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ABSTRACT The exponential growth of data in the information age poses several threats to the privacy and
safety of digital service users. Existing legislation, such as the GDPR in Europe and the CCPA in California,
defines frameworks and guidelines to promote personal privacy but leaves freedom in the choice of means to
achieve privacy. Data anonymization techniques remove information that can be used to identify individuals
from the dataset, either through suppression, generalization, anatomization, permutation, or perturbation.
Information suppression remains the most common, safe, and widely applicable anonymization method,
though at a high data utility cost. In this paper, we argue that even information suppression may not be
sufficient in some cases. We study the case of a dataset that describes the shopping habits of a grocery
store’s customers. All identifiers and quasi-identifiers are removed from the dataset by suppression. However,
by augmenting the data in a novel multi-step, iterative process, and building a neural network enriched with
prior knowledge, we show that most sensitive information can be retrieved with an accuracy of 80%.

INDEX TERMS Data anonymization, privacy, machine learning, responsible AI.

I. INTRODUCTION
In recent years there has been increasingly fast adoption
of web-based services [1], generating a stream of data of
size never seen before [2] and giving rise to the Information
Age. Data in the Information Age is a heterogeneous mixture
of raw data points that can be collected from virtually
any service or platform with an internet connection. The
heterogeneity of such data is the very reason why mining it
can reveal extremely useful information, and at the same time,
it makes it impossible to clearly define what attributes may
become quasi-identifiers in the dataset when mined. Data
collection, therefore, requires some form of control to ensure,
with varying degrees of confidence, that such data cannot
be used for malicious scopes, such as retrieving personal
information and crafting cyber-attacks.

Two of the most widely used privacy preservation guide-
lines are the CCPA and the GDPR. While the United States
does not regulate data privacy at a federal level, a number
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of entities follow the California Consumer Privacy Act
(CCPA) [3]. This legislation defines how businesses must
be transparent with their clients about the collection, usage,
and sale of their data. Additionally, it gives users the right
to request access to their data, forbid its sale, or erase it.
On a similar note is the General Data Protection Regulation
(GDPR) [4], which must be followed by all businesses
operating with European consumers’ data. It defines users’
right to be informed about, access, rectify and delete their
data, similar to the CCPA. Moreover, the GDPR gives people
the right to confute any algorithmic decision made with
their data and request that it be revised by a human. These
guidelines are mostly concerned with the transparency of
business decisions and data usage and do not specify to what
extent data can be used, nor how much personal or sensitive
information can be extracted from available sources.

Nowadays, most techniques to prevent data from revealing
personally identifying information rely on masking, permut-
ing, and tampering with data points. These modifications can
be applied either partially, usually to render specific attribute
values more generic, such as for quasi-identifiers, or totally
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in the case of identifying attributes. The goal that all such
techniques share is to render it virtually impossible to infer
personal information or identify an individual given a dataset
containing their data. Some of the most popular techniques
for data anonymization are t-closeness, k-anonymization,
and l-diversity [5]. However, regardless of the use of these
measures, privacy is still at risk.

In this paper, we show how anonymized records of
customers of a grocery store are susceptible to attribute
inference attacks, which is the disclosure of purposely
cloaked information from a dataset. While certain kinds
of data are intuitively quite telling of personal information
associated with an individual (e.g. medications for inferring
age), we only use aggregated data about the purchasing
statistics of some customers and some of their responses to
non-targeted advertisements.

The anonymization process consists of the suppression of
all identifier and quasi-identifier attributes from the dataset,
which is comprised of education level, income, age, marital
status, and the number of children in the household. The
remaining data points are only statistics about shopping
habits, such as membership age, money spent in each
department, advertisement engagement, etc. No information
about individual purchases is included, such as products,
dates, or cart contents.

Throughout the paper, we argue that the semantics of data
attributes can be exploited to extract information beyond
what the raw data alone can provide. Our contributions
are as follows: 1) We provide a theoretical framework of
semantic data augmentation that allows machine learning
models to extract significantly more information from data;
2) We apply our data augmentation model to a dataset of
customer purchase statistics and show that it allows attribute
inference attacks to reach 80% accuracy; and 3) We propose
guidelines on how to harness the power of this semantic
data augmentation model further and give suggestions on
anonymization goals to consider for future research.

II. BACKGROUND
A recent comparative study [6] tackles the problem of
deciding which technique to use depending on the con-
tents of a dataset. The authors compare five techniques,
namely generalization, suppression, distortion, swapping,
and masking, and discuss which kinds of attributes are
more effectively anonymized by which technique (where
categorical, numerical, etc. are attribute types0). Their
results show that efficacy-wise, suppression is the most
effective methodology while swapping is the least. As for
the efficiency, or resource requirements of the techniques,
swapping is the most resource-intensive and suppression
the least. However, suppressing attribute values entirely by
dropping the related columns in a database is sometimes still
not enough, and attackers are able to retrieve the suppressed
data, as we show.

Personal information is important to businesses: it allows
them to tailor advertisements, predict demand for products

and services, and understand the behavioral and spending
habits of customers. One would assume that by not disclosing
personal information when sharing a dataset, such as by sup-
pressing it, such information can never be available. In reality,
however, such information can be inferred. Lu et al. [7]
created GenderPredictor to show that it is possible to
predict the gender of a customer based on product viewing
logs. GenderPredictor is a Gradient Boosting Decision Tree
classifier that, taking as inputs the data about a customer
session’s duration, number of products viewed, time of login,
and category of products viewed. Their results show that over
90% of female customers and almost 70% of male customers
are correctly labeled.

Similar to GenderPredictor, Merler, Cao, and Smith [8]
propose a gender prediction model that uses the profile and
feed pictures of Twitter users to predict their gender. While
this may seem trivial using profile pictures, not all images
contain a single face to predict the gender, with many not
having a face at all. Of 10K user profiles, less than 55%
present a unique face in their profile or feed images. What is
therefore proposed is to extract the content and context from
these images using a trained network that predicts the actions,
objects, and environments in a given picture, and computing
statistics from images such as color pallets and background
colors. Combining all this information, the authors can
predict Twitter users’ gender with an 88% accuracy.

A more comprehensive study, proposed by Chaabane, Acs,
and Kaafar [9], takes on the challenge of determining a wider
range of personal information of some Facebook users from
their musical interests. The authors scraped over 100M public
Facebook profiles and tried to extract personal information
and musical interests, resulting in 100K usable records. They
then built models to perform attribute inference attacks.
This work uses a semantic augmentation procedure by
building a hierarchical Wikipedia ontology and applying it to
augment individual musical interests. We refer to this kind of
augmentation in our framework as Value Semantics Injection
(see III-C1). Their model is able to determine the gender of
users with about 70% accuracy. Their results highlight the
danger of disclosing seemingly harmless information online
as they can be used to infer sensitive information accurately.

But how does the semantics of data exactly improve a
model’s accuracy? The intuition to formulate an answer can
be found in the work of Baran et al. [10]. Through an
empirical study, they assess the correlation between products
purchased in a store and the perception that society has
of individuals. Though seemingly far-fetched, the two are
actually closely related. Advertisements and social media
shape our opinion of brands and products. Opinionated
views on the same products from different brands lead to
opinions on the people who purchase said products and
brands. Practically, the study tries to correlate the brands
in people’s shopping carts with the perception that others
have on them: results show that there is a strong correlation.
We believe this is indicative of the nature of data that can be
extracted from the semantics of data points. As an analogy,
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the items in a person’s shopping cart are the true data points
and their brands represent their semantic context. If humans
can make judgments based on brands (regardless of their
truthfulness or ethics), then so should machines if explicitly
given such data. We, therefore, use this as the basis for our
data augmentation model, which becomes incorporation of
the semantics associated with attributes or attribute values
(we thoroughly explore the first) in a dataset.

Introducing semantics-based augmented data in existing
datasets is an already widely researched practice [11], [12].
Most existing techniques, however, are applicable only to
specific tasks (such as context-aware web queries [13]),
specific dataset types (see tabular data in [5]), or specific
models (neural networks in [11] and [12]). Instead, we pro-
pose a general method that can improve the extraction of
information for methods ranging from statistical models to
deep neural networks.

III. SEMANTIC DATA AUGMENTATION
This section briefly describes the dataset we use and
contains the design of a general-purpose, semantics-based
data augmentation framework to render anonymized datasets
more prone to attribute inference attacks. The framework is
composed of three main parts: attribute semantic augmen-
tation uses human intuition to combine existing attributes
or add new ones, value semantics augmentation makes
data values more easily understandable from a machine
perspective, and a priori knowledge injection uses domain
knowledge to add information to a dataset. We also show
how to use each component in the application to the customer
statistics dataset, described below.

A. DATASET DESCRIPTION
The Customer Personality Analysis (CPA) dataset1 is a
collection of 2240 records of customers who have a loyalty
membership with an unnamed grocery store. For each record,
the information available includes when the membership was
started, the date of the last trip to the store, the amount of
money spent in each of 6 categories in the supermarket (wine,
fruit, meat, fish, sweets, jewelry) since the membership
started, and howmany purchases were made on the phone, in-
store or online. All directly identifying information has been
removed from the dataset (such as full names, phone, and
ID numbers), leaving quasi-identifiers and other attributes.
The quasi-identifiers are age, education level, marital status,
income, and the number of children and teenagers in the same
household. These latter attributes are what we assume the
store’s data managers would hide before selling the data, but
we show that most of it can be recovered after semantically
augmenting the data.

B. ATTRIBUTE SEMANTIC AUGMENTATION
Attributes in datasets and databases usually represent tangible
entities or characteristics of data. Consequently, they have a

1https://www.kaggle.com/imakash3011/customer-personality-analysis

FIGURE 1. Effect of re-balancing the under-represented classes in the
train set. In (a) some attribute values are barely visible, being significantly
under-represented; in (b), after augmentation, attribute values are more
evenly balanced and the income (the only non-categorical attribute) more
closely follows a normal distribution.

meaning that humans can comprehend. The meaning of two
certain attributes can sometimes be similar, rendering one
of the two superfluous, or too complex, requiring simpler
descriptions. By merging, splitting, and combining attributes,
data can be represented more systematically.

For example, in the CPA dataset the amount of money spent
in each store category is highly correlated with the length of
time a customer has had themembership, and how often visits
to the store are taken. The data can therefore be semantically
augmented by introducing the share of money spent into each
category since becoming a member of the store. Values are to
be computed such that the sum of the shares per each of the
five categories is 1. The same concept can be applied to the
number of in-store, on-the-phone, and online orders placed.

1) REDUNDANCY REMOVAL
Two (or more) attributes can refer to the same characteristic
of a data sample, thus being redundant. For instance, in a car
database the attributes color and color_code may take values
gray and light gray, rendering the first virtually useless.
In this case, the first attribute can be dropped from the dataset.

2) SIMPLIFICATION
An attribute may be too complex to be processed or be a
combination of multiple attributes. In the CPA dataset, the
marital status attribute is categorical and can take one of eight
values, some of which have ambiguous meanings. Given the
size of the dataset, there are not enough records for a model
to learn the relationship between the various attribute values,
such as that married and together both mean that a person
is with someone, but in the first case after marriage and in
the latter before. The attribute can therefore be augmented
by splitting it into two semantically equivalent binary
attributes: is_single and has_married. Figure 2 shows how
the distribution of records can be improved by re-arranging
this attribute.

3) DISTRIBUTION
Attributes may be re-distributed to be more easily inter-
pretable, from both a human’s and a machine’s perspectives.
Following the car database example above, the two men-
tioned attributes can be rearranged into a color and a shade
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FIGURE 2. Change in the sample distribution before (figure above) and
after (figure below) augmenting the marital status attribute.

attributes with values gray and light. Additionally, even data
distribution is crucial to reduce bias in learned models. The
sensitive information classes in the CPA dataset are unevenly
distributed, as shown in Figure 1 (a). Income is the only
attribute that follows a normal distribution, with all the others
being irregular in shape. Particularly concerning are the
education, # of kids at home and # of teens at home attributes,
which have particularly skewed distributions and risk becom-
ing underrepresented in a fit model. To overcome this obsta-
cle, classes can be balanced by re-sampling the dataset with
a sampling probability skewed towards records from under-
represented classes, and the result is shown in Figure 1 (b).

The main idea behind rearranging attributes is to have
only a few possible values per attributed and have them be
semantically interpretable. This can ensure a more uniform
distribution of samples across attribute values, thus increasing
the generalization of models that fit such data.

C. VALUES SEMANTIC AUGMENTATION
The meat of a dataset is the data it contains. If attribute
definitions can be semantically augmented, so can attribute
values (and to a larger extent). A dataset’s values that
can be semantically augmented are those belonging to one
of two categories: categorical and cyclical. We define the
process of incorporating external knowledge to the values
of an attribute as value semantics injection. This is the
potentially most powerful semantic augmentation task as it
allows very large amounts of external data to be encoded in a
dataset. We describe each of the two semantically augmented
categories below.

1) CATEGORICAL ATTRIBUTES
These are the ones with the most potential to be semantically
augmented. The simplest form of augmentation, in this case,
is merging attribute values that are semantically equivalent

into one. The intuition behind this augmentation is similar
to the splitting of attributes described above: if an attribute
has a lot of values, its distribution is more likely to be
non-uniform than if the same attribute had fewer possible
values. This can improve a model’s generalization and
reduce its susceptibility to underrepresented samples. In the
CPA dataset the education attribute can take on one of
5 values: Diploma, Bachelor’s, Master, 2nd Cycle, PhD.
However, a 2nd cycle degree is the equivalent to a Master’s
degree in Europe according to the Bologna proceedings [14].
Therefore, we merge the two attribute values onto a single
Master value.
The second and most potent augmentation for categorical

attributes is the injection of the actual semantics for its
values. Some Natural Language Processing models, such
as Word2Vec [15], [16], learn vectorized representations
of words in a semantic space, where the relative location
between two-word vectors is telling of how they are
related, highlighting synonyms, changes in gender, and
semantically close terms. This information can be used to
replace categorical attribute values with their corresponding
semantic vectors, greatly reducing the training cost and
highlighting correlations that would otherwise require much
larger datasets. For instance, a neural network model may
need thousands of training samples to learn that chocolate
spread and Nutella are the same things, but if these were
instead represented as their corresponding semantic vectors,
their relationship would be embedded in the data. This task
can be seen as the integration of a feature map learned
separately (such as Word2Vec) into the data to be fed to
another neural network for a different task.

Finally, some categorical attributes carry an implicit
ordering and they can therefore be represented accordingly.
For example, education is progressive in nature: a Bachelor’s
comes after a Diploma, a Ph.D. after a Master’s and a Bach-
elor’s, and so on. Knowledge about this progression can be
injected into the data by converting the categorical values into
numerical, with numbers from 0 to 4 for Diploma to Ph.D.

2) CYCLICAL ATTRIBUTES
Numerical or categorical attributes that represent cyclical
entities can and should be semantically augmented. These
attributes often do not carry the information about their cyclic
nature, thus not representing the actual distance between
their values. For instance, the month of December is very
close to January, but if they were encoded as a numerical
attribute their values would be on the opposite ends of
the attribute range (12 and 1), signifying a large distance
that is actually not true. Similarly, if they were encoded as
categorical attributes, the distance between any two months
would be the same, thus also not representing the semantics
of months.

Semantically augmenting these attributes can be done
with existing techniques, such as sine-cosine curve descrip-
tors [17]. A cyclical attribute’s values can be intuitively
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distributed uniformly on a circle, and the x and y coordinates
of each value be used as the encoding of said value, which can
be calculated as the cosine and sine of the point on the circle.
The result is a combination of two attributes that describes the
distance properties between any two values to an acceptable
level of truth. We apply this technique to the CPA dataset
by splitting the join date attribute into a join year and a join
month attributes, and make the month cyclical.

D. A PRIORI KNOWLEDGE INJECTION
Tangible entities have such a vast array of properties that
datasets cannot possibly describe them. Human beings learn
the properties of the objects around them through years of
experience and data collection. Many of these properties are
part of our implicit understanding of the world, while a few
others are explicitly defined rules and properties. Datasets,
by nature, cannot contain this kind of information. It is
possible, however, to augment data in such a way as to infuse
it with our understanding of things.

1) IN-DOMAIN PROPERTIES
When we think of a cat, we know what it looks like: has
four legs, likely has fur, runs fast and jumps high, and
makes a buzz when feeling comfortable. We also know
that a cat cannot be blue, or purple, but it can be red,
white, or black and that it cannot have two tails, but it can
have one or none. These are tangible properties that can be
implicitly embedded in a dataset, similar to how humans
implicitly know them. A property can be defined as a set of
class-invariant transformations for some (or all) the values of
an attribute. Then, a dataset can be semantically augmented
by generating new examples from existing ones by applying
the transformations in a property. Referring to the previous
example, a cat image can be flipped, rotated, changed the
fur color to a different one, or removed the tail, without the
sample ever being shifted to a different class.

A special kind of class-invariant transformation is the
addition of noise. Knowing that minor noise in a record is
acceptable and does not change its label is itself a form of
a priori knowledge. Augmenting a dataset by introducing
noisy samples is essentially equivalent to instructing a model
to ignore minor variances in samples’ values. In relation
to the CPA dataset, there is likely a small error in the
amounts ofmoney spent in each category due to price changes
throughout the year, seasonality of products, and discounts
used. We incorporate this a priori knowledge by generating
synthetic samples from the real dataset distribution with a
small, normally distributed, additive random noise applied
to all the amounts and shares categories (for both purchase
locations and purchase categories).

2) DOMAIN-LIMITING PROPERTIES
There are attributes whose properties limit the values they
can take, and this information can be embedded in data.
A data analyst can define domain-limiting rules by setting
the boundaries within which attributes can take values and

within which variance is significant. With regards to values,
a property that defines the numerical range of an attribute’s
values can be applied by removing all records in the dataset
that do not meet the property, and then 0-1 normalizing
the values according to the range in the property. What
distinguishes this task from traditional normalization is the
definition of properties independently from the recorded data:
in traditional 0-1 normalization, the range values are taken
from the actual min and max values registered in the dataset,
whereas in our semantic augmentation framework they must
be manually defined, and can ‘‘override’’ registered values by
dropping the records that do not satisfy set properties.

On a similar note to class-invariant transformations,
a property can be defined as the (in)precision to which
variance in the values of a sample is insignificant. This is
another form of knowledge injection because it allows a data
analyst to instruct a model to consider two close values to
be the same (which is sometimes not the case, especially
with deep learning models). For a practical example, the
velocity of a car can likely be expressed in miles per hour
without any decimals, even if it was recorded with decimals.
Removing the decimal part is equivalent to giving a model
the knowledge that the decimals in the speed of a car are
insignificant.

IV. ATTRIBUTE INFERENCE MODELS
For attribute inference attacks we train four machine learning
models to predict sensitive information from the shopping
statistics of customers. The attributes to predict are age,
education level, income, number of children at home, and
marital status.

70% of the available samples (1568 records) have been
randomly selected for training, leaving the remaining 30% for
testing. All input features for the models are 0-1 normalized
based on the min and max values found in the training set. For
each parameter map for a given model, training is performed
following a 5-fold cross-validation procedure on the train set,
and the average of the 5 runs is used for deciding which
configuration is best. All models are evaluated using the
Mean Squared Error (MSE) evaluation metric, computed on
the left out set from the 5-fold split in each run, whereas the
training loss function is dependent on the hyperparameter for
each run.

Following is a brief description of the differentmodels used
for the inference attacks, with an intuitive explanation for
the choice of their configuration parameters. Table 1 shows
a summary of the models and parameters used.

A. GRADIENT BOOSTING
Gradient boosting is a machine learning model used for both
classification and regression tasks, a technique to convert
many weak learners into a single strong one. It is built as an
ensemble of many weak prediction models, such as decision
trees (in which case, the model is referred to as a gradient-
boosting tree), in a staged fashion. At each iteration, a new
weak classifier is fit to a subset of the training set.
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TABLE 1. Summary of the parameters used for the four proposed
ML-based attribute inference models. Bold values are those that yield the
best average accuracy across all attributes.

In our experiments we explore three hyperparameters for
the gradient boosting algorithm, as follows:

• criterion is the loss function used to evaluate the model’s
fit to the train data. We use Mean Absolute Error (MAE)
and MSE as criteria. The first takes an average of all the
differences between the predicted and true target values,
while the second takes the mean of their squares. MAE
is more robust to outliers, andMSE includes information
on both the variance and the bias of an estimator.

• n_estimators is the number of weak classifiers used
in the sequential tree structure that makes the gradient
boost machine.

• subsample is the relative size of the subsets of train
samples used for training each tree.

B. RANDOM FOREST
Random Forests are ensemble models similar to Gradient
Boosting, but with a few key differences. As gradient
boosting, a forest uses many weak tree models to make one
strong classifier (or regressor). The uncorrelation between the
individual weak classifiers is what makes them useful as a
whole, as each weight features differently and the errors of
the few are corrected by the accuracy of the many. Contrarily
to Gradient boosting, which is built and used sequentially,
random forests train and use trees concurrently, and the mean
of the predictions of the weak classifiers is used for the overall
output.

For random forests we experiment with changing the
following hyperparameters:

• criterion is the fitness function that the model uses to
determine the best split at a node. Squared error tries
to minimize the errors between predictions and outputs,
whereas with Poisson the model looks for the split that
most reduces the Poisson deviance.

• n_estimators is the number of trees in the forest.
• min_samples_split is the minimum number of samples
that must be in a node to make that node eligible to
be split; decimal values indicate a percentage of the
dataset, while integer values indicate exactly how many
records are necessary for a node to be considered for
splitting.

C. SUPPORT VECTOR REGRESSION
Support Vector Machines (SVMs) are supervised machine
learning models for classification and regression tasks. For
the simplest task of binary classification, an SVM learns a
mapping to a feature space in which it finds a plane that
separates the mapped samples in two groups. Finding wide
planar gaps between the two categories is how the model
better fits the training data. SMVs can be used for regression
tasks too and maintain all features that characterize them,
such as the maximal margin method: in this case they take
the name Support Vector Regressor (SVR). SVRs use a
parameter ϵ to modulate how closely the model fits to the
training data by ignoring all errors equal to or smaller than ϵ.

We explore three hyperparamters for the support vector
machine regression model:

• epsilon controls how much error can be ignored for each
training sample.

• kernel is the type of kernel used by the SVM.
• loss is the loss function used for calculating the training
error.

• C is the regularization parameter, which shapes how
punitive is the penalty for the training error. A large
value ofCmakes themargin separating values on a plane
smaller, so that more training samples are classified
correctly, but may not perform well in testing; the
opposite holds true for smaller C values.

D. DEEP NEURAL NETWORK
A kind of artificial neural network (ANN), deep neural
networks (DNNs) have multiple network layers between the
input and output. All DNNs are built with the same set of
components: neurons, synapses, weights, biases, and loss
functions. These components make DNNs similar to the
human brain and allow them to be trained as a traditional
machine learning model.

We explore the following hyperparameters:

• solver is the method used to update the weights. Adam
is a stochastic gradient descent optimizer that computes
an exponential moving average of the gradients (with
decay rates) with respect to the parameters separately
and updates them accordingly. With limited-memory
BFGS (L-BFGS) a matrix of second partial derivatives
(an inverse Hessian matrix) is computed to describe the
loss function around a point in the model’s parameters
space. This memory-limited version only approximates
the matrix, which is particularly expensive to compute,
by calculating only small sections of it in a sequential
manner.

• max_iter is the maximum number of training itera-
tions/epochs allowed to the model.

• hidden_layer_size controls the internal structure of the
neural network. An example of network topology with
two hidden layers of size 10 and 5 is [10, 5].

• activation is the activation function used in all the layers
(but the last) the model. tanhmaps any value to a [−1, 1]
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range, whereas ReLU sets all negative values to 0 (and
so has oututs in range [0, ∞]).

• learning_rate_init is the learning rate used by the solver.

V. EVALUATION
Attribute inference attacks are executed to discover the
quasi-identifiers of customers that we suppose a datamanager
would suppress. This section provides the accuracy of the
models described in the previous section, and we compare
them to two baselines, showing that even a dumb classifier
performs better on augmented data. Evaluation is carried out
on the 30% of records left out from the training set.

The accuracy of a model for an attribute is computed
differently depending on the nature of the attribute. For
education, it is important that a prediction is as close to
the true label as possible. We, therefore, use the following
equation to measure the accuracy with respect to a single
sample, where y is the true label of a sample and φ(x) is the
model’s prediction for that same sample:

Aeducation = 1 − |y− φ(x)| (1)

For the income and age attributes we use the relative error
because the same absolute prediction error is less important
for higher true values than it is for lower ones, and the
attribute is continuous in nature. The accuracy is therefore
defined as:

Aincome = 1 −
|y− φ(x)|

y
(2)

The accuracy for the two binary attributes and the
two remaining numerical attributes is computed by check-
ing whether the predicted values match the true values
or not. Before making this check, numerical values are
de-normalized and rounded to integers.

Aothers =

{
1 if y = φ(x)
0 otherwise

(3)

Following is a description of the baseline methods used,
and then the results are discussed.
Random Baseline: The first baseline proposed makes

predictions at random. In the case of binary attributes, its
accuracy is equal to 50%. For continuous-valued attributes,
namely income, its accuracy depends on the distributions of
target values themselves.
Statistical Baseline: A more informed baseline is also

discussed. Instead of guessing targets at random, the mode
or mean of each attribute is used for all outputs (depending
on which one is applicable). The accuracy then becomes
dependent on the distribution of the targets, and in binary
attributes, it is equal to the percentage of samples in the
majority class.

A. RESULTS
This subsection explores the performance of the various
proposed methods, including baselines and ML-based ones,
to understand the usefulness of our semantic augmentation
method.

TABLE 2. Accuracy of inferring target attributes with the statistical model
on data before and after augmentation.

FIGURE 3. Comparison of the accuracy of the proposed models in
predicting the sensitive attributes suppressed from the store customers
dataset.

1) SEMANTIC AUGMENTATION EFFECT
We first show how semantically augmenting samples has
an effect on the accuracy of a baseline classifier. Table 2
shows the prediction accuracy for the various target attributes
of the statistical baseline model on the original and on the
augmented test set. Significant improvements can be seen
for education and marital status/single + married attributes,
which are the ones that have been augmented the most.
On average, the accuracy of the statistical model improved
from 43% to 53% after augmentation.

2) ATTRIBUTE INFERENCE ATTACKS
The graph in Figure 3 compares the prediction accuracy of
the proposed machine learning models against the statistical
baseline model introduced earlier, highlighting the power of
our semantic augmentation framework when exploited with
machine learning. For each learned model type, the graph
shows the results of the one configuration which performed
best on average in training with 5-fold cross-validation (see
Table 1 to check the best configurations).

Overall, all ML-based models perform better than the two
baselines. Depending on the attribute to predict, different
models perform best, with a general bias towards gradient
boosting and random forests. Random forests, in fact, predict
best the education, children, and marital status attributes,
with an accuracy of 80% for the first two and 60% for the
latter. Income is best predicted by deep neural networks, also
with an 80% accuracy, and a support vector regression model
is best at predicting the age with an 81% accuracy.

Of the four proposed ML-based attribute inference models
two are explainable. The graphs in Figure 5 and Figure 4
show how important each feature was in the prediction of
the six sensitive attributes for the gradient boosting and
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FIGURE 4. Importance of the input features in determining the sensitive
attributes for the best Random Forest models.

FIGURE 5. Importance of the input features in determining the sensitive
attributes for the best Gradient Boosting models.

random forest models. The attributes resulting from the
value semantics injection augmentation are consistently the
most important in making predictions, further proving how
semantically augmenting the data with our model has a
positive impact on the amount of information that can be
extracted from it.

VI. CONCLUSION
In general, information about the marital status of the store’s
customers proved to be more difficult to infer, while the
number of children in the household, the education level,
and the income were the easiest to predict, with an accuracy
of around 80%. This level of precision in determining the
personal, sensitive information of users from an anonymized
dataset calls for action in studying new anonymization
techniques that can more robustly ensure privacy.

Potential mitigation methods that could promote higher
privacy levels can be looked for in the fields of adversarial
machine learning and statistics. A possible statistical method
could be to approximate which attributes, values or records
contribute more to the inference accuracy of ML models
(similarly to how we show in Figures 5 and 4), and reduce
the variance for those attributes or values. A similar approach
may be taken with Adversarial ML. A model can be trained
to learn a feature mapping from the dataset attributes to a new
manifold where clustering algorithms can be used to perform
inference. Then, such a model could be used to generate
adversarial examples to insert in the dataset before publishing
it, with the potential result to make it harder for new models
to be trained on it. We leave this exploration to future works.

Security and privacy in machine learning are two-sided
coins: for every improvement in ML, new defense mech-
anisms need to be studied to promote privacy, and so for
every new potential security threat new ML techniques need
development. An additional future work that we are therefore
interested in is applying our model to set-valued datasets,
which have the potential to be semantically augmented even
further.
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