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ABSTRACT As the self-driving technology is getting mature for public transportation applications, the
safety concern of onboard passengers has become an important issue. It is essential to identify inappropriate
or hazardous behaviors of passengers for the vehicles without human operators. In this work, we propose a
technique to detect and classify the abnormal activities of passengers in a bus environment. Different from
the existing human activity classification algorithms, our approach reduces the occlusion and increases the
recognition rate by acquiring images from an overhead vision system. To overcome the increased complexity
on feature extraction and classification, an action recognition network for top-view images are proposed by
incorporating both spatial and temporal information. An image dataset, BUS-HAR, is generated for practical
application scenarios with bus passengers. Experiments using real-world scene images have demonstrated
the feasibility of our technique compared to existing approaches. The codes and image dataset are made
available publicly at https://github.com/richardkuo1999/passenger-action-recognition.

INDEX TERMS Self-driving vehicle, action recognition, abnormal behavior detection, deep neural network,
computer vision system.

I. INTRODUCTION
In the past few years, the development of self-driving tech-
nology has become increasingly mature, and advanced driver
assistance systems (ADAS) are also adopted to practical
uses. Many public transport vehicles are now equipped with
ADAS to reduce driver fatigue and improve road safety.
Meanwhile, autonomous driving systems have been gradually
applied to mass transit vehicles to achieve automated public
transportation. Currently, there are numerous government
and industry collaborations on the testing programs of self-
driving bus [1]. In this work we employ WinBus, a minibus
jointly developed by Automotive Research and Testing
Center of Taiwan and many companies, as our platform for
experiments.1

In recent development, self-driving cars are able to
achieve full autonomy in closed regions. Given a designated
destination, they can plan the route and move accordingly

The associate editor coordinating the review of this manuscript and
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1https://www.artc.org.tw/en

based on sensing and perception of the surroundings. It is
expected that no driver being onboard vehicles with fully
automated future transportation. Since accidents occur and
passengers may get injured due to unstable driving during
the ride, it becomes an even more crucial issue if no
human assistance in the vehicle. Thus, the passenger safety
becomes an emerging problem for self-driving transport
vehicles [2].

To address this issue, we propose a vision-based technique
to recognize abnormal passenger behaviors in this paper.
The passengers in a crowded space are first detected,
followed by human activity classification using deep neural
networks. We conduct the experiments in different scenarios
with images collected using ceiling-mounted cameras. With
the top-down viewpoint for image acquisition, occlusion
among the passengers can be mitigated and the recognition
performance is improved. In the proposed method, the
objective is to identify improper or dangerous activities which
need more attentions in unmanned operating environments.
The abnormal behaviors include five types: falling, lying
down, squatting, pulling the handrail, and waving.
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To identify abnormal human behaviors, action recognition
techniques are commonly used. They have been investigated
by computer vision researchers for decades. Currently, some
popular approaches include using human body skeleton,
optical flow information, and RGB images. In our application
scenario with limited bus interior space, a top-down view is
adopted to cover a wider passenger region. It is not suitable
to use body skeleton for action recognition since the existing
approaches commonly adopt the images collected from side
views for feature extraction. In this case, the recognition
rate will be greatly affected due to the lower body being
occluded by the upper part. For optical flow approaches, the
mandatory preprocessing usually increases the computational
complexity of the model and decreases the recognition speed.
Hence, it is not possible to meet the real-time constraint of
abnormal behavior detection for an immediate response.

There are generally two approaches for action recognition
using RGB images, Long Short-Term Memory (LSTM) and
Convolutional Neural Network (CNN). LSTM is an architec-
ture improved from Recurrent Neural Network (RNN), while
designed to address the issues of long-term memory in RNN.
Although the sequence of images is taken as input for action
recognition, this approach requires significant computational
resources for training [3]. To address this problem, Lee et al.
proposed a 3D CNN (3D Convolutional Neural Network) for
activity classification by considering temporal information as
an additional dimension to conventional 2D CNN [4]. A low-
cost network model is utilized to extract continuous features
from image sequence. In the previous works, 3D CNN often
leads to model overfitting due to limited training data and the
large number of parameters. Since the release of large action
recognition datasets such as Kinetics-700 [5], sufficient data
for model training have greatly improved the accuracy. Thus,
it is advantageous to use 3D CNN as a framework for activity
classification [6].

In this paper, we propose a 3D CNN-based network
model for abnormal activity detection and classification
of passengers in bus environments. Unlike most of the
existing human activity recognition techniques, the images
are captured from overhead cameras mounted on the ceiling
to deal with occlusion. Consequently, the image feature
extraction and network model training become more chal-
lenging. Moreover, with the downward looking viewpoint,
the faces of passengers will not be seen from the images.
It is able to provide a good privacy protection at the
same time. Since there are no data available for abnormal
behavior analysis in the bus environment, a new image
dataset called BUS-HAR2 is created for our training and
testing. Our experiments are conducted in the real-world
scenes, and the results demonstrate significant performance
improvements compared to existing 3DCNN-basedmethods.
The contributions of this work are as follows:

2The image dataset is available publicly at https://github.com/richardkuo
1999/Passenger-Action-Recognition.

• Top-view images acquired in bus environments are used
to perform passenger abnormal activity recognition.

• A 3D CNN-based network architecture is developed to
achieve high accurate human behavior classification.

• The first abnormal activity recognition dataset are made
available for transportation related research.

II. RELATED WORKS
In recent years, abnormal activity recognition is increasingly
gaining attention, as an important technique to ensure envi-
ronment safety. Some application scenarios include outdoor
spaces such as train stations, airports, and subway stations,
as well as indoor locations like public building, shopping
malls and elderly care centers. In general, surveillance
personnel are responsible to monitor the areas manually.
As the number of surveillance regions grows, it would
lead to the decreased concentration and increased fatigue
among the security staffs. Since abnormal activities occur
infrequently, it further makes continuous human surveillance
challenging. As a result, the automated system capable
of detecting abnormal activities is favorable for practical
applications [7], [8].
Most current works directly define the kinds of actions as

abnormal activities. Popoola et al. [9] pointed out that it was
mandatory to consider what constituted abnormal activity in
terms of actions. They treated abnormal activities as actions
that stand out prominently and distinctly within normal cases.
If a group of people running with only one person is walking,
this person is different from the rest notably. This distinction
will be used to definewalking as potentially abnormal activity
in the situation. By content analysis, it is then possible to
determine if abnormal activities occur from image sequences.

Some abnormal activity recognition methods focus on
the analysis of a group. In an early work, Mehran et al.
employed Social Force Model to detect abnormal activities
in a crowd [10], [11]. They utilized computer vision
techniques to extract image features and incorporate optical
flow information. The behavioral change over a period
of time is detected by optical flow for assistance in
identifying abnormal action. In addition to using optical
flow, Basharat et al. [12] developed a model of normal
movement trajectories based on learned patterns. Individual
objects were tracked within surveillance footage to determine
whether abnormal activities occur. Due to some unusual
situations frequently arose on a train platform, such as
people accidentally falling onto the tracks, Delgado et al.
proposed a system that automatically detected if passengers
jumped or fell from the platform [13]. In recent years, deep
learning techniques has gained significant popularity, many
researchers have applied learning-basedmethods to abnormal
activity detection. Sun et al. employed an RNN network for
image feature extraction and combine it with SVM (support
vector machine) for abnormal behavior detection [14]. More
recent investigation can be found in [15] for a comprehensive
review.
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FIGURE 1. The system flowchart of our abnormal action recognition technique.

From the above literature survey, abnormal action recog-
nition can be broadly categorized into two approaches: those
focusing on individual objects as detection subjects and those
treating crowds as collective entities for action classification.
Nevertheless, the techniques based on object detection
often encounter accuracy reduction in a crowded scenario.
Objects can easily be occluded by other individuals or the
trajectories of tracked objects might be lost. To cope with this
difficulty, Zhou et al. proposed a CNN model that is capable
of extracting spatial information from individual frames
and capturing complex motion relations from consecutive
frames [16]. The optical flow data were used to identify
regions with abnormal movement in sequences of frames.
It was processed by a spatiotemporal CNN to extract
motion features, facilitating the detection and recognition
of abnormal activities in crowds. In earlier research, action
classification within vehicle interiors was most commonly
applied to understand driver behaviors. It was important when
drivers experienced fatigue or lacked concentration. In this
regard, Yan et al. used CNNs to predict whether a driver’s
attention is focused [17]. They segmented the facial regions
such as the eyes, mouth, and ears from the driver’s images.
Through CNN-based classification, it could identify whether
the driver closed eyes or was using a mobile phone while
driving.

While there are significant developments on driver behav-
ior analysis technologies, relatively less research concerning
passenger activity are investigated. Moreover, the availability
of suitable public datasets are also limited. To mitigate
this problem, Tu et al. proposed a technique to transform
a large number of driver’s images into the viewpoints for
passengers through projection [18]. They utilized CNNs for
passenger behavior recognition, distinguishing activities such
as drinking water, talking on the phone, typing, resting. Most
existing methods primarily rely on the individual images
for activity recognition. Lacking temporal information for
some actions makes classification more challenging. In [19],
a sequence of images were used to recognize passenger
activities inside a vehicle. A 3D CNN was employed to
process cropped image frames for action recognition.

In the current literature, most driver or passenger behavior
analysis focus on the recognition within small vehicles. There
exist very limited research addressing activity recognition of
passengers in public transportation systems. It presents many
challenges of action classification in public transport vehicles

due to the image occlusion posed by the horizontal viewpoint.
The lack of suitable public datasets also lead many works to
collect their own data. Velastin et al. employed histogram of
oriented gradients (HOG) for passenger detection, followed
by passenger action recognition using SVM [20]. Neverthe-
less, action recognition within transport vehicles requires to
address the common passenger movements, such as walking,
standing and sitting. Kao and Lin [21] proposed an improved
3D CNN-based model to recognize such passenger activities.
The system aims to understand the passenger status such that
comfort driving speed and turning movement can be adjusted
accordingly.

III. APPROACH
The proposed abnormal action recognition technique mainly
consists of two stages. The first part is the passenger
detector, which aims to identify the passengers with abnormal
actions. To achieve this, the Action Tube framework [22] is
incorporated with YOLOv5 to derive the passenger bounding
box for tracking. A sequence of bounding box across multiple
frames is generated and fed into a 3D CNN for passenger
abnormal behavior recognition in the second stage. Figure 1
depicts the system flowchart of the proposed method. It only
requires the cameras mounted on the ceiling of the vehicle,
and does not need additional hardware settings or dramatic
infrastructure changes onboard the buses. As long as the
camera viewpoints and image quality are satisfactory, the
performance is based on the algorithm.

To classify actions with temporal information, 3D CNN is
able to recognize anomaly such as falling [23]. In the recent
studies of fall detection, many approaches adopt human joint
positions to identify the occurrence of abnormal actions [24],
[25]. However, due to the overhead viewpoint of the camera
in the bus environments, it is not possible to use the human
joint detection networks trained on MPII and COCO datasets
(both containing side-view images) [26], [27]. The generated
joint points do not fit well due to the difference in viewpoints.
Thus, our abnormal action detection technique is carried out
directly on image data, instead of preprocessing with human
skeleton.

3D CNN is a network architecture that extends 2D convo-
lution by adding a temporal dimension.We utilize time-series
images as input, and apply 3D convolution to extract feature
maps to encode the spatial and temporal information. Due to
the extra dimension, the number of parameters of 3D CNN
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FIGURE 2. The attention modules adopted in this work.

is increased significantly. A commonly occurred problem is
overfitting caused by the lack of sufficient training data. Thus,
we utilize the Kinetics-400 dataset, with 240,000 training and
20,000 validation video clips, to mitigate the overfitting of 3D
CNN [28]. Moreover, transfer learning is adopted to improve
the performance by training on our BUS-HAR dataset for the
bus application scenario. It is then followed by incorporating
residual blocks to deal with gradient vanishing inherent from
deep network structures.

For classification of abnormal passenger activities onboard
a bus, we consider 5 categories: attack, squatting, lying,
fall, and handrail-pulling, An image sequence consists of
twelve frames is utilized as input for 3D CNN. The backbone
of the proposed network is based on the framework by
Hara et al. [29], where 2D ResNet pre-trained on ImageNet
is extended to 3D ResNet using Kinetics-400 for training.
Transfer learning is then applied on the pre-trained model
using UCF101 to improve its performance. Finally, the
network is fine-tuned using the relatively small BUS-HAR
dataset we collected.

3D CNN introduces an additional time dimension, which
increases the model size significantly. As a result, the
overfitting issue in 3D convolution makes the network more
difficult to train. In this work, the 3D convolution is split
into spatial and temporal components using separate kernels
with sizes of 1 × d × d and t × 1 × 1 [30]. This
approach makes deeper network models easier to derive the
parameters. Furthermore, we integrate Residual Attention
Network (RAN) and Feature Pyramid Network (FPN) into
our network model to enhance the classification accuracy as
follows.

Attention modules are commonly used in neural networks
to identify the importance of features through learning so the
weights can be adjusted to improve classification results. The
architecture Residual Attention Network was first proposed
as a module for 3D CNN based on the concept of SENet [31].
As depicted in Figure 2, we adopt both the channel attention
module and spatial attention module in sequence. The former
emphasizes the channels of the feature maps, while the latter
deals with the width and height of the feature maps. Although

FIGURE 3. The FPN module used to merge the topmost feature map with
other bottom-level feature maps.

top-level feature maps consist of rich semantic features, they
might not be able to identify the target location. To cope
with this problem, we use Feature Pyramid Network to merge
the topmost feature map with other bottom-level feature
maps, as illustrated in Figure 3. Instead of predicting the
feature maps after each iteration, the upsampling is carried
out sequentially for feature fusion. This fusing approach
can incorporates the information from different scales and
enhance the classification performance.

The existing human action classification techniques gener-
ally input acquired images into the networks for recognition.
In our application, it is also required to locate the position
of passengers in the images when abnormal behavior occurs.
To address this issue, we incorporate a passenger detector
before action classification. The bounding box extracted
from passenger tracking is fed into the action recognition
network for classification. At this stage, the human detector
does not only serves as a localization module but also
allows the system to perform action recognition separately
for individual passengers. The collected data images labeled
with defined passenger abnormal actions are then used for
classification.

Our proposed system is capable of tracking passengers to
determine their relative positions in the images. It also stores
a sequence of images for action classification. The frequency
of 5 Hz is used to extract images from 30 FPS videos in the
implementation. We use the duration of 12 frames as input
to the classifier to identify fast abnormal actions. After the
first frame is detected, a fixed identifier to each passenger is
assigned and the bounding box is stored. In the subsequent
frames, current and previous bounding boxes are compared
using Intersection-Over-Union (IoU) metric. The Hungarian
algorithm [32] is then utilized to match the most appropriate
ROIs for passenger tracking. Comparing the IoU with visual
tracking, the IoUmethod performs significantly fast as it only
considers the size and position of the bounding boxes. In our
application, passengers do not move rapidly inside a bus. The
overhead camera setting reduces the possibility of passengers
occluding each other. Consequently, mismatching or tracking
loss do not seldom present in the image sequences.
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FIGURE 4. Typical passenger space images collected in our BUS-HAR
dataset.

A. DATASETS
The passenger area inside a bus is narrow and crowded,
so the images are acquired from a ceiling-mounted camera for
activity recognition. Since it is very different from the current
action classification research, own datasets are necessary for
network training and testing. In our experiments, we consider
two different application scenarios, a conventional full-size
bus and a minibus. Figure 4 shows the images captured in the
passenger spaces. To achieve a wide coverage of the interior,
stereo cameras are used in both cases. The cameras are fixed
at the heights of 2.26 and 1.90 meters from the ground for the
bus and minibus, respectively. In our BUS-HAR dataset, the
images are collected during daytime, and in bus and mini-bus
environments. Since we utilize the downward facing cameras
mounted on the ceiling to capture images from the top, it is
not required to consider the demographic issue. Similar to
most research in the activity recognition, the dataset is used
to construct and evaluate the algorithm. It is then generalized
to broader application scenarios during the development of
specific system.

The most commonly used datasets for action recognition
include UCF101 [33] and HMDB51 [34]. More recently, the
Kinetics dataset [5] contains 700 categories for over 650,000
videos, with each category up to 700 videos. Most of the 3D
CNN-based action recognition techniques rely on these three
datasets for training and testing. In this work transfer learning
is conducted on the Kinetics dataset. The pre-trained weights
generated by this dataset containing a large amount of images
are used to initialize our model.

The BOSS dataset [20] is the only dataset created with the
viewpoint suitable for our application scenarios. It contains
images acquired from a moving train using 10 cameras,
with an image resolution of 720 × 576. Figure 5 shows two
images obtained from top-view cameras. The dataset consists
of nine categories: four personal actions and five interactive

FIGURE 5. Typical top-view images in the BOSS dataset.

actions, such as walking, sitting and standing, etc. We adopt
1,000 annotated images from the BOSS dataset to train
our passenger detector. In addition, 5,000 images randomly
selected from the people category of the COCO dataset are
also included to augment the training samples [27].

IV. EXPERIMENTS
In the experiments, the feasibility of the proposed techniques
is validated using images collected from a full-size bus
(BRT) and a minibus (WinBus) for training and testing.
It includes five abnormal actions in our experiment. They
are considered according to the main safety issues during
driving of vehicles. In general, the real-world variability such
as the application scenarios with different lighting conditions
and camera viewing directions can increase the system’s
applicability. It will be extended by including the more
variabilities of samples in the dataset.

• Fall: Passenger falls in the cabin.
• Squatting: Passenger crouches in the cabin.
• Lying: Passenger lies on a seat in the cabin.
• Attack: Passenger holds a weapon and performs
attacking actions

• Handrail-pulling: Passenger performs dangerous actions
using the lever in the cabin.

The numbers of training and testing samples in the five action
categories are 288/52, 320/22, 392/36, 256/18 and 412/38,
respectively. Due to the difficulty on collecting the real-world
images from different scenarios, it is not feasible to evaluate
the techniques with the many scales of bus sizes. In this work,
we consider two different bus sizes, BRT and WinBus. The
crowd density is set as 1-3 passengers appeared in the camera
viewpoint. The computational resources utilized in this work
is a desktop with an Intel i7-8700 CPU and 16 GB RAM.
The GPU for model training and testing is Nvidia GeForce
RTX 2070 SUPER.

For abnormal action classification, we use a network
based on 3D ResNet-50 with the temporal-spatial separable
convolution (R2P1D) as our backbone model. This addresses
the common overfitting issue observed in 3D ResNet-50. The
use of separable convolution does not reduce the total number
of parameters, but it enhances model optimization and
mitigates overfitting. As illustrated in Figure 6, wemodify 3D
ResNet-50 with R2P1D by introducing the RAN (Residual
Attention Network) modules (blue blocks) and FPN (Feature
Pyramid Network) modules (green blocks). The RAN
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FIGURE 6. The proposed network architecture.It incorporates RAN and
FPN modules for both channel and spatial aspects of feature maps after
each bottleneck convolution.

TABLE 1. The evaluation results and the comparison with 3D ResNet-50
plus space-time split convolution model, 3D ResNet-50 (R2P1D).

modules focus on both channel and spatial aspects of feature
maps after each bottleneck convolution, and reveal prominent
features. As for the FPN modules, they combine the feature
maps from Res2, Res3, Res4, and Res5 convolutions through
upsampling and 1 × 1 convolutions to fuse the outputs from
different layers.

We use the weights pre-trained on Kinetics-700 and
Moments in Time3 datasets, with a total of 1,039 categories,
and conduct transfer learning with our BUS-HAR dataset.
During the network training, our input sample length is set
to 12, and the original images are resized through scaling and
filled to align with the shorter side of 224×224. The training
parameters are given by weight decay of 0.0001, momentum
of 0.9, and an initial learning rate of 0.1. We use the cosine
decay strategy [35] for modifying the learning rate over time.
To augment data for diversity and increase training samples,
we apply horizontal flips and random rotations to the images.
In the evaluation, we compare the proposed network model to
the original 3D ResNet-50 plus space-time split convolution.
The batch size and the number of epochs for network training
are set as 8 and 100, respectively.

Our network model is built on the backbone of 3D
ResNet-50 with space-time split convolution. In addition to
incorporating RAN and FPN modules, we make adjustments
to the learning rate change strategy, and modify the activation
and loss functions. The commonly used cross entropy loss has
the drawback due to imbalanced data for network training.

3http://moments.csail.mit.edu/

FIGURE 7. The test accuracy and loss curve of the two network models.

TABLE 2. The modifications of our network and training data for ablation
study.

TABLE 3. The numbers of sample images for different action classes.

TABLE 4. The testing accuracy of the WinBus dataset.

In this work, we utilize the focal loss loss function

FL (p) = −α (1 − p)γ log (p) (1)
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FIGURE 8. The abnormal action recognition results on a BRT bus, with the confidence level set as 0.95.

TABLE 5. The testing accuracy using both BRT and WinBus data.

proposed by Lin et al. [36]. Eq. (1) is based on cross entropy
loss, but includes one additional weighting factor. The focal
loss function assigns higher loss values to challenging data
points while assigning lower values to easier points. It is then
possible to strengthen the learning process for hard samples.

Table 1 tabulates the evaluation results and the comparison
with 3D ResNet-50 plus space-time split convolution model,
3D ResNet-50 (R2P1D). The test accuracy and loss trends of
both network models are depicted in Figure 7. With the same
training parameters, the results demonstrate that the proposed
network model outperforms 3D ResNet-50 (R2P1D). Table 2
shows the modifications of our network architecture and the
ablation study. By incorporating the FPN and RAN attention
modules, utilizing leaky ReLU and focal loss in conjunction
with augmented training samples, the accuracy has increases
from the baseline R2P1D model’s 86.1% to 97.0%.

To detect abnormal actions, we incorporate the classi-
fication network with passenger detection. By detecting
passengers, tracking is initiated, and a sliding window
of 12 frames is utilized to record extracted passenger
bounding boxes for abnormal activity detection. Some action
recognition results are shown in Figure 8. The threshold
is set as 0.95 to enhance the confidence in action class

TABLE 6. The number of parameters and accuracy of the network models
tested on the UCF101 split 1 dataset.

TABLE 7. The results of the UR dataset with the models pretrained using
the Kinetics dataset and our BUS-HAR dataset.

prediction. The instances with low recognition confidence
are labeled as ‘unknown’ in activity classification to mitigate
false alarm. We also apply our method to the WinBus
dataset, with the settings and training parameters remain
the same as the previous BRT experiment. The numbers of
sample images for different action classes are summarized
in Table 3. Note that the WinBus dataset does not contain
the ‘handrail-pulling’ category due to the limited passenger
space. Table 4 shows the recognition for individual classes,
with overall accuracy of 99.3%. Figure 9 shows the abnormal
action results, with the confidence set as 0.95. Note that,
since there are not previous works for abnormal activity
recognition in the bus environment. It is not possible to utilize
existing systems for direct comparisons. Nevertheless, we did
conduct the experiments using different models, compare the
performance, and provide ablation analysis.

To increase the generalization of our network models,
the training samples are extended to include both the BRT
and WinBus datasets. As illustrated in Table 5, there is a
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FIGURE 9. The abnormal action recognition results on a WinBus, with the confidence level set as 0.95.

notable accuracy increase for the ‘squatting’ class. It suggests
future explorations on refining approaches to handle distinct
classes of image data during model training and testing.
There are current five abnormal activities considered for
training and testing. For the activities not defined explicitly
for training, it is not feasible to assess their recognition rates.
Nevertheless, more categories of actions will be included for
the extensive evaluation.

In addition to performing experiments on our private data,
we have also incorporated two public datasets, UCF101 split
1 and UR, for training and testing. The evaluation contains
3D ResNet-50, 3D ResNet-50 (R2P1D), 3D ResNet-101, 3D
ResNet-50a [21], and our network model on the datasets. For
fair comparison, all models are trained from scratch without
using pre-trained weights. Table 6 tabulates the number of
parameters and recognition accuracy of the baseline models
and our method. The results show that our technique achieves
the highest accuracy, with a modest increase in the model
size compared to 3D ResNet-50. To evaluate the capability
of our model on handling broader abnormal actions, the
UR dataset is employed. The dataset contains images of
falls and daily activities involving abnormal behaviors. Two
distinct training sessions are conducted, both utilizing pre-
training weights. In Table 7, Test 1 and Test 2 represent the
models pre-trained on the Kinetics dataset and our BUS-HAR
dataset, respectively. The results have demonstrated perfect
detection for abnormal actions.

V. CONCLUSION
This work presents a novel 3D convolutional neural network
designed for detecting and categorizing abnormal actions of
passengers in a bus environment. Different from the existing
action recognition algorithms, our proposed technique lever-
ages sequences of images obtained from an overhead camera
system. This represents an intricate task given the challenges
caused by occlusion in the limited passenger space and the

lack of publicly available datasets. Our proposed approach
performs passenger detection and tracking, followed by
human action recognition to identify abnormal activities.
A new dataset, BUS-HAR, is created with the images
collected from the passenger spaces of both the bus and
minibus for training and testing. In the real experiments,
the performance evaluation has demonstrated significant
improvements compared to existing methods. Continue
with this pioneer research related to the abnormal activity
recognition of passengers onboard a bus, the future work will
focus on enlarging the action classes for identification. The
system deployment on resource-constrained edge devices
will be considered in the investigation.
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