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ABSTRACT Cast-resin transformers are affected by deterioration due to manufacturing defects and
continuous load. Studying PD, which is capable of detecting defects or degradation in advance, is important.
With the rapid advancement of AI technologies, research on PD classification using CNN models is being
actively conducted. However, due to the black box problem, it is impossible to explain the reasoning behind
the learning outcomes. Therefore, relying solely on predictive outcomes of learning for PD classification
raises issues of reliability. Recent studies in various fields are progressing with the application of XAI to
address the black box issue of CNNs, aiming to identify the criteria used for making predictions. However,
research on applying XAI in AI-based PD classification is currently insufficient. Therefore, further study
on the implementation of XAI is necessary. In this paper, an excellent CNN model was applied to image
classification for PD classification of cast-resin transformers, and the grad-cam model was used for XAI.
This approach proposes a method for humans to comprehend the rationale behind the learning outcomes.
The training data includes artificial defects created in laboratory settings and noise captured in cast-resin
transformers using UHF sensors. Our research demonstrated that PD and noise due to defects can be
identified with an accuracy of approximately 97%. The reasons for successful and failed results were
analyzed through XAI. Consequently, it was observed that the application of XAI to CNN models leads
to the construction of a more reliable model.

INDEX TERMS Cast-resin transformer, PD, pattern classification, convolution neural network (CNN),
explainable artificial intelligence (XAI), gradient weighted class activation mapping (Grad-CAM).

I. INTRODUCTION
Cast-resin transformers, in contrast to traditional oil-filled
transformers, use epoxy resin to cast their core and windings,
eliminating the need for insulating oil. This leads to reduced
maintenance requirements due to the absence of oil replace-
ment and offers the advantage of lower fire risk, making them
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suitable for indoor installations [1], [2]. Additionally, they are
less susceptible to moisture ingress and have a high resistance
to pollutants, making them environmentally safer [3]. There-
fore, the demand for cast-resin transformers is increasing in
line with the continual growth in power consumption [4].
However, cast-resin transformers have a risk of accidents

leading to insulation breakdown due tomanufacturing defects
such as cracks, heat accumulation, and voids [5], [6]. Initial
defects can significantly shorten the lifetime of cast-resin
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transformer and greatly affect its reliability [7]. Recently,
while the incidence of accidents due to manufacturing defects
has decreased, there is an increase in degradation due to
thermal, mechanical, and electrical caused by continuous
loads [8], [9]. Therefore, research on PD for early detection
and analysis of accidents caused by manufacturing defects or
deterioration is crucial [10].

When PD occurs, the type of defect can be identified
through the Phase-Resolved Partial Discharge (PRPD) [11].
PRPD distinguishes defects by deriving their patterns through
the combination of data on PD pulse amplitude q, phase 8,
and number of pulse n. Therefore, it is extremely important
for monitoring the condition of cast-resin transformers and
for the early detection of potential hazards. However, tra-
ditional analysis methods have the disadvantage of relying
heavily on the experience of experts. Accordingly, there is a
need for Artificial Intelligence (AI)-based systems that utilize
rapidly advancing AI technologies to offer rapid processing
and consistent diagnostic outcomes [12].
Among various AI technologies, the remarkable improve-

ment in the performance of Convolutional Neural Network
(CNN) has led to their widespread use in the field of image
recognition and processing [13]. This is attributed to the capa-
bility of CNN to extract significant features from complex
image data and to effectively learn the local characteristics of
images, thereby enabling accurate classification. Recogniz-
ing and classifying partial discharge patterns are also crucial,
as they can identify specific defects or prevent accidents in
advance. Therefore, recent studies are increasingly focusing
on applying CNNs for accurate recognition and classification
of partial discharge patterns [14], [15], [16], [17], [18].
However, most AI systems, including CNN, have the

black box problem, failing to provide clear interpretations
for their predictions or decisions [19], [20]. This can cause
serious issues in areas where sensitive or critical decisions
are required. In the case of PD defect classification, if it is
not clear on what criteria or basis the CNNmodel categorizes
defects, its reliability decreases, and incorrect results can lead
to serious accidents. Additionally, if the training process of
the CNN model is not properly conducted, it becomes signif-
icantly challenging to analyze and resolve the causes of the
errors. This becomes a significant obstacle in improving the
model’s performance and ensuring its reliability. To address
this issue, research on the application of eXplainable Arti-
ficial Intelligence (XAI) is being conducted across various
fields, aiming to make AI’s decision-making process trans-
parent, allowing users to comprehend and trust the decisions
made [21], [22]. However, research on applying XAI in
AI-based PD classification is currently inadequate. Hence,
there is a demand for studies in XAI that allow users to com-
prehend the PD classification outcomes produced by CNN
models, increase reliability through validation and analysis,
and proactively prevent potential errors.

In this paper, we applied a CNN model, known for its
excellence in image recognition, for PD classification in
cast-resin transformers, and utilized the Gradient Weighted

FIGURE 1. Noise measured using a UHF sensor installed on a cast-resin
transformer (a) background noise or external noise, (b) and (c) UPS noise.

Class Activation Mapping (Grad-CAM) model among XAI
techniques to propose a method for humans to understand
the reasons for the results. The data used for training and
validating the CNN model consists of artificial defect mea-
surements under laboratory conditions and noise measured
on a cast-resin transformer via UHF sensors. After training
the CNN model with the PRPD pattern, the explanations for
successful and failed prediction results were derived from
XAI images. This approach suggested interpretability of the
CNN model and high reliability in PD classification.

II. PRPD PATTERN MEASUREMENT PROCESS
A. NOISE MEASUREMENT
Noise measurement data was obtained through a UHF sensor
installed on an operating cast-resin transformer, as shown in
Fig. 1. Fig. 1(a) depicts patterns distributed across all phases.
It is similar to the pattern of floating discharge, but there are
differences depending on the phase. Therefore, it is estimated
as background noise or introduced external noise. Fig. 1(b)
and Fig. 1(c) show the noise from Uninterruptible Power
Supply (UPS) measured by UHF sensors in cast-resin trans-
formers. UPS is a device that provides stable power to critical
loads even when the main supply is interrupted. The structure
of the UPS is depicted in Fig. 2. It converts AC power to DC
through a rectifier, supplying power to the batteries and the
inverter. In case of an outage, the stored DC power in the bat-
teries is transferred to the inverter side, converted to AC, and
then supplied to the load. Fig. 3 illustrates the measured noise
of a UPS intended for installation in a cogeneration power
plant. Fig. 3(b) shows the noise measured during the recti-
fier’s operation, while Fig. 3(c) presents the noise during the
inverter’s operation, which combines increased magnitude at
certain phases with the noise of the rectifier. Consequently,
it was confirmed that Fig. 1(b) and 1(c) represent the noise
from the UPS’s rectifier and inverter.
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FIGURE 2. Block diagram of UPS.

FIGURE 3. UPS noise measurements (a) UPS installed in cogeneration
power plant, (b) rectifier noise and (c) inverter noise.

B. ARTIFICIAL DEFECT FABRICATION FOR PD
MEASUREMENT
The artificial defects of the cast-resin transformer are
depicted in Fig. 4. Fig. 4(a) was created as an artificial defect
for surface discharge caused by cracks or contamination in
epoxy. To measure surface discharge, epoxy with a 40 mm
diameter was chosen as the dielectric material. In order to
confirm the difference in PRPD pattern according to surface
length, the diameters of the copper upper electrodes were
set to 30mm and 20mm, respectively, resulting in surface
distances of 5 mm and 10 mm. In the manufacturing pro-
cess of cast-resin transformers, void discharge continuously
occurs due to the imperfect removal of air bubbles or the
formation of internal voids over extended periods of stress.
This was manufactured as an artificial fault, as depicted in
Fig. 4(b). To measure void discharge, a void was created
between two electrodes. the internal void size was man-
ufactured at 0.58 and 38. During the process of filling
molds with epoxy to produce void defects, there were cases
where foreign materials were introduced, or the desired void
shapeswere not achieved. Therefore, 10 samples of eachwere
produced. Fig. 4(c) represents a corona discharge. Corona
discharge in cast-resin transformers occur more due to exter-
nal factors such as protrudingmetallic particles or dust during
manufacturing and installation, rather than within the dielec-
tric material. Consequently, artificial defects were fabricated

FIGURE 4. Artificial defect (a) surface discharge, (b) void discharge,
(c) corona discharge and (d) floating discharge.

using a stainless-steel needle electrodewith a curvature radius
of 200 µm, considering the electric field concentration at
external protruding electrodes. The distance between the nee-
dle electrode and ground is 15cm. Fig. 4(d) is a floating
discharge, which has a very low probability of occurring in
cast-resin transformers and does not need to be considered.
However, as discharges suspected to be background noise
resemble floating discharge, they were selected as defects to
verify the classification and basis of the results after CNN
training. The electrode, designed for floating discharge sim-
ulations and made of copper, was rounded at the bottom to
an R10 curvature. The top part, with a 0.5 mm gap from the
upper layer, was fabricated to a length of 10 mm.

C. PD MEASUREMENT SYSTEM
The PD measurement system is composed of a shielded
room, AC power source, artificial defect, UHF sensors, and
a PD measurement PC, as depicted in Fig. 5. To prevent the
measurement of noise during PD testing, experiments were
conducted in a shielded room. The AC power source can
apply AC power of 60Hz up to 30 kV. The bandwidth of
the UHF sensor is 300–800 MHz, and it is the same type
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FIGURE 5. PD measurement system (a) photograph and (b) schematic
diagram.

FIGURE 6. Surface discharge pattern (a) 1.0mm and (b) 0.5mm.

FIGURE 7. Void discharge pattern (a) 38, (b) and (c) 0.58.

of attachable sensor used for measuring noise in cast-resin
transformers. The distance between the artificial defects and
the UHF sensor was set to 50 cm, identical to the distance

TABLE 1. PDIV and number of PRPD data.

FIGURE 8. Corona discharge pattern change according to voltage
application time.

FIGURE 9. Floating discharge pattern.

of the UHF sensor installed in the cast-resin transformer.
The PD signal measured through the UHF sensor is saved
to the PC. The PD measurement PC divides one cycle of
60Hz into 256 segments for storage, and these segments are
accumulated to derive the PRPD pattern.

D. PRPD PATTERNS
PD was measured for each defect, and the number of data
obtained, and the Partial Discharge Inception Voltage (PDIV)
are as presented in Table 1. Fig. 6(a) is a surface discharge
pattern in which the upper electrode is small and the distance
between the epoxy and the electrode is long, and Fig. 6(b) is
a discharge pattern in which the distance is short. In Fig. 6(a),
the PDIV is larger than in Fig. 6(b) because the distance
between the electrode and the epoxy is longer. The PRPD
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FIGURE 10. CNN and Grad-CAM architecture.

pattern was the same regardless of surface distance. The
discharge was larger in the case of positive polarity, while it
was smaller for negative polarity. As the discharge continued,
the pattern size progressively decreased, and the discharge
in the negative polarity almost vanished. Void discharge
was measured in two sizes, 0.58 and 38, as depicted in
Fig. 7. 38 void had higher PDIV than 0.58. PRPD pat-
terns were different depending on the void size. Even when
fabricated under identical conditions, the 0.58 defects were
measured as depicted in Fig. 7(b) and 7(c). However, unlike
corona and surface discharge, there was no change in pattern
depending on the voltage application time. Fig. 8 shows the
PRPD pattern of corona discharge and changes according
to the applied voltage time. Initially measured starting at
about 60 degrees phase, it appeared up to approximately
100 degrees, exhibiting a slanted pattern. After that, if the
voltage is continuously applied, PD is measured up to a phase
of about 120 degrees, and is drawn as a peak-shaped pattern.
As the discharge continued, a small pattern was added to
the bottom of the peak-shaped pattern. After that, dielectric
breakdown occurred. After dielectric breakdown, the pattern
wasmeasured at a phase of approximately 60 degrees, and the
above processes were repeated. The PRPD pattern of floating
discharge is shown in Fig. 9. Discharges of consistent mag-
nitude were measured in both the first and third quadrants.
There was no difference in the patterns other than a slight
shift in phase depending on the voltage application time.

III. GRAD-CAM APPLIED CNN MODEL
A. CNN AND GRAD-CAM ARCHITECTURE
For the classification of PRPD patterns in cast-resin trans-
formers, a CNN and Grad-CAM were applied, with the
architectures of both CNN and Grad-CAM depicted in
Fig. 10. The structure of CNN is largely divided into feature
extraction and Fully Connected Layer (FC). In the feature
extraction stage, the process begins with the input image for
classifying PRPD patterns. This is followed by convolution
layers that extract features from the image using filters. Since

maintaining the image size through to the FC layer would
exponentially increase computational requirements, there is
a pooling layer that appropriately reduces the size while
emphasizing certain features. Once the features are extracted,
a FC layer is necessary to classify what the image represents.
The feature maps are arranged in a sequence identical to that
of a conventional Deep Neural Network (DNN) and then
fed into the FC layer. In this layer, every input neuron is
connected to every neuron in the subsequent layer.

Grad-CAM is a technique that does not require the use
of Global Average Pooling (GAP) and creates a heatmap by
multiplying each feature map by the gradient. The superiority
of Grad-CAM can be confirmed through the formulas and
heatmap derivation process of both traditional CAM and
grad- CAM.

LcCAM (i, j) =

∑
k
wck fk (i, j) (1)

For the calculation of CAM, the flattening process follow-
ing the last convolution layer is replaced with a GAP layer.
In other words, the process involves calculating the average
value of the feature map fk(i, j) from the last convolution
layer, resulting in a single numerical output. The connection
between the last convolution layer and the class is represented
by weights w, and these are multiplied by fk(i, j) to produce
k heatmaps. Following this, summing the heatmaps produces
the resulting image of the CAM.

LcGrad−CAM (i, j) = ReLU (
∑

k
ack fk (i, j) (2)

ack =
1
Z

∑
i

∑
j

∂Sc

∂fk (i, j)
) (3)

Through the formula, it was observed that a ReLU function
was added, and the weights were replaced with gradients
ak. This demonstrates that Grad-CAM, not incorporating a
GAP layer, can be applied to a variety of CNN architectures.
Furthermore, Grad-CAM can be applied not only to the final
convolution layer but also to intermediate layers, enabling
the observation of how the model processes information at
various stages. Therefore, Grad-CAM was applied for XAI.
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B. PROPOSED CNN MODEL
Table 2 presents the structure of the proposed CNN model.
Each CNN block is composed of two CNN layers, two batch
normalization layers, one maxpooling layer, and one dropout
layer. The entire CNN model comprises three CNN blocks
and a FC layer. The convolution layer is a key component
of deep learning architectures specialized for visual data.
It scans the entire PRPD pattern using filters to detect local-
ized features, and a 3×3 size filter is applied to all convolution
layers. Each filter has weights and a bias, with the 32 filters in
the conv2d layer each containing 3 × 3 weights and a single
bias. Weights and biases are updated through backpropaga-
tion and trained in the convolution layer. During the training
process, each of the 32 filters acquires different values, indi-
cating that each filter extracts different features of the image.
Therefore, based on conv2, number of parameters = (size
of filter x number of input channels + 1) x number of filter.
According to the calculation formula, (3×3× 1+ 1)× 32=

320.
Batch normalization, integrated within the neural network,

adjusts the mean and variance together during training, pre-
venting distorted distributions without separating them as an
independent process. This enhances the training speed and
helps to mitigate gradient loss. Batch normalization consists
of four parameters: γ (scale), β (shift), moving mean, and
moving variance. In the previous CNN model, each of the
32 filters is appliedwith four parameters, resulting in a total of
128 parameters to be trained. For Conv2_1, since the output
channel of the preceding layer is 32, the number of parameters
is calculated as (3 × 3 × 32 + 1) × 32 = 9248.
The max pooling layer, along with the convolution layer,

is a component of CNNmodel. A 2×2 windowmoves across
the feature map in strides of two, reducing the image size and
also simplifying computational complexity. While downsiz-
ing the image, the maximum value within each 2×2 window
is selected. Through this, the image size is reduced to 58×58,
forming 32 feature maps. This layer simply reduces the image
size and does not require weights or training parameters.

Dropout is a technique to prevent overfitting by probabilis-
tically deactivating some neurons, ensuring that the network
does not become overly reliant on any specific neuron during
training. In other words, some of the 32 feature maps are
randomly set to zero, providing regularization to the network.
Therefore, the parameter to train is 0. The process from the
convolution layer to the dropout layer constitutes one CNN
block, and this procedure was repeated two more times.

In a FC layer, every neuron in the current layer is con-
nected to every neuron in the previous layer. In CNN, the
output is derived in either 2D or 3D form, necessitating
the use of a flatten layer to transform it into a 1D format.
Since the output shape of the previous layer was 28 × 28 ×

128, passing through a flatten layer converts this into a for-
mat with 100,352 input neurons, calculated by multiplying
the dimensions of the shape. Since it only alters the input
shape, the number of trainable parameters in this process is
zero.

TABLE 2. Constructed CNN model structure.

Dense layers are used for learning and modeling complex
relationships in data because they allow the network to learn
different combinations of features from the input data. There-
fore, all neurons from the previous layer are connected. In the
proposed CNN structure, there are 100,352 input units fully
connected to 512 output units. Each connection contains a
weight, and the total number of parameters that need to be
learned is (input units∗output units) + output units, resulting
in 51,380,736. Subsequently, a dropout layer and a dense
layer were iteratively applied, setting the number of output
units to five. This corresponds to the number of classes and
represents the final stage of classifying the input data.

IV. RESULTS AND DISCUSSION
A. CLASS CLASSIFICATION RESULTS
Classification results were obtained by training the proposed
CNN model with PRPD patterns measured through artificial
defects and noise patterns measured from cast-resin trans-
formers. The training data, comprising 675 samples, was
divided into 70% for training and 30% for validation. This
means 472 samples were utilized for training and 203 were
used for validation. Before the training process, the param-
eters for epoch, learning rate, and batch size were set to
500, 0.0001, and 64, respectively. Upon completion of the
training, the learning curve (Fig. 11) was configured to be
displayed. The learning curve is a graph of validation accu-
racy and loss according to epochs. The accuracy and loss
for training provide insights into how well the CNN model
is adapting to the training data, allowing for the detection
of underfitting. The training graph shows that from around
epoch 25 onwards, the accuracy approaches 100%, and the
loss nears almost 0%. Therefore, the training of the CNN
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FIGURE 11. Accuracy and loss.

FIGURE 12. Confusion matrix.

model is progressing stably. Once the training is adequately
completed, it is necessary to check the accuracy and loss for
validation to assess the model’s generalization ability. From
epoch 100 onwards, the accuracy is around 97%, and the
loss is close to 0%. Therefore, it is considered that there
is no possibility of overfitting. The epoch with the lowest
validation loss, number 226, was selected as the best model,
and the classification results for the validation data were
displayed as a confusion matrix, as shown in Fig. 12. Except
for corona discharge and noise, the other types of discharge
were misclassified by one or two instances each. Floating
discharge was classified as void discharge and noise. Addi-
tionally, surface was classified as void discharge, and void
was classified as surface discharge.

B. ANALYSIS USING GRAD-CAM
Since the CNN model cannot explain the reasoning behind
its training results, only assumptions can be made about the
causes of misclassification. However, applying Grad-CAM to
the CNN model enables XAI. Therefore, using the proposed
CNN model with Grad-CAM implementation, the basis for
classification of PRPD and noise patterns for each defect
was visualized and displayed in images, as illustrated in
Fig. 13 and Table 3. Typically, the last convolution layer
of a CNN model is visualized to determine which parts of
an image were focused on for classifying a specific class.
To understand how the proposed CNNmodel processes input
data, intermediate layer were also visualized to identifywhich

FIGURE 13. Activation image via Grad-CAM (a) UPS rectifier noise,
(b) UPS inverter noise, (c) background or introduced noise, (d) surface
discharge, (e) corona discharge, (f) 38 void discharge, (g) 0.58 void
discharge and (h) floating discharge.

features were being learned. Fig. 13(a) and (b) respectively
visualize UPS rectifier and inverter noise. Due to the absence
of distinct features in the images, the 1st and 2nd layers
appear very similar. In the 3rd layer, it begins to identify and
display the characteristics of UPS inverter noise that enable
class classification. However, the 3rd layer in Fig. 13(a) pro-
cesses the data as if there are features across the entire phase.
Fig. 13 (c) is background or introduced noise, and due to the
monotonous image, there is no feature even if the convolution
layer is deepened. Fig. 13(d) is a surface discharge, and the
1st layer focuses on features such as lines and corners of
the image contours. As it progresses to the 2nd and 3rd
layers, it starts to recognize patterns in the image and activates
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TABLE 3. Summary of experiment results.

the important parts. Fig. 13(e) represents corona discharge,
where difference in visualization can be seen in each convo-
lution layer, similar to surface discharge. Small patterns were
detected in the third quadrant of the input image. The 1st and
2nd layers show these patterns with a lighter visualization.
However, in the 3rd layer, which detects higher-level features,
the patterns measured at negative polarity are not considered
significant. Consequently, only the positive polarity corona
patterns are activated with bright colors. Fig. 13(f) and (g)
represent void discharges of 0.58 and 38 sizes, respectively.
The void discharge demonstrates more abstract features as the
convolution layers become deeper. For the 38 size void, the
pattern in the third quadrant is brighter than the pattern in
the first quadrant. This indicates that the patterns in the third
quadrant have a significant impact on the decision for this
class. Fig. 13(f) is a floating discharge, visualized almost
identically to the original image.

An analysis was conducted on the misclassified cases from
the validation results using activated Grad-CAM images,
as shown in Fig. 14. Fig. 14(a) and (b) illustrate the reasons
for misclassifying floating discharge as void discharge and
noise through images respectively. In the 2nd layer, except for
a few dots, the focus was primarily on the background, and
the activated Grad-CAM image in the third quadrant of the
3rd layer showed similarities to void discharge rather than the
original floating discharge, leading to the misclassification.
In the case of floating discharge classified as noise, the acti-
vated image in the 3rd layer was focused on the background.
This indicates that themodel did not reflect the characteristics
of the floating discharge pattern, instead focusing on incor-
rect features. Although the colors are different, the bisected
image resembles the 3rd layer of Fig. 13(b). Consequently,
it was classified as noise. The reason for misclassifying a
void discharge as a surface discharge was visualized and is
shown in Fig. 14(c). There are vertical dots in the pattern of
the third quadrant. In the 3rd layer, these vertically aligned
dots have a low activation value, resulting in a lighter color
representation. This was misclassified due to its similarity to
the image of surface discharge. Fig. 14(d) shows the activated
image of surface discharge. In the 3rd layer, the focus on the
background creates a shape similar to void discharge, leading
to incorrect class classification.

FIGURE 14. Analysis of misclassification causes through Grad-CAM
(a) and (b) floating discharge, (c) void discharge and (d) surface discharge.

TABLE 4. Summary of image focused on the background.

C. DISCUSSION
The reasons for the class classification results of the CNN
model were analyzed through Grad-CAM activation images.
There was an error in class classification due to focusing
on the background rather than the pattern of the image.
If many data points had focused on the background rather
than the features of the image, it would have been necessary
to modify the structure or parameters of the CNN model.
However, considering that only 10 out of the total data set
focused on the background, it can be inferred that the CNN
model is robust. As shown in Fig. 15 and Table 4, correct
class classification was achieved even when surface and
floating discharges were focused on the background. This is
because surface discharges exhibit characteristics of shooting
upwards, and floating discharges resulted in convex-shaped
activation images due to the y-axis of the central pattern
having larger values. Therefore, it was observed that even if
the activation values are inverted in the image output, correct
class classification is possible as long as the patterns are
similar.

In cases of discharge estimated to be background or intro-
duced noise, the 3rd layer shows activation values across the
entire phase, unlike the original image. Therefore, a class
imbalance exists, and it is believed to indicative of a lack of
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FIGURE 15. Accurate classification was achieved even with images
focused on the background (a) surface discharge and (b) noise.

training data. There is a possibility that the activation images
were output across the entire phase in the 3rd layer because
sufficient training for noise did not occur. Alternatively, as the
convolution layers become deeper, they include more abstract
information, which could have led to results similar to those
in Fig. 13(b). Therefore, it is necessary to obtain more noise
data for additional validation. In the case of void discharge,
it was misclassified as surface discharge due to the presence
of vertically aligned dots. In the 99 data samples used for
training, there were no such vertically aligned dots. Thus, it is
presumed that these were noise infiltrated during the mea-
surement of void discharge. To build a robust CNN model,
it seems necessary to increase the number of data samples
and include training for cases with partially noise introduced.

Previous studies focused on model architecture and per-
formance optimization to perform partial discharge defect
classification. Therefore, while they achieved improvements
in computational efficiency and high accuracy in classifying
PRPD patterns, the importance of model prediction trans-
parency and user trust has been overlooked. This paper not
only achieves classification accuracy comparable to previous
studies but also integrates Grad-CAM with CNN to enhance
user understanding. In other words, it is possible to deeply
analyze the class classification results. This demonstrates that
XAI is essential when integrating CNN models into diagnos-
tic systems, with its applications being as follows.

1) The reason for class classification of the CNN model
can be confirmed through visualization.

2) Analysis of incorrectly predicted outcomes allows for
identification of error sources, facilitating the develop-
ment of improved model architectures.

3) The model’s reliability is enhanced through its verifia-
bility by users.

4) Understanding the workings of the CNN model
becomes feasible, offering valuable feedback for per-
formance enhancement.

V. CONCLUSION
For the purpose of XAI, Grad-CAM was applied to the CNN
model to classify PRPD patterns and verify the basis of the
results. Themodel was trained on partial dischargesmeasured
from noise in cast-resin transformers and artificial defects.
After training, the reasons for the successes and failures in

class classification were analyzed using the images produced
by Grad-CAM. The results are as follows.

• The validation results of the CNN indicated an accuracy
of approximately 97%, showing no signs of overfitting.

• Reasons for successes and failures in the validation data
were derived and analyzed using Grad-CAM images.

• It was identified that misclassifications occurred when
activation images focused on the background or when
noise introduced with void discharges.

• Securing a sufficient quantity of data is essential for the
construction of a robust model.

• It is anticipated that implementing a CNN model
equipped with Grad-CAM in diagnostic systems for
XAI will enhance reliability compared to traditional AI
models.
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