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ABSTRACT For a long-term complex Action, it is typically composed of various short-term Actions.
The speed and importance of these short-term Actions directly affect the recognition results. Current
two-stream neural networks have already achieved good recognition results on Action recognition datasets.
However, previous two-stream networks have focused more on Action modeling, neglecting the impact of
the speed and importance of different short-term Actions on the results of Action recognition. This has
directly limited the model’s ability to model different short-term Actions, thereby affecting the effectiveness
of Action recognition. To address this issue, this paper proposes a Short-term Action Spatio-Temporal
Attention (STASTA) module based on the two-stream network structure. The STASTA module is capable
of focusing on the differences in importance and speed between different short-term Actions. By extracting
the differences in importance and speed of different short-term Actions in the video and then fusing the
features, the aim is to enrich spatio-temporal features and improve Action recognition performance. The
proposed method is evaluated on the Something-Something v1 & v2 and Charades datasets. A large number
of experimental results indicate that the method proposed in this paper achieves state-of-the-arts results
among video Action recognition methods.

INDEX TERMS Short-term action, two-stream CNN, action visual tempo, action visual importance, video
action recognition.

I. INTRODUCTION
Video action recognition is one of the most challenging
tasks in the field of computer vision [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10]. The aim of video action recognition
is to extract a large amount of action information from
the raw video through effective spatio-temporal modeling
techniques. In real life, a long video action is typically
composed of multiple short-term actions. These short-term
actions influence the longer action in two main aspects: first,
the longer action appears differently due to the varying speeds
of the short-term actions; and second, different short-term
actions exhibit different levels of importance for the final
judgment of the longer action. These short-term actions
typically appear in the video as consecutive video frames;
they provide rich content information for the final video
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action recognition. For example, in the video action of ‘‘a
person opens the fridge, drinks milk, and closes the fridge,’’
there are multiple short-term activities such as ‘‘walking
to the fridge,’’ ‘‘opening the fridge door,’’ ‘‘taking out the
milk bottle,’’ ‘‘opening the milk cap,’’ ‘‘drinking milk,’’
and ‘‘closing the fridge door.’’ These short-term activities
provide rich content information for the final recognition
result. But these short-term activities differ in importance;
Compared to other short-term activities, walking to the
refrigerator is relatively less important. For instance, ‘‘a
person throws a cushion at another person’’ and ‘‘a person
hands a cushion to another person.’’ Although both include
short-term movement Actions such as ‘‘a person raises the
cushion,’’ ‘‘the cushion moves,’’ and ‘‘another person holds
the cushion,’’ the speed of the cushion’s movement is not
the same; the speed of the ‘‘throwing’’ action is faster than
that of the ‘‘passing.’’ From the two examples above, we can
see that in order to accurately recognize a video action,
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it is necessary to fully consider the importance of multiple
short-term actions and the issue of movement speed for
different short-term actions. Therefore, effectively modeling
the information of these short-term actions is an important
aspect of video action recognition.

Recently, some methods have been proposed to address
these issues [3], [6], [11], [12], [13]. SlowFast [12] By using
two parallel Convolutional Neural Networks to analyze video
clips, two distinct pathways are established for the purpose
of video action recognition. The slow pathway functions
at a reduced frame rate, whereas the fast pathway operates
at an elevated frame rate. The skeleton network adeptly
merges the fast and slow streams of information, resulting
in a substantial enhancement of performance across both
temporal dimensions for the processed Action instances.
However, this method does not fully consider the impact
of fine-grained features in low-level features on the Action.
Additionally, using different frame sampling rates leads to
relatively high computational complexity. TCM [3] extract
motion speed features from low-level features and analyze
global expression features through speed variations. TCM
resolves the issue of classifying Actions with high similarity
in speed variations and actions. However, this method does
not fully consider the impact of different factors in the
importance of short-term activities on Action recognition,
limiting the model’s capacity to model multiple short-
term activities. TPN [11] constructs a temporal pyramid to
obtain visual speed information at the feature level. TPN
has demonstrated sustained enhancements on certain action
datasets, yet they place an undue burden on the temporal
modeling prowess of the estimation network, which limits
the ability to capture low-level features and thus affects the
results of action recognition. These excellent network models
can effectively model actions and speed, but they ignore
the importance and speed of different short-term activities,
leading to a limitation in the ability to model multiple short-
term activities. Recently, FSformer [13] uses an optimized
Transformer approach to learn the importance of different
short-term activities and achieves good accuracy for Actions
containing multiple short-term activities. FSformer divides
the input into high-frame and low-frame video paths, and
the proposed model separates spatial features from temporal
features, fusing spatial features into temporal features
through an attention mechanism. The model achieves the best
results in video action recognition performance, but it only
separates high and low video frames overall without fully
considering the impact of different short-term Action visual
speeds within video frames on action recognition. Inspired
by these observations, we consider designing a model on a
two-stream network to extract visual speed and importance
features of different short-term Actions, thereby achieving
the goal of improving recognition accuracy and reducing
computational overhead.

To address the issue of insufficient extraction of short-term
actions features in existing models, this paper designs a
two module architecture based on a two-stream network,

seeking a balance between computational accuracy and
computational overhead. In the first module, the model fully
considers the features of the importance of short-term activi-
ties. In the second module, the model is designed to consider
the speed variation features of different short-term actions.
Finally, residual connections are used to fuse the features,
and the fused features are used as the input for Action
classification, which is performed by a classification model.
To demonstrate the effectiveness of the model, we implement
it using ResNets. Experiments were conducted on the
Something-Something v1 & V2 [14] and Charades [15], and
the comparison results with recent state-of-the-arts models
are shown in Fig.1. With a relatively small sacrifice in
computational cost, we achieved the best recognition results.
We also performed ablation experiments and visualization
analysis, which fully demonstrated the effectiveness of each
module of the proposed model. As summarized, our main
contributions include the following three points:

FIGURE 1. Comparison of Top 1 values for video action classification on
the Something-Something V1 dataset, along with computational
complexity and model size.

• We designed the Short-term Action Spatio-Temporal
Attention network architecture to capture pixel-level
fine-grained temporal dynamics information, including
both slow visual tempo and fast visual tempo actions.
This addresses the issue of inaccurate recognition
that arises from previous two-stream network methods
neglecting the impact of the speed and importance of
different short-term actions on the results of action
recognition.

• We proposed the Short-Term Action Feature Attention
and Fast-Slow Feature Fusion (ST-AFS-FF) module and
the Displacement Map Temporal Attention (DM-TA)
module. The ST-AFS-FF module is an action recogni-
tion module that can learn the different importance of
various short-term action features. The DM-TA module
is a module that can learn pixel-level action feature
information and enhance the expression capability of
temporal features; it can effectively capture the visual
speed information of different short-term actions.
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• We evaluate the proposed method on two challenging
action datasets: Something-Something v1 & v2 and
Charades. Experimental results show that we achieved
state-of-the-arts performance.

II. RELATED WORK
A. VIDEO ACTION RECOGNITION
At present, deep learning methods [16], [17], [18], [19],
[20], [21], [22], [23] are the mainstream in video action
recognition. The prevailing deep learning methodologies can
be broadly categorized into two distinct realms: the first
being 3DConvolutional Neural Networks, and the second, 2D
Convolutional Neural Networks. 3D Convolutional Neural
Networks model spatial and temporal semantic information
through 3D convolutional kernels. Additionally, to enhance
performance, many related variants have emerged [4],
[24], [25], [26]. Among these, the most famous is the
Non-local [4]. The Non-local network utilizes a non-local
operation to better leverage long-range temporal dynamics
information. However, the biggest drawback of 3D models
is their high computational demand, which requires excessive
computational resources. 2D Convolutional Neural Networks
use 2D kernels to obtain spatial semantic information and
then aggregate temporal dynamic information through a
module [27], [28], [29], [30]. The most famous 2D Con-
volutional Neural Network is the two-stream network [31].
In the two-stream network, one stream is used to learn
RGB appearance feature information, while the other stream
is used to learn optical flow motion feature information.
Finally, the spatiotemporal information is aggregated through
average pooling. Scholars have researched and developed
numerous models based on this design to enhance the feature
extraction capabilities of temporal information [10], [30],
[32]. TEA [30] calculates the temporal differences in the
feature layers from spatiotemporal features, and uses these
differences to enhance the channels in the feature map that are
related to motion information. MotionSqueeze [32] proposes
an internal and lightweight motion feature learning module
that can effectively extract motion features while reducing the
computational cost more effectively than optical flow feature
extraction. AGPN [9] is an Action Granularity Pyramid
Network; AGPN can effectively utilize multi-granular spa-
tiotemporal information of Actions; it has good recognition
effects for Action identification of complex spatiotemporal
content information; this model pays more attention to
the fine-grained information in spatiotemporal information.
MVFNet [10] is a visual fusion network that strives to
balance the performance and efficiency metrics of the model;
however, MVFNet does not consider the importance of
the correlation between multi-scale spatiotemporal features
for action recognition. TDN [33] can effectively obtain
multi-scale temporal information; it can make full use of
temporal difference operations and systematically evaluate
their impact in short-term and long-term motion models.
TDN aggregates short-term features into long-term features,
resulting in an inability to effectively extract short-term

features. In summary, although these methods provide the
ability to learn fine-grained temporal dynamics of adjacent
frames, they all neglect the learning ability of motion visual
speed, a key element.

B. VIDEO ACTION SPEED LEARNING MODEL
Recently, scholars have proposed a large number of models
for video action speed learning [3], [6], [11], [12], [13].
SlowFast [12] uses two pathways, slow and fast, to represent
motion visual speed. Features from both pathways are
processed separately, and then temporal information features
are integrated into spatial information features through lateral
connections. Although this approach improves accuracy, the
presence of multiple branch networks leads to excessive
computational complexity. Additionally, it does not make
full use of the varying importance of short-term actions
and the different features of action speed in different
Actions, resulting in less than ideal effects for long Actions
containing multiple short-term actions. TPN [11] proposes
a temporal residual network based on feature layers that
can be easily integrated into 2D or 3D skeleton networks,
capable of effectively obtaining features of Action instances
at different speeds. However, TPN highly depends on the
temporal modeling capabilities of the skeleton network,
which greatly limits its performance. TPN cannot utilize
low-level features and cannot make full use of long-range,
fine-grained temporal dynamics features from higher levels
at a distance. To address this issue, correlation operations can
be used to establish pixel-level matching values for features
at different scales and utilize the information of motion
visual speed in the video. FSformer [13] uses a temporal
convolutional network to encode the original video, taking
the fast and slow paths of RGB as input, and distinguishes the
importance of short-termmovements in video actions through
different attentionmodules for short-termActions, effectively
enhancing the accuracy of action recognition. However, the
model does not consider the impact of different short-term
Action speeds on the action recognition results, and the input
of dual-path frame resolution increases the computational
complexity of the model. Inspired by this model, to address
the issue that existing two-stream network models do not
fully consider the different importance of short-term Actions
and the insufficient modeling capabilities of the overall
Action recognition due to the different speeds of short-term
Actions, we propose using correlation operations to establish
pixel-level matching values for features at different scales.
We extract the importance of different short-term activities
from the features of the fast and slow paths, followed by
feature fusion. The processed features are input into a motion
estimation feature attention module to extract features of
different short-termmotion speeds. Finally, the fused features
and the original features are connected residually for output.

III. THE APPROACH
The overall architecture of video action recognition is shown
in Fig.2 Below, we will describe our proposed method in
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detail. First, the visual content of the input video is processed
through a temporal action skeleton network(I3D [34])
encoded into a sequence of features; Temporal dynamics
features at fast and slow speeds are extracted from the
feature sequence using correlation operations. Then, the
extracted fast and slow temporal features are input into
our core module, the Short-Term Action Spatial-Temporal
Attention Module. The module is mainly composed of the
Short-Term Action Feature Attention and Fast-Slow Feature
Fusion (ST-AFS-FF) module and the Displacement Map
Temporal Attention (DM-TA) module. The ST-AFS-FFmod-
ule primarily learns the different importance of short-term
Actions on the slow temporal features and then fuses them
into the fast temporal features. Finally, it merges the sequence
features of the two speeds. The DM-TA module mainly
accomplishes the acquisition of visual speed information for
short-term Actions. It takes the slow temporal features and
fast temporal features generated by the ST-AFS-FF as inputs
for the DM-TAmodule to estimate the visual speed similarity,
deciding the most effective visual speed information. Finally,
the fusedAction visual features and the original input features
are merged as the input for the final result prediction.

FIGURE 2. Overall architecture of the STASTA model.

A. ST-AFS-FF MODULE
The ST-AFS-FF module is an action recognition module
that can learn the different importance of various short-term
motion features. These motion features are densely dis-
tributed throughout the video frames, providing rich semantic
information, which is precisely these short semantic snippets
that constitute the long-range motion Action information.
We encode the features of the slow path and the fast path into
input features for different temporal dimensions T through
the action recognition network. Then, we use the ST-AFS-FF
module to learn the different importance of short-term
Actions within these input features. The architecture of the
ST-AFS-FF module is shown in Fig.3.

1) ST-ATA MODULE
The Short-Term Action Feature Attention Module (ST-ATA)
is capable of effectively learning the importance of different
short-term Actions, dividing them into positive correlations
and negative correlations. The ST-ATA module takes slow
features as input because they possess higher spatial features
compared to fast features, which enables the provision of
more abundant motion and semantic information, thus better
distinguishing between positive and negative correlations.
As shown in the lower left part of Fig.3, the ST-ATA

FIGURE 3. Architecture of the ST-AFS-FF module. The upper part includes
the ST-ATA module and the FS-FF module. The lower part shows the
detailed structure of the ST-ATA and FS-FF modules.

includes an up-sampling layer, a linear layer projection, and
a temporal convolution layer. The up-sampling layer’s role
is to convert the temporal dimensions of the slow features
to the same dimensionality as the fast feature temporal
dimensions. The linear layer projection is used to project the
channel size to match the fast features. Finally, the temporal
convolution layer generates attention weights within the
features. These generated weights are applied to the fast
feature path features through matrix addition operations, thus
completing the internal feature attention mechanism. The
ST-ATA module distinguishes the importance of different
short-term Actions by adding more biases at the beginning
of the path. This approach enables the model to focus
more on learning short-term Action feature information that
is positively correlated with the action recognition results,
thereby achieving a more effective action recognition model.

2) FS-FF MODULE
The Fast and Slow Feature Fusion (FS-FF) module is
designed to integrate the original features from the input slow
path and the fused features from the ST-ATA module from
a global perspective, in order to better learn the semantic
information of motion. As shown in the lower right part
of Fig.2, the FS-FF module mainly includes a linear layer,
a Softmax layer, and a LayerNorm layer. The module uses
residual connections to fuse the original features with the
processed features. The input to the FS-FF module is the
output of the ST-ATA module and the original features
from the slow path. The original slow path features need
to be upsampled first to match the temporal dimensions
of the fast path features. After linear layer projection, two
feature matrices are generated. The features processed by the
Softmax layer serve as an intermediate layer, ensuring that
the relevance of all input features is calculated. This achieves
the calculation of the correlation between each input feature
and the fused features from the ST-ATA module through
the FS-FF module. Then, the LayerNorm layer enables the
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model to maintain stable training. Finally, by using residual
connections to fuse the input features from both paths with
the output of the LayerNorm, the module maximizes the
utilization of spatiotemporal feature information.

B. DM-TA MODULE
The Displacement Map Temporal Attention (DM-TA) mod-
ule is a module that can learn pixel-level motion feature infor-
mation and enhance temporal feature expression, effectively
capturing visual speed information of different short-term
activities. By utilizing temporal cross-interaction operations
to supervise the supervision of unimportant information, fol-
lowed by 1D temporal convolution operations, the obtained
action visual features and the original input features are
connected through residual connections, which serve as the
final prediction inputs. The detailed structure of the model is
shown in Fig.4.

FIGURE 4. Architecture of the DM-TA module. It mainly includes the
displacement map module and the temporal attention module.

1) DISPLACEMENT MAP
The Displacement Map includes slow spatial information
and temporal motion information that can distinguish the
importance of short-term actions. In order to have the
ability to estimate motion features, it is necessary to
establish associations between various cross-features and
direct features. Following themethod ofMotionSqueeze [32],
this can be completed by calculating the confidence map
extracted from the fused temporal feature and its motion
information. The two-channel fused temporal feature and
the single-channel confidence map are connected to generate
the Displacement Map. Finally, the temporal dimension is
transformed to unify the temporal dimensions.

2) TA MODULE
The goal of the Temporal Attention (TA) module is to
utilize the temporal dynamic information generated by the
Displacement Map to enhance the distinguishability of
unimportant temporal dynamic interaction features. First,
four convolutional layers are used to transform the input
Displacement Map. This transformation can enhance the
visual speed features. After global pooling, the spatial

information is summarized to obtain attention weights, which
can activate channels sensitive to motion information. Cross-
temporal interaction ensures that while motion information
is enhanced, direct interactions between temporal channels
are also established. After temporal convolution operations,
weights for the temporal information are generated. Finally,
the generated features are fused with the original features
through element-wise multiplication, creating features with
a temporal attention mechanism. Processing through this
module can effectively enhance fast and slow visual speed
information while suppressing unimportant information,
achieving the purpose of extracting features of visual speed
for different short-term actions.

IV. EXPERIMENTS
A. DATASETS
Something-Something V1 & V2 [15]. The dataset is a
collection of large numbers of annotated video clips that
demonstrate people performing predefined basic actions
with everyday items. This dataset was created by a large
number of people, and these actions occur in the real world,
allowing machine learning models to develop a fine-grained
understanding of basic actions. Since the dataset mainly
involves interactions between people and everyday items,
it requires the model to pay more attention to the details
of temporal information. Our method mainly focuses on
experimentation and evaluation on Something-Something
V1&V2, and we only report our results on the Charades
dataset to demonstrate the generalization ability of ourmodel.

Charades [14]. The dataset consists mainly of indoor
activities from daily life, with an average video length of
30 seconds. It involves interactions with 46 object classes in
15 indoor scenes and includes 157 action classes. Due to the
continuous changes in time and different actions, it becomes
a very challenging dataset. The videos contain temporary
repetitive actions, requiring the model to predict multiple
categories within the videos and to predict the importance of
these categories.

B. IMPLEMENTATION
We employ the same training strategy as TSM [35].
We initialize our model using the ImageNet pretrained
weights of ResNet50 [36]. For the Something-Something V1
& V2 datasets, the training parameters are as follows: the
number of iterations is 50, the batch size is 32, the initial
learning rate is 0.01 (decreasing by 0.1 at iterations 30, 40,
and 45), the weight decay is 5e-4, and the dropout rate is
0.5. All experimental implementations were using Pytorch on
ubuntu system with a single RTX 3090 GPU.

C. COMPARISON WITH STATE-OF-THE ARTS
In this section, we compare the performance of our
model with the best-performing model methods on the
Something-Something V1 & V2 and Charades datasets. The
experimental results include accuracy (Top-1, Top-5, mAP),

VOLUME 12, 2024 30871



L. Ting-Long: Short-Term Action Learning for Video Action Recognition

TABLE 1. Compares the best performance on the Something-Something V1 & V2 datasets. Most results are copied from the corresponding references.
A dash ‘‘-’’ indicates that the result is not provided in the reference.

the number of frames (Frame), floating-point operations
per clip (FLOPs×clips), and the number of parameters
(Params). As shown in Table.1 and Table.2. Table.1 shows
the performance of the latest 26 action recognition methods
on the Something-Something V1 & V2 datasets. The table
is divided into three parts: the top section represents the
3D convolutional neural network model, the middle section
represents the 2D convolutional neural network model, and
the bottom section represents our proposed neural network
model. Under no additional conditions, the accuracy of our
method on the Something-Something V1 dataset reached
57.9%, exceeding the TSM, TDN, and TCM methods by at
least 0.7%, 1.5%, 2.2%, and 7% respectively when the input
frame is 8. Furthermore, compared to the basic method of
3D models, such as 3D DenseNet121 with 16 frames input,
our method improves Top-1 accuracy by 4.3% (54.5% VS.
50.2%) on the Something-Something V1 dataset and by 3.2%
(66.1% vs. 62.9%) on the Something-Something V2 dataset.
Compared to RubiksNet, the performance is enhanced by
7.4% (53.8% vs. 46.4%) and 6% (64.8% vs. 58.8%).
In comparison with the I3D series models on the Something-
Something V1 dataset, our model achieves a higher Top-1
accuracy under the highest floating-point operation scenario,
which is 1.8% higher than the highest Top-1 value of
NL-I3D+GCN, while requiring fewer floating-point
operations (118G vs. 303G).

TABLE 2. Compares the results with the best methods on the Charades
dataset.

Table.2 presents a comparison of the performance of
our model and the latest state-of-the-arts action recognition
models on the Charades dataset. It can be clearly observed
that our model achieves outstanding performance. First,
the evaluation accuracy of our 8-frame input network
surpasses that of the 64-frame I3D method (mAP: 39.5%
vs. 32.9%);

When compared to the SlowFast-R101 model, we find
that with a 0.6% improvement in accuracy (mAP: 39.5% vs.
38.9%), the GFLOPs are reduced by more than two times
(40G vs. 96.8G). In addition, the results of Two-stream CNN
and TGM demonstrate that they are not effective in handling
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videoswithmultiple action labels. These results show that our
model is more precise and effective in modeling the temporal
information for classifyingmultiple short-term actions.When
the input frame is 16, the average accuracy of our model
reaches 41.3%. This is because the additional input frames
enrich the temporal information. Temporal information plays
a crucial role in the dataset.

To further analyze the performance of our model, we con-
ducted a comparative analysis based on the model’s pathway
categories. First, we compared methods that aggregate
short-term and long-term temporal features along a single
pathway, such as TDN. The results in Table.1 show that our
method outperforms TDN on both the Something-Something
V1 & V2 datasets. Then, we compared our method with
those that use visual speed, such as SlowFast and TCM. The
results indicate that our model exhibits a greater performance
improvement over these methods. These experimental results
suggest that the proposed method can effectively extract
temporal feature information of short-term movements
and distinguish between the speed and importance of
features.

D. ABLATION STUDY
In this section, we study the effectiveness of differentmodules
by conducting a series of ablation experiments. The model
uses 8 frames as input and is tested on the Something-
Something V1 dataset, with evaluation performed using the
validation set.

1) THE EFFECTIVENESS OF EACH MODULE
As shown in Table.3, we present the contribution of the two
modules introduced in this paper. From the table, it can be
observed that each of the modules we designed can improve
the performance of the baseline, but with different levels of
contribution. For the first module, Short-TermAction Feature
Attention and Fast-Slow Feature Fusion (ST-AFS-FF), the
addition of this module increases the Top-1 value from
52.2% to 53.4%, a gain of 1.2%; and the Top-5 value from
62.7% to 64.1%, a gain of 1.4%. This indicates that the
module can focus on regions related to short-term actions and
make full use of spatiotemporal information to distinguish
between different action actions. When the second module,
Displacement Map Temporal Attention (DM-TA), is added
to the network alone, the Top-1 and Top-5 values improve
by 0.4% (52.6% vs. 52.2%) and 0.7% (63.4% vs. 62.7%),
respectively. The experimental results show that this module
enhances the performance of action recognition, suggesting
that it can focus on regions related to visual speed information
in short-term actions and obtain visual speed features of
different actions. Finally, by observing the last row of
the table, we find that the model achieves the maxi-
mum performance improvement after adding both modules
(Top-1: 53.8% vs. 52.2%, Top-5: 64.8% vs. 62.7%). This
result effectively demonstrates the effectiveness of the model
we propose.

TABLE 3. Performance comparison of different modules in the STASTA
model.

2) THE ORDER OF THE MODULES
We conducted ablation experiments by swapping the order
of the two modules, as shown in Table.4. We adjusted the
sequence of the modules and found that when the model’s
order is DM-TA followed by ST-AFS-FF, the Top-1 and Top-
5 values improve by 1.4% (53.6% vs. 52.2%) and 1.6%
(64.3% vs. 62.7%), respectively. When the model’s order
is ST-AFS-FF followed by DM-TA, the Top-1 and Top-5
values show an even greater improvement, reaching 1.6%
(53.8% vs. 52.2%) and 2.1% (64.8% vs. 62.7%), respectively.
The experimental results indicate that the model primarily
focuses on temporal feature information; the acquisition
of fine-grained temporal information can better enhance
performance. Placing DM-TA after the temporal features
yields the best performance.

TABLE 4. Impact of the order of modules ST-AFS-FF and DM-TA on
performance.

E. DISCUSSION
This section reviews a series of dialogues exploring the
method. Experimental findings reveal that incorporating
diverse types of datasets enhances accuracy. These results
suggest that the proposed approach exhibits a degree of
generalizability. However, current experiments have been
conducted exclusively on two-stream 2D Convolutional
Neural Networks (CNNs) and have not been extended to
3D CNNs. It is imperative to experiment with 3D CNNs to
evaluate the generalizability and performance of the method
comprehensively.

F. VISUALIZATION
We used Grad-CAM [41] to perform visualization analysis
on a video of the action ‘‘a person opens a fridge, drinks
all the milk from a pitcher, and then closes the fridge’’
in the Charades dataset. We compared our results with
three models: MultiScale TRN, I3D, and SlowFAST-R50
(8-frame input). As shown in Fig.5, the visualization results
indicate that the baseline model MultiScale TRN cannot
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FIGURE 5. Visualization of activation layer maps using Grad-CAM on the
charades dataset. The first row is the original video frames, the second
row is MultiScale TRN, the third row is I3D, the fourth row is
SlowFAST-R50-8, and the fifth row is our STASTA. We have only visualized
specific frames.

completely focus on the motion area. I3D can capture the
content of the action, but the motion location is not accurate.
SlowFAST-R50 can focus on the action content, but the
motion location and detail acquisition are not precise enough.
Our model can more accurately identify the entire motion
cycle and the specific location of actions, with a more precise
focus on the motion location. In this example, we found
that our model can track the moving hand, fridge door,
and milk throughout the video. However, other methods
cannot effectively extract motion information and moving
objects. This example shows that our method can identify
the entire motion cycle, represent coarse-grained motion
feature information, and pay more attention to multiple
short-term actions. At the same time, the specific location
of the motion can identify fine-grained action information
more accurately than other methods. This fully demonstrates
that the model can effectively obtain multi-granular action
information.

Through the visualization of the activation maps in Fig.5,
an example from the Charades dataset is shown. It can be seen
that our model performs better in recognizing multiple short-
term actions. The model is able to extract multi-granular
action information and accurately recognize even with slight
changes in movement.

V. CONCLUSION
We have proposed an innovative spatiotemporal attention
model for short-term actions to handle multiple short-term
actions in videos. The model includes the ST-AFS-FF
and DM-TA modules. The ST-AFS-FF module effec-
tively captures fine-grained temporal dynamics of different
short-term movements in temporal features, enabling dis-
crimination between action features of varying importance.
The DM-TA module effectively extracts visual velocity
features of movements at different speeds from temporal
features, enhancing effective visual velocity information by
considering cross-temporal dynamic interactions. Extensive
experiments on two representative datasets have verified the

effectiveness of this method. In the future, we will integrate
our modules into other outstanding models to further improve
the performance of action recognition, and explore how to
enhance the precision of human localization and delve deeper
into the intricacies of human interactions.
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