Mπ̂ (y, µ̄)b = 0 : {β⊺

i b̃ = 0} ∈ B̄n−1,

i ∈ [1, |B̄n−1|], y ∈ Y, µ̄ ∈ ŪF
}
. (21)

Since the control sub-policy space ŪF is finite, by initializing
with vN+1(π̂N ) = 0, we can solve the optimization problem
in (19) at each k ≤ N by recursively partitioning 1|A| into
a finite set of polyhedral partitions using all hyperplanes
in B̄n ∪ B̄. These resulting polyhedral regions are called
Markov partitions, similar to those in a POMDP control
problem [26]. Within each Markov partition, the adversarial

inference ĥ∗k = ζ ∗(π̂k ) and the vector γk are constant with
respect to the belief state π̂k−1. These Markov partitions
along with corresponding γk vectors completely characterize
the value function vk in the Bellman’s recursion (19).
In a POMDP control problem with a linear cost function,

the value function vk can be characterized without the need
to compute Markov partitions at each iteration. Instead, it can
be completely characterized by computing all possible γk
vectors in the belief space1|A| [24, §7.5.1]. Remarkably, this
result also holds true for a SBHT control problem, even when
the cost function is piecewise-linear.
Proposition 1: Let F denote the set of all Markov

partitions obtained by partitioning the unit simplex 1|A|
using all the hyperplanes in B̄1

∪ B̄. Within each partition
Fi ∈ F , the value function vk is piecewise-linear and concave
with respect to π̂k−1 ∈ Fi. That is,

vn(π̂k−1)= min
µ̄∈ŪF ,

γ∈0i(µ̄,n)

[
π̂

⊺
k−1 · γ

]
, (22)

where n = N − k + 1 denotes the backward iteration index
starting from k = N for some arbitrarily large N , and
0i(µ̄, n) is a finite set of vectors given by

0i(µ̄, n) = ⊕y∈Y

{
Mc(ζ̄ ∗)µ̄
|Y|

+M⊺
π̂

(
y, µ̄

)
γ̃ :

γ̃ ∈ 0+i (µ̄, n− 1)
}
, (23)

0+i (µ̄, n− 1) = ∪µ̄′∈ŪF

{
0j(µ̄′, n− 1) :

Fj ∩ T
(
Fi,Mπ̂ (y, µ̄)

)
̸= ∅, ∀j ∈ [1, |F |]

}
,

(24)

initialized with

0j(µ̄′, 0) = 0|A|, ∀j ∈ [1, |F |], µ̄′ ∈ ŪF . (25)

Here, [ζ̄ ∗]y = ζ ∗(π̂k (y, µ̄, π̂k−1)) and T
(
Fi,Mπ̂ (y, µ̄)

)
denotes the affine transformation of the polyhedron Fi w.r.t.
the belief transformation matrixMπ̂ (y, µ̄) defined in (4); and
⊕ denotes the cross-sum operation, which is the pairwise
addition of vectors from two sets.

The finite set 0i(µ̄, n) in (23) is constructed backward
recursively by taking a cross-sum of |Y| sets, where each
set corresponding to a control action y ∈ Y contains
all possible vectors Mc(ζ̄ ∗)µ̄

|Y | + M⊺
π̂

(
y, µ̄

)
γ̃ , as a result of

Bellman’s dynamic programming. Here, γ̃ belongs to the
set 0j(µ̄′, n − 1) corresponding to each µ̄′ ∈ ŪF and each
partition Fj ∈ F that can be reached from Fi ∈ F using
an affine transformation using Mπ̂ (y, µ̄). The Prop. 1 can
be shown using an induction technique similar to the proof
of [24, Theorem 7.4.1] for a POMDP control problem. The
construction of the Markov partitions set F using all the
hyperplanes in B̄1

∪ B̄ ensures that the adversarial decision
vector ζ̄ ∗ and consequently, the instantaneous reward r∗k|k−
in (17) are constants w.r.t. π̂k−1 ∈ Fi at each iteration
n. Furthermore, as the belief state π̂k evolves according to

VOLUME 12, 2024 24939



R. R. Avula et al.: Adversarial Inference Control in Cyber-Physical Systems

the linear fractional transformation in (4), the value function
in (19) becomes piecewise-linear with respect to π̂k−1 within
each Markov partition Fi.
Remark 4: Although Prop. 1 shows that it is theoretically

possible to compute the exact optimal stationary policy over a
finite control sub-policy space ŪF using (22), the worst-case
space complexity of this approach is exponential with respect
to |ŪF |, |A|, |Y|, and |H|, and double exponential with
respect to n, since |B̄1

| = O(|A| × |Y| × |ŪF | × |H|), |F | =
O(δ|B̄

1
|), where 1 < δ < 2, and |0i(µ̄, n)| = O

(
(|ŪF | ×

|F |)|Y |n
)
. Due to the high computational complexity of the

approach, computing the optimal policy may not be feasible
even for low-dimensional problems.

C. SUB-OPTIMAL CONTROL WITH FINITE SUB-POLICY
SPACE
As mentioned in Section V-B, computing the exact optimal
stationary policy over a finite control sub-policy space is
intractable, even for small state-space problems. To overcome
this issue, we propose a sub-optimal approach based on
the method proposed by Lovejoy [27] for POMDP control
problems with a linear cost function with respect to the belief
state. Since the cost function of the SBHT control problem
is piecewise-linear, we use a similar approach to find an
upper bound on the minimum discounted Bayesian risk w∗ρ
empirically.

The key idea in this approach is to retain only a subset of
the γ vectors in the set 0i(µ̄, n) at each iteration, denoted
by 0̄i(µ̄, n), thereby avoiding the double-exponential growth
of the γ vectors. Given a set 0i(µ̄, n) computed using (23),
we first choose a finite set of arbitrary belief states within the
corresponding partition Fi, denoted by F̄i. We then construct
0̄i(µ̄, n) for each µ̄ ∈ ŪF as

0̄i(µ̄, n) =
{
argmin
γ∈0i(µ̄,n)

[
π̂⊺γ

]
: π̂ ∈ F̄i

}
(26)

We then iterate (23) using 0̄i(µ̄, n) instead of 0i(µ̄, n) until
convergence of the vectors in each set 0̄i(µ̄, n) up to some
finite precision. This approach gives a sub-optimal stationary
policy that yields an upper bound to w∗ρ with a fixed space
complexity of O

(
(|ŪF | × |F̄ |)|Y |

)
at each iteration, where

|F̄ | =
∑

i |F̄i| is the number of all belief states we choose
within the simplex 1|A|.

D. SUB-OPTIMAL CONTROL WITH DISCRETE BELIEF
SPACE
Here, we consider the SBHT control problemwith a restricted
belief state space that is discretized with some precision
ϵ > 0 for the probability measure. Let 1̄|A| ⊂ 1|A| denote
the resulting finite discrete space, and let ξi ∈ 1̄|A| for
1 ≤ i ≤ m represent the discrete belief states. We use the
nearest-neighbour (NN) classification boundaries in 1̄|A| to
define the Voronoi regionNi of each ξi, which is a polyhedron

in 1|A| given by

Ni =

{
π̂ ∈ 1|A| :

∥∥ξi − π̂∥∥ ≤ ∥∥ξj − π̂∥∥ , ∀ξj ∈ 1̄|A|\ξi}.
(27)

Fig. 4 illustrates the approximation of belief space in R3
+ to a

discrete belief space obtained using 0.25 as the precision for
the probability measure.

Let ḡk be a |Y|-dimensional vector representing the indices
of belief state π̂k in 1̄|A|. We denote by Ūb(ḡk , ξi) the set
of all control policies µ̄k ∈ Ū that satisfy the set of linear
constraints:{

Mµ̄(y, ξi) · µ̄k
1⊺
|A| ·Mµ̄(y, ξi) · µ̄k

∈ N[ḡk ]y : y ∈ Y
}
. (28)

Then, the Bellman’s equation in (15) for each π̂k−1 = ξi ∈

1̄|A| can be rewritten as a linear programming problem:

vn(ξi)= min
ḡk∈1̄

|Y|
|A|,

µ̄k∈Ūb(ḡk ,ξi)

[
α

⊺
k (ḡk , ξi, vn−1) · µ̄k

]
. (29)

Here, αk (ḡk , ξi, vn−1) is a vector in R|W |+ with elements:[
αk (ḡk , ξi, vn−1)

]
wk

=
∑

(ak ,yk ,xk ,hk ,ak−1)PHk |Ak
× PWk |Yk ,Xk ,Hk ,Ak−1PXk ,Ak |Yk ,Ak−1 [ξi]ak−1
×

[
c(hk , ζ ∗(ξ[ḡk ]yk ))+ ρvn−1(ξ[ḡk ]yk )

]
. (30)

Remark 5: Due to the linear fractional constraint in (28),
the optimal solution µ̄∗k (π̂k−1) in this case may not necessar-
ily be a non-randomized control sub-policy.
Remark 6: The cardinality of the belief space 1̄|A| with

precision ϵ isO(|H× Z|(1/ϵ)). Since (29) requires computing
the piecewise minimum over 1̄|A|, finding the optimal
stationary policy has a worst-case time complexity of
O(|1̄|A|||Y |) = O((|H× Z|(1/ϵ))|Y |). Thus, the computation
time may grow double exponentially with respect to the
cardinality of the observation space |Y|.

Note that approximating π̂k to the nearest discrete belief
state ξj ∈ 1̄|A| introduces an approximation error in the
value function vn at each iteration n. This error can propagate
through the recursive iterations andmay lead to a sub-optimal
policy against an adversary that uses a more precise belief
state π̂k . Therefore, the trade-off between the precision of
the belief state space and the computational cost needs to be
carefully considered when using this approach.

VI. REINFORCEMENT LEARNING-BASED CONTROL
Although the SBHT inference control problem (16) can
be solved approximately using the approaches presented in
Section V, due to their complexity, they are only computa-
tionally tractable for low-dimensional problems. To address
this challenge, we present a reinforcement learning-based
control approach based on the Actor-Critic architecture [28].
Our approach, called Adversarial Model-based Deterministic
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FIGURE 4. Illustration of belief space discretization in R3
+

.

Policy Gradient (AMDPG), is inspired by the Deep Deter-
ministic Policy Gradient (DDPG) algorithm [22] and enables
tractable policy computation even in high-dimensional prob-
lems. The AMDPG algorithm is presented in Alg. 1.

The goal of the AMDPG algorithm is to learn a deter-
ministic policy that maps the current belief state to an
optimal control sub-policy based on a critic’s evaluation of
the quality of the action. Like the DDPG algorithm, the
critic evaluates the actor by estimating the state-action value
function, denoted by Qµ, corresponding to any stationary
policy µ, which is expressed as

Qµ(π̂k−1, µ̄k ) = Eµ

[
∞∑
k=1

ρk−1 c(Hk , Ĥk )
∣∣∣π̂k−1, µ̄k]

= Eµ
[
rk|k− (π̂k−1, µ̄k )+ ρQµ(π̂k , µ̄k+1)

]
,

(31)

The optimal state-action value function Qµ̃∗ and the state
value function v∗ in (16) for the optimal stationary policy
µ̃∗ are related through the stationary distribution of the belief
states, denoted by P

Π̂∞
(π̂ ), as:

wρ(µ̃∗) =
∫
π̂

P
Π̂∞

(π̂ )v∗(π̂ ) =
∫
π̂

P
Π̂∞

(π̂ )Qµ̃∗ (π̂ , µ̃
∗(π̂ )).

(32)

In the AMDPG algorithm, the actor network selects
a control sub-policy at each time step by observing the
belief state π̂k−1. The resulting belief state transition and
adversarial Bayesian reward rk|k = c⊺(ĥk )π̂k are stored
in a replay buffer. By using random sample batches, the
critic network estimates the expected reward, and the actor
network updates its parameters by minimizing the expected
reward using the gradient descent algorithm. To map the
actor network outputs to the control sub-policy action space
W , the AMDPG algorithm employs an additive-logistic
transformation denoted byL. For η ∈ Rn−1,L : Rn−1

→ 1n

Algorithm 1 Adversarial Model-Based Deterministic Policy
Gradient (AMDPG)
Require: Replay buffer B, critic network Q, actor network

ψ , exploration noise ϵ1, ϵ2, batch size M , learning rates
χQ and χψ , network parameter ηQ and ηψ .

1: Initialize Q(π̂ , µ̄|ηQ), µ(π̂ |ηψ ).
2: Initialize replay buffer B.
3: for episode = 1 to Tepisodes do
4: Initialize state π̂0.
5: for k = 1 to N do
6: µ̄#

k ← ψ(π̂k−1|ηψ )
7: Sample rand randomly from (0, 1).
8: if rand < ϵ1 then
9: Compute PYk |Y1:k−1 for µ̄

#
k using (36).

10: Choose top Yexp ⊂ Y based on PYk |Y1:k−1 .
11: Solve (35) to get µ̂∗k (φ̄a, π̂k−1),∀φ̄a ∈ 8a.
12: Solve (38) to get µ̂†k .
13: µ̄k ← µ̂

†
k .

14: else if rand < ϵ1 + ϵ2 then
15: µ̄k ← L

(
µ̄#
k +N

)
16: else
17: µ̄k ← L

(
µ̄#
k

)
18: end if
19: Execute action µ̄k and next state π̂k
20: Compute expected reward rk|k = c⊺(ĥk )π̂k .
21: Store experience (π̂k−1, µ̄k , rk , π̂k ) in B.
22: Sample random batch from B of size B.
23: Compute∇ηQQ, the critic gradient using the loss:

1
B

B∑
i=1

(ωi − Q(π̂i−1, µ̄i|ηQ)2,

where ωi = ri + ρQ(π̂i, ψ(π̂i|ηψ )|ηQ).
24: Compute∇ηψψ , the sample policy gradient [22]:

Ebatch[∇ηψQ(π̂ , ψ(π̂ |ηψ )|ηQ)],

using the batch samples.
25: Update the actor and critic network parameters:

ηQ← ηQ + χQ∇ηQQ,

ηψ ← ηψ + χψ∇ηψψ.

26: end for
27: end for

is given by

L(η)=
[

eη1

1+
∑n−1

i=1 e
ηi
, . . . ,

eηn−1

1+
∑n−1

i=1 e
ηi
,

1

1+
∑n−1

i=1 e
ηi

]⊺

,

(33)

and its unique inverse transformation L−1 for κ ∈ 1n is

L−1(κ) =
[
log

(
κ1

κn

)
, . . . , log

(
κn−1

κn

)]⊺

. (34)
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Because of the piecewise-linear structure of the reward
as shown in (17), the AMDPG algorithm aims to enhance
exploration by occasionally selecting an action based on a
pool of solutions to the optimization problems that minimize
the instantaneous rewards, that is:

µ̂∗k (φ̄a, π̂k−1) = min
µ̄k∈Ūa(φ̄a,π̂k−1)

[
π̂

⊺
k−1Mc

(
ζ̄ (φ̄a)

)
µ̄k

]
, (35)

where φ̄a ∈ 8a ⊆ A|Yexp|, Yexp ⊆ Y contains only
the top e elements from Y , which are chosen according to
the likelihood probability of observation yk given the actor
network output µ̄#

k , given by

PYk |Y1:k−1 (y|y1:k−1) = 1⊺
|A| ·Mµ̄

(
y, π̂k−1

)
· L(µ̄#

k ), (36)

the constraint set Ũa, similar to (18) as:

Ũa(φ̄a, π̂k−1) =
{
µ̄ ∈ Ū : π̂k (y, µ̄, π̂k−1) ∈ Na,

a = [φ̄a ]y, y ∈ Yexp
}
, (37)

andNa is the Voronoi region of a simplex vertex a ∈ A given
in (27). Then, the exploratory action µ̂†k is given by

µ̂
†
k (π̂k−1) = min

µ̂∗k (φ̄a,π̂k−1),∀φ̄a∈8a

[
Eµ

[
rk|k− (π̂k−1, µ̂

∗
k )

+ ρQµ(π̂k , µ̄k+1)
]]
. (38)

Further, the set of potential vectors in 8a can be condensed
by randomly selecting a pre-defined finite number of vectors
from the AYexp space. This allows for a more manageable
computation process to generate adversarial model-based
noise. Then, to balance exploration and exploitation, the
agent selects the exploratory action µ̂†k with probability ϵ1,
L(µ̄#

k+N ) with probability ϵ2, and the network outputL(µ̄#
k )

with probability 1 − ϵ1 − ϵ2, where N is any randomly
generated noise.

The presented model-free RL approach allows us to
handle the dynamic nature of complex CPSs effectively
where traditional MDP dynamic programming approaches
are insufficient. Note that the computational steps consist of
solving a few linear programs and computing gradients of
actor and critic. Due to the usage of a replay buffer, depending
on the computational power of the agent, these computational
steps can be spread across a few or several time steps of the
controller. Moreover, a noteworthy feature of this approach
is its runtime adaptability, as the policy can be learned and
adjusted dynamically during system operation. This enables
real-world deployability, even in situations where system
dynamics may evolve or are not entirely known a priori.
Overall, the AMDPG algorithm provides a computationally
tractable approach for solving the SBHT inference control
problem even in high-dimensional cases. Our simulation
results in the next sections demonstrate that it achieves
competitive performance compared to other approaches.

VII. NUMERICAL STUDY WITH SYNTHETIC DATA
In this section, we present a numerical study using synthetic
data to evaluate the effectiveness of the proposed approaches
for the SBHT inference control problem. We consider a
simple system with binary state-spaces of H, X , Y , and Z .
The system has three control actions D, a horizon length
of N = 96. We generate synthetic data using different
HMMs with the same prior and observation probabilities,
but varying transition probability with parameters λ0,λ1 ∈

{0.2, 0.4, 0.6, 0.8}. The HMM model parameters are set for
all k ∈ N as follows:

PH0 =

[
0.5
0.5

]
, PXk |Hk =

[
0.95 0.15
0.05 0.85

]
,

PHk |Hk−1 =
[

λ0 1− λ1
1− λ0 λ1

]
.

To investigate the attainable privacy levels in relation
to various system dynamics, we develop and assess the
performance of the proposed control methods for different
HMM transition probabilities. We model the state transitions
of the storage system using the conditional distribution
PZk |Zk−1,Dk with the following elements:

PZk |Zk−1,Dk (1|1, 0) = PZk |Zk−1,Dk (2|2, 0) = 1,

PZk |Zk−1,Dk (1|1, 1) = PZk |Zk−1,Dk (2|2,−1) = 0.05,

PZk |Zk−1,Dk (2|1, 1) = PZk |Zk−1,Dk (1|2,−1) = 0.95.

We select a cost function that protects less frequently
occurring hypothesis states since they are more informa-
tive. Specifically, we set c(hi, hi) = 1/PH∞ (hi), where
PH∞ denotes the stationary probability of the HMM; and
c(hi, hj) = 0,∀hi ̸= hj.
Before evaluating the privacy control approaches presented

in the previous sections, we first implement an approach
based on our previous work [3], where we design a policy that
minimizes the discounted Bayesian reward of an adversary
who is unaware of the control system’s existence. We also
discretize the belief states with a precision of 0.2 for the
probability measure, as discussed in Section V-D, and use
a discount factor of ρ = 0.9. We then evaluate this
approach against an adversary with complete knowledge of
the control system. Fig. 5 shows the average Bayesian reward
corresponding to both the aware adversary (AA) and the
unaware adversary (UA). This demonstrates that when the
control system is designed for a weaker adversarial case,
a stronger adversary can improve its detection performance
with knowledge of the implemented control strategy. This
result highlights the potential necessity to employ privacy
control measures against the most extreme adversaries,
ensuring that the system remains secure even in the face of
worst-case scenarios.

As noted in Remark 4 in Section V-B, computing an exact
optimal policy for even a simple binary system can be highly
computationally complex. To illustrate this, we computed
the γ vectors for an HMM with (λ0,λ1) = (0.2, 0.2)
using a finite control sub-policies space ŪF consisting
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FIGURE 5. Comparison of average Bayesian rewards of aware adversary
(AA) and unaware adversary (UA) when the control system is designed to
minimize the Bayesian reward of the UA.

FIGURE 6. Double-exponential growth of γ vectors for a binary-state
problem using the exact optimal approach in Section V-B.

of degenerate sub-policies and with belief transformation
matrices Mπ̂ (yk , µ̄) such that det(Mπ̂ (y, µ̄)) > 0.01∀y ∈ Y .
This results in |ŪF | = 4, |B̄1

| = 8, |F | = 12. Fig. 6 shows the
double-exponential growth of the total number of γ vectors
in all the sets 0i(µ̄, n) for up to three iterations. Due to the
impracticality of this approach, stemming from its excessive
computational complexity, we exclude it from the following
numerical study.

To design the sub-optimal policy with a finite control
sub-policy space, as presented in Section V-C, we select
the control sub-policy space ŪF to be the set of degenerate
policies µ̄ with transformation matrices Mπ̂ (y, µ̄) such that
det(Mπ̂ (y, µ̄)) > 10−5. To reduce computational complexity,
we only choose 12 degenerate policies µ̄ with the highest
miny

[
det(Mπ̂ (y, µ̄))

]
. To design the sub-optimal policy with

a discretized belief space, as discussed in Section V-D, we use
a precision of ϵ = 0.2 for the probabilitymeasure, resulting in
|1̄|A|| = 56. Here, we design two such sub-optimal policies
by discretizing belief states of an aware adversary (AA) and
an unaware adversary (UA).

In addition, we simulate the Best EffortModeration (BEM)
approach [19] where the controller aims to maintain a
constant metered load by charging or discharging the battery
based on previous load yk−1, current battery state zk and
current consumption xk . We also simulate a differential
privacy (DP) mechanism with a Laplacian noise distribution
given by

fL(x) =
exp(−|x|/b)

2b
, (39)

where b = xmax/ϵ, and ϵ > 0 is a parameter which denotes
level of the privacy guarantee the user desires. The lower the
ϵ, the higher is the privacy due to more added noise.

Furthermore, to design the AMDPG control policy, we use
an exploration probability of ϵ1 = 0.03, where the
adversarial model-based noise is generated by solving an
instantaneously optimal policy with relaxed constraints using
|Yexp| = 1. In addition, a uniformly distributed random
noise in [0, 0.05] is used to generate noisy action with an
exploration probability of ϵ2 = 0.03. The actor and critic
neural networks are designed with 170 and 279 learnable
parameters, respectively. We train the actor and critic for
2000 episodes, each containing 96 time slots. We set the
discount factor ρ to 0.9 for all other policies to expedite
convergence, but for AMDPG, we set it to 0.99.

The performance of the designed control policies is eval-
uated using an aware adversary in Monte Carlo simulations
comprising 2000 episodes. Fig. 7 shows the average Bayesian
reward of the aware adversary under different control
policies. The results indicate that the sub-optimal policies
obtained by restricting either the control sub-policy space
or the belief state-space perform poorly against an informed
adversary. Additionally, in this binary state system, both the
instantaneously-optimal and the AMDPG control policies
yield the lowest Bayesian reward among the evaluated control
policies. Furthermore, we evaluate the control policies using
the adversarial precision metric given by the formula:

Precision =
True Positives

True Positives+ False Positives
(40)

Precision is useful when dealing with cases where one
state is significantly more frequent than the other. In such
cases, accuracy can be misleading, and precision provides
a better understanding of how well the model performs for
the less-frequent state. As illustrated in Fig. 8, the precision
of the aware adversary follows a similar pattern as the
average Bayesian reward across various HMM parameter
settings, represented by λ0 and λ1. This result highlights
the effectiveness of our proposed Bayesian approach in
mitigating the precision of adversarial inference, thereby
enhancing user privacy within the system.

VIII. NUMERICAL STUDY WITH REAL DATA
In this section, we present an experimental study with real
data to evaluate the effectiveness of the proposed AMDPG
control policy for the SBHT inference control problem.
We first describe the Co-LivEn dataset, which was collected
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FIGURE 7. Comparison of the average Bayesian rewards of the aware
adversary when using different inference control approaches.

FIGURE 8. Comparison of the precision (true positive rate) of the aware
adversary when using different inference control approaches.

from a multi-occupancy household with energy consumption
data for a variety of appliances. Next, we evaluate the
proposed AMDPG control policy on this dataset and compare
its performance with that of a control policy designed against
an unaware adversary.

A. CO-LIVEN DATASET
The Co-LivEn dataset used in this study is available as
a public repository at https://zenodo.org/record/6480220.
The dataset contains detailed electricity measurements of
various appliances in a collective living (co-living) student
household at KTH Live-in-Lab in Stockholm, Sweden.
The household comprises four single rooms with attached
bathrooms, a shared kitchen, and a common living room.
The measurements include root-mean-square (RMS) voltage,
RMS current, real power, and power factor of each appliance
in the household. The data was collected with a sampling rate
of 1 second and over a period of 277 days between August
28, 2020, and May 31, 2021. This energy dataset is unique

and comes from a Nordic country, providing insights into the
energy consumption patterns of students living in a shared
household throughout different seasons.

The data was collected using off-the-shelf smart plugs that
were connected to the sockets for each appliance. The smart
plugs were equipped with Wi-Fi modules that transmitted the
data wirelessly to a local server. The server stored the data
in its raw format, which was then pre-processed to eliminate
missing data, outliers, and noise. The dataset contains
detailed electrical measurements of 32 unique appliances as
shown in Table 1. A detailed visualization of the appliance
usage data over a single day can be seen in Fig. 9, which is
derived from the Co-LivEn dataset. It is important to note that
this figure does not depict all appliances, as those with low
power consumption are difficult to visualize and have been
excluded for clarity. To facilitate access to the data, it has
been made available in two formats. The first is a compressed
file called ‘‘appliance_csv.zip,’’ which contains the data in
plain CSV file format. The second is a compressed file called
‘‘appliance_mat.zip,’’ which contains the data in MATLAB
file format. Both files are publicly accessible and can be
downloaded from the repository.

The dataset is organized into folders according to the
location of the appliances, such as the common living
room, kitchen, and each individual room. Each location
folder contains folders for each appliance, and within each
appliance folder, there is a separate file for each day of
data collection. This structure allows for easy navigation and
selection of specific appliances and time periods of interest.
The high resolution and wide range of appliances present in
the co-living household energy dataset make it a valuable
resource for evaluating the effectiveness of proposed control
policies in a real-world setting.

B. EVALUATION OF THE AMDPG CONTROL POLICY
In this section, we present an experimental study with real
data to evaluate the effectiveness of the proposed AMDPG
control policy for the SBHT inference control problem.
We performed numerical simulations using the Co-LivEn
Dataset. Specifically, we consider a scenario where users
aim to conceal their cooking activities during the daytime
to prevent potential disclosure of their presence at home.
To model the system, we combine the consumption of
high-power consuming kitchen appliances, such as the stove
and oven, and define a hypothesis state with two possible
outcomes, representing whether at least one of them is on or
all of them are off. The consumption from all other appliances
is assumed to be independent noise. We used the first 60%
of the dataset to train the HMM parameters (using the
FHMM approach [29]) and the remaining 40% for evaluating
the designed control policy. In the simulations, we used 5-
minute time slots between 10:00-14:00 each day, resulting
in a horizon length of 48. We discretized the mean power
consumption data in each time slot using a 400W quantization
and set |X | = |Y| = 5. Additionally, we consider a 48V-
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FIGURE 9. Visualization of appliance usage data over a single day, obtained from the Co-LivEn dataset.

TABLE 1. Appliance types by location.

30Ah battery with |Z| = 35. As a result, we have the belief
state dimension as |A| = 70 and the control sub-policy
dimension as |W| = 3500. To reduce the computational
complexity, we generated parameters of a three-circuit energy
storage model [3] at a higher discretization value than the
storage state Zk using Monte Carlo simulations and used
them to estimate state transitions at each discrete state Zk
that fall within the high-level state. The estimated storage
state transition probability PZk |Zk−1,Dk was used to simulate
a battery in both the reinforcement learning and evaluation

phases. Further, to design the AMDPG control policy, we use
a discount factor of ρ = 0.99, an exploration probability of
ϵ1 = 0.03, a random noise probability of ϵ2 = 0.03, and
actor and critic neural networks with 8× 106 and 19.5× 106

learnable parameters, respectively. We train the actor and
critic for 15000 episodes, each containing 48 time slots.
In addition, we also implement the approach based on our
previous work [3], where we design a policy that minimizes
the discounted Bayesian reward of an adversary who is
unaware of the control system’s existence, using discretized
belief states with a precision of 0.2. The performance
of the designed control policies is evaluated using an
aware adversary in Monte Carlo simulations comprising
2000 episodes, which are generated by randomly picking
each episode from the available 111 episodes (40%) reserved
for evaluation from the dataset. In addition, we simulate the
BEM approach [19] and a differential privacy mechanism
with a Laplacian noise distribution for ϵ ∈ {0.1, 1, 10}.

Table 2 shows the average Bayesian reward and precision
of the aware adversary when using the designed control
policies. It was observed that, with original data, the
adversarial precision to identify the cooking (stove and oven)
state of household is 0.6. That is, when adversary makes a
guess that someone is using stove or oven at the household,
it is accurate around 60% of the time. By using the proposed
AMDPG control policy, the precision is reduced to 0.29,
which is a 52% reduction compared to the original data,
demonstrating its effectiveness in reducing privacy risk. BEM
and differential privacy (with ϵ = 0.1) approaches also
perform reasonably well in this case, with each achieving
a precision of 0.4 and 0.33. In this case, although these
heuristic approaches perform relatively well compared to the
original data, they are not guaranteed to work as well in other
cases as they operate based on pre-defined rules. In addition,
we observe that when using a control policy designed
against an unaware adversary, the aware adversarial precision
actually increases to 0.95. This result further emphasizes the
importance of employing a control policy against a worst-
case adversary.
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TABLE 2. Comparison of the aware adversarial performance using
AMDPG control policy and the policy designed by discretizing the
unaware adversarial belief state.

In this study, we evaluated the effectiveness of the
proposed control strategies against a privacy scenario related
to hiding cooking patterns. Other interesting potential
scenarios could be related to hiding occupancy patterns,
electric vehicle ownership, usage patterns of entertainment
devices such as TV, stereo etc. The MATLAB code used
for computing the control policies is publicly available
at https://github.com/r2avula/AdversarialInferenceControl.
In this work, we use YALMIP [30], MPT3 [31], and
Gurobi [32] for mathematical modeling and optimization.

IX. CONCLUSION
In this paper, we presented a Bayesian approach to control
adversarial inference and address the physical-layer privacy
problem in CPSs. We considered a worst-case privacy
scenario, assuming an adversary with complete knowledge
of the user’s control strategy and modeling the adversary’s
inferences using SBHT.We employed theMDP framework to
quantify privacy leakage in the physical layer by calculating
the Bayesian risk (adversarial reward) in the SBHT.

For finite state-space problems, we derived the fixed-
point Bellman’s equation for an optimal stationary strategy
and proposed practical optimization-based control design
approaches to solve it. While these optimization-based
methods can produce finite or infinite horizon optimal
policies by discretizing either the belief state or sub-
policy space, they are not computationally tractable for
high-dimensional problems. However, they can serve as
useful benchmarks for smaller-scale, toy problems. To tackle
the computational complexity of exact optimal policies
for high-dimensional state-space problems, we introduced
the Adversarial Model-based Deterministic Policy Gradient
(AMDPG) RL algorithm, providing a more practical solution
for protecting privacy against adversaries with perfect
knowledge of the user’s control strategy in complex systems.

The numerical simulations with a toy problem demonstrate
that a stronger adversary can enhance their detection perfor-
mance when the control system is designed to counter weaker
adversaries by acquiring knowledge of the implemented
control strategy. We also found that the achievable privacy
is dependent on the HMM transition probabilities, implying
that some HMM systems inherently possess higher risks
than others. In a binary state-space system, both the

instantaneously optimal and proposed AMDPG strategies
achieve the minimum Bayesian risk compared to other
evaluated strategies.

Additionally, we presented the Co-LivEn dataset, a pub-
licly available energy consumption dataset containing com-
prehensive electrical measurements of appliances in a co-
living household. Using this dataset, we benchmarked
the proposed AMDPG strategy and compared it with a
control strategy designed for a controller-unaware adversary.
Notably, the AMDPG control policy significantly reduced
the aware adversary’s precision compared to the original
data, indicating its effectiveness in mitigating privacy risks.
The results reveal that when using a control policy designed
against an unaware adversary, not only does it fail to achieve
the primary objective of minimizing adversarial performance,
but it inadvertently assists the aware adversary in improving
their performance relative to the original data. This further
emphasizes the importance of implementing a control policy
against a worst-case adversary.

In conclusion, the proposed Bayesian privacy control
approach and the RL-based policy design can help mitigate
privacy risks and limit information leakage in CPSs. The
Co-LivEn dataset supports smart meter privacy research by
offering real-world data for benchmarking and comparison of
privacy-enhancing techniques. Overall, this work contributes
to the advancement of privacy-enhancing techniques for
CPSs, enabling the full realization of the benefits these
systems provide while safeguarding user privacy.

APPENDIX A
PROOF OF LEMMA 1
Since the adversarial guess Ĥk follows the detection policy
PĤk |Y1:k

, the joint probability of (Hk , Ĥk ) in (3) becomes

PHk ,Ĥk |Y1:k
= PĤk |Y1:k

PHk |Y1:k . (41)

Further, using Bayes’ rule, we have

PHk |Y1:k =
PHk ,Yk |Y1:k−1

PYk |Y1:k−1

. (42)

To compute PHk ,Yk |Y1:k−1 , we use the law of total probability
and the conditional independence structure of the model to
obtain:

PHk ,Yk |Y1:k−1

=
∑

(xk ,zk−1,hk−1) PXk ,Hk |Hk−1
× PYk |Xk ,Hk ,Zk−1,Hk−1,Y1:k−1PZk−1,Hk−1|Y1:k−1 , (43)

Similarly, we can express PZk ,Hk |Y1:k as:

PZk ,Hk |Y1:k =
PZk ,Hk ,Yk |Y1:k−1

PYk |Y1:k−1

, (44)

PYk |Y1:k−1 =
∑

(zk ,hk ) PZk ,Hk ,Yk |Y1:k−1 , (45)

PZk ,Hk ,Yk |Y1:k−1 =
∑

(xk ,zk−1,hk−1) PZk |Zk−1,Dk
× PXk ,Hk |Hk−1PYk |Xk ,Hk ,Zk−1,Hk−1,Y1:k−1

PZk−1,Hk−1|Y1:k−1 . (46)
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Further, given a control policy PYk |Xk ,Hk ,Ik , we have
PYk |Xk ,Hk ,Zk−1,Hk−1,Y1:k−1

=
∑

(x1:k−1,a1:k−2)PXk−1|Hk−1

× PYk |Xk ,Hk ,Ik
∏k−2

j=1 PZj|Zj−1,DjPXj,Hj|Hj−1 . (47)

The lemma follows directly from (44) - (46), where Mπ̂ ∈

R|A|×|A|+ and Mµ̄ ∈ R|A|×|W |+ are matrices whose elements
are obtained by reformulating (46) into a matrix equation in
terms of π̂k−1 and µ̄k .

APPENDIX B
PROOF OF THEOREM 1
To obtain an optimal control strategy µ∗1:N associated with
the finite-horizon optimization problem in (11), we use
Bellman’s dynamic programming equation [24]:

vk (y1:k−1)= min
µk∈Uk

[
rk|k− (y1:k−1; ζ

∗
k , µ1:k )

+ ρE
[
vk+1(Y1:k )|Y1:k−1 = y1:k−1

]]
, (48)

where vk , known as the value function, is the aggregate value
of discounted conditional Bayesian risk from k to N due to
optimal strategy µ∗k:N .
For a given observation sequence y1:k−1, the objective

function in (48) can be expressed using (12) and (46) as:

rk|k− (y1:k−1; ζ
∗
k , µ1:k )+ ρE

[
vk+1(Y1:k )|Y1:k−1=y1:k−1

]
=

∑
(ĥk ,yk ,ak )

PĤk |Y1:kPAk ,Yk |Y1:k−1

×
[
c(fH(ak ), ĥk )+ ρvk+1(y1:k )

]
(49)

= π̂
⊺
k−1Mc(ζ̄ ∗k )µ̄k + ρπ̂

⊺
k−1Mv(v̄k+1)µ̄k , (50)

where ζ̄ ∗k and v̄k+1 are |Y| dimensional vectors with elements
as [ζ̄ ∗k ]yk=ζ

∗(π̂k (yk , µ̄k , π̂k−1)), [v̄k+1]yk = vk+1(y1:k ); Mc,
Mv are |A| × |W| dimensional matrices whose elements are
given by (46) and (49). From (48) and (50), we note that
the value function vk depends on y1:k−1 only through the
variables (π̂k−1, µ̄k , ζ̄ ∗k , v̄k+1). Therefore, if the optimization
routine (48) is initialized using v̄N+1 that only depends on
y1:N through π̂N , then at each k ∈ KN and for any given
y1:k−1 ∈ Yk , there exists a policy µ̃k ∈ Ũ that results in
the same value vk as an optimal policy µ∗k ∈ Uk . Therefore,
the belief state π̂k−1 forms a sufficient statistic of y1:k−1 to
compute an optimal policy µ̃∗k that achieves the minimum
discounted Bayesian risk achievable by any µk ∈ Uk .
Let n = N − k + 1 denote the backward iteration index

starting from k = N for some arbitrarily large N . Using (50),
the Bellman’s recursive equation in (48) can be expressed in
terms of the sufficient statistic π̂k−1 as:

vn(π̂k−1)=min
µ̄k∈Ū

[
π̂

⊺
k−1

[
Mc(ζ̄ ∗k )+ ρMv(v̄n−1)

]
µ̄k

]
, (51)

where [v̄n−1]y = vn−1
(
π̂k (y, µ̄k , π̂k−1)

)
.
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