
Received 24 January 2024, accepted 7 February 2024, date of publication 9 February 2024, date of current version 16 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3364700

Parallel Enhanced Whale Optimization Algorithm
for Independent Tasks Scheduling on
Cloud Computing
ZULFIQAR ALI KHAN 1, IZZATDIN ABDUL AZIZ 1, NURUL AIDA BT OSMAN 1,
AND SAID NABI 2
1Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
2Department of Computer Science and Information Technology, Virtual University of Pakistan, Lahore 44000, Pakistan

Corresponding author: Zulfiqar Ali Khan (zulfiqar_22005381@utp.edu.my)

This work was supported by the STIRF Research Grant project, Cost Centre: 015LA0-035, Universiti Teknologi PETRONAS.

ABSTRACT Cloud computing has been imperative for computing systems worldwide since its inception.
The researchers strive to leverage the efficient utilization of cloud resources to execute workload quickly
in addition to providing better quality of service. Among several challenges on the cloud, task scheduling
is one of the fundamental NP-hard problems. Meta-heuristic algorithms are extensively employed to
solve task scheduling as a discrete optimization problem and therefore several meta-heuristic algorithms
have been developed. However, they have their own strengths and weaknesses. Local optima, poor
convergence, high execution time, and scalability are the predominant issues among meta-heuristic
algorithms. In this paper, a parallel enhanced whale optimization algorithm is proposed to schedule
independent tasks in the cloud with heterogeneous resources. The proposed algorithm improves solution
diversity and avoids local optima using a modified encircling maneuver and an adaptive bubble net
attacking mechanism. The parallelization technique keeps the execution time low despite its internal
complexity. The proposed algorithm minimizes the makespan while improving resource utilization and
throughput. It demonstrates the effectiveness of the proposed PEWOA against the best performing enhanced
whale optimization algorithm (WOAmM) and Multi-core Random Matrix Particle Swarm Optimization
(MRMPSO). The algorithm consistently produces better results with varying number of tasks on GoCJ
dataset, indicating better scalability. The experiments are conducted in CloudSim utilizing a variety of
GoCJ and HCSP instances. Various statistical tests are also conducted to evaluate the significance of the
results.

INDEX TERMS Task scheduling, meta-heuristic, whale optimization algorithm, cloud computing.

I. INTRODUCTION
Cloud computing has become a prime resource for a variety
of applications including banking, healthcare, entertainment,
and E-commerce etc. It provides numerous sorts of services
on a pay-per-use basis to both users and applications by
utilizing its computing, storage, and bandwidth resources [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Nitin Gupta .

The three services models are Platform as a Service,
Infrastructure as a Service and Software as a Service [2],
while the deployment models are private, public, community
and hybrid [3]. Cloud service providers offer different levels
of services with specific Quality of Service (QoS) parameters
to meet the varying needs and expectations of their users.
Users demand better Quality of Service (QoS), while cloud
providers aim to provide scalable on demand services
by employing minimum number of resources. Therefore,

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 23529

https://orcid.org/0000-0002-0446-2961
https://orcid.org/0000-0003-2654-4463
https://orcid.org/0000-0002-6339-2123
https://orcid.org/0000-0002-0447-9675
https://orcid.org/0000-0001-5067-858X

Z. A. Khan et al.: Parallel Enhanced Whale Optimization Algorithm

FIGURE 1. Mapping of tasks on cloud VMs.

a guarantee is warranted in the form of Service Level
Agreement (SLA) to specify the QoS parameters for the
provided service.

The philosophy of cloud computing ensures provisioning
of the right number of resources as per the need at a particular
time, but datacenters often overprovision the resources to
avoid SLA breaches. These services can scale up and down
dynamically according to user requirements. The users rent
the resources for a specific period by sending a list of tasks
to the cloud; a broker sends the received tasks and available
virtual machines to the scheduler that maps the tasks to virtual
machines. The mapping by the scheduler plays a crucial role
in the overall efficiency of the datacenter. Thus, providing a
consistent mapping of tasks to virtual machines with varying
workload is crucial for the overall system scalability.

The role of scheduler has been a critical factor in deter-
mining the goal of executing workloads swiftly in addition to
achieving optimal resource utilization [4]. Virtualization [5]
of hardware resources is the core technology for cloud
resource sharing where multiple virtual machines are created
on a single computing node to allow running multiple tasks
from multiple users as shown in Figure 1. Cloud data centers
receive hundreds of thousands of tasks to run on the virtual
machines on a daily basis. The huge number of tasks and
large number of heterogeneous virtual machines make the
task scheduling an NP-hard problem [6]. To meet user need
with minimum number of resources, the resource utilization
of employed resources should be increased [7]. A data
obtained over six months of duration from over 5000 cloud
servers revealed that the servers were utilized 10-50% of their
maximum capacity [3].
Traditional static task scheduling algorithms such as

Round Robin (RR), Min-Min, and Max-Min etc. provide
optimal mapping of tasks to virtual machines, but these
static algorithms provide poor resource utilization and cannot

be used widely in the dynamic cloud environments [8].
On the other hand, dynamic task scheduling algorithms like
SLA-RALBA [9], OG-RADL [10], and D-RALBA [11]
are effective to deal with dynamic task scheduling on the
cloud with better resource utilization, however they are
deterministic and feasible only when the number of tasks and
virtual machines are below a certain threshold.

Heuristic based solutions are tailored for specific problems
and yield optimal results; however, for NP-hard problems,
their viability is limited to below a certain threshold. On the
contrary, meta-heuristic algorithms are problem independent
techniques that prove promising in areas where integer
programming cannot cope with the sheer number of feasible
solutions in a near optimal time frame [12]. These algorithms
provide an acceptable solution within a reasonable amount of
time with the help of random search capability [13]. Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO)
are among the pioneer meta-heuristic algorithms that have
been consistently used for a variety of optimization problems.
On the other hand, GreyWolf Optimization, Jaya, Firefly, and
Whale Optimization Algorithm (WOA) are some of the new
meta-heuristic algorithms.

The strength of any meta-heuristic algorithms resides in its
abilities to effectively explore and exploit the solution space;
however, these techniques face local optima and premature
convergence along with high execution time. These issues
can be addressed with a variety of methods to efficiently
diversify the solution space and select the optimum solution
in a reasonable amount of time. For a better trade-off between
global and local search, the operations of meta-heuristic
algorithms can be improved in addition to parallelism to
decrease the overall execution time. Parallelism can be
employed to either parallelize computations or parallelize the
population. Meta-heuristic algorithms possess intrinsic paral-
lelism in their operations, making them even more effective.
There are three parallelization topologies as: master-slave,
coarse-grained, and fine-grained. In master-slave, the master
node coordinates the allocated workload to multiple slaves.
The master is responsible for both communication and
coordination among slaves. Coarse-grained topology on the
other hand divides a program into multiple chunks with little
synchronization and communication. It is also called island
or ring topology. Lastly fine-grained topology distributes a
program into evenly small sized tasks with high level of
synchronization in addition to more communication links.

Traditional algorithms such as OG-RADL [10] and
DRALBA [11] schedule tasks based on the notion of Earliest
Finish Time (EFT). However, this approach hampers the
resource utilization of a cloud server because faster machines
are more occupied than others, which also deteriorates
the completion time of all tasks, referred to as makespan.
Similarly, priority driven algorithms like PBFS [14] and SG-
PBFS [15] perform scheduling by favoring shorter tasks to
execute first, which also degrades the resource utilization
and response time for bigger tasks. To handle all tasks and

23530 VOLUME 12, 2024

Z. A. Khan et al.: Parallel Enhanced Whale Optimization Algorithm

resources without any preferences for shorter/larger tasks
or slower/faster machines, meta-heuristic algorithms have
proven promising. They can optimize resource utilization
and makespan of a cloud server. These algorithms work
through random operations that require a proper balance
between exploration and exploitation. They provide good
enough solutions in an optimal time frame. In one of our
previous studies [16], the Whale Optimization Algorithm
(WOA) emerged as one of the new meta-heuristic algorithms
that captured researchers’ attention in the domain of task
scheduling on cloud and fog computing. However, the
exploration capability of WOA needs further refinement.
In response to this, a Parallel Enhanced Whale Optimization
Algorithm (PEWOA) is proposed in this study to schedule
independent tasks on heterogeneous virtual machines on
the cloud. It employs a modified encircling move and
an adaptive bubble net attacking mechanism to effectively
perform global search and local search at the appropriate
times. The algorithm conducts parallel computations for all
whales, utilizing a model similar to master-slave topology
withminimal communication betweenmaster and slaves. The
parallelism keeps the execution time lower. The proposed
algorithm shows substantial improvements in the makespan,
resource utilization, and throughput against WOAMm [17],
RMPSO [18], MRMPSO [18], SAEA [19], and Genetic
Algorithm using MapReduce framework (GAMR) [20].
A series of experiments are conducted in CloudSim using the
two workload datasets of GoCJ and HCSP.

The main contributions of this work are:
1) Shortlisting the studies from literature from 2019 to

2024 that investigate task scheduling on cloud com-
puting in general and particularly using parallel meta-
heuristic algorithms.

2) Proposing a Parallel Enhanced Whale Optimization
Algorithm (PEWOA) utilizing multi-threading and
improvements through a modified encircling move and
an adaptive bubble net attacking mechanism.

3) Extensive simulations of the proposed PEWOA against
WOAmM,RMPSO,MRMPSO, SAEA, andGAMRon
two workload datasets of GoCJ and HCSP.

4) Analysis of the proposed algorithm against other algo-
rithms in terms of minimizing the makespan, reducing
response time, and increasing resource utilization and
throughput in a time-efficient manner.

5) Conducting statistical tests, including assessments of
standard deviation, the Friedman test, and theWilcoxon
test to illustrate the significance of the results.

The rest of the paper is laid out as follows: Section II
provides the related work on task scheduling on cloud
computing in general and emphasis on parallel meta-
heuristic algorithms. The mathematical modelling is given
in Section III. Section IV illustrates the proposed algorithm,
while Section V and VI present the workload selection, and
experimentation and results respectively. At the end, the
conclusion is provided in Section VII.

II. RELATED WORK
The adoption ofmeta-heuristic algorithms for task scheduling
in cloud computing has been on the rise. In large-scale
heterogeneous environments, discovering the optimal solu-
tion incurs a high computation cost. Hence, pursuing a near
optimal solution within a reasonable timeframe emerges as a
promising approach. The following are the related studies for
task scheduling on cloud computing.

An enhanced Moth Search algorithm [21] improved
makespan, throughput, and load balancing during task
scheduling on the cloud. The proposed algorithm was
enhanced by employing differential evolution, phototaxis,
and levy flight. Similarly, differential evolution was com-
bined with Electre III for scheduling independent tasks
in [22]. A nature inspired Chaotic Squirrel Search Algorithm
increased the velocity and convergence precision to effi-
ciently schedule tasks on the cloud in [23]. The task
scheduling problem was formulated as a multi-objective
optimization problem. The early eco-system was developed
through messy optimization to reduce expenses, prevent
SLA violations, and minimize resource consumption. The
proposed algorithm not onlyminimizedmakespan and energy
consumption but also improved resource utilization, load
balancing, and met deadlines.

A balanced distribution of resources is essential for
minimum makespan and maximum resource utilization.
OG-RADL, an Overall Performance-based Resource aware
Load-balancer was proposed to schedule independent tasks
in the cloud [10]. It successfully minimized the makespan
and maximized the resource utilization and throughput in
addition to better load balancing. However, the algorithm
toke decisions based on Earliest Finish Time (EFT) for all
compute-intensive tasks, that made faster machines more
occupied than others. Similarly, Dynamic and Resource
Aware Load Balanced Approach (DRALBA) scheduled
independent tasks using a deterministic routine to optimize
average resource utilization, throughput, and makespan using
GoCJ and HCSP workloads. However, it also occupies
the faster machines more than others with the increase in
workload [11].
The authors in [24] used the Dragonfly algorithm,

Biogeography-based algorithm, and Mexican Hat Wavelet to
reduce both execution time and response time during task
scheduling. These three techniques successfully prevented
premature convergence of the solution space and minimizing
the SLA violations. The combination of the Biogeography-
based algorithm and Mexican Hat Wavelet Transform
introduced a mutation operation to assist the Dragonfly
algorithm in avoiding local optima. However, in the given
scenario, the mutation operation of a traditional genetic
algorithm might be more beneficial. In [25], an adaptive
regressive Holt-Winters algorithm is utilized to predict bursty
or normal workload. Subsequently, the Firefly algorithmwith
lottery approach was applied to optimize the scheduling
process, enhancing resource utilization, load balancing, and

VOLUME 12, 2024 23531

Z. A. Khan et al.: Parallel Enhanced Whale Optimization Algorithm

minimizing the energy consumption. However, the study
did not highlight the nature of tasks. Another study based
on modified Henry gas solubility optimization, improved
makespan and execution cost during task scheduling [26].
Yet, the impact of the improved makespan on resource
utilization and throughput was not discussed. In [27], the
authors proposed two scheduling algorithms for independent
deadline sensitive tasks. The first algorithm employs a greedy
approach based on a linear weight sum. The second algorithm
used Ant colony optimization, positive feedback mechanism,
and heuristic search. The proposed algorithms minimize
energy consumption and makespan.

In [18], independent task scheduling was formulated with
budget constraints and addressed using two parallelized
PSO algorithms. The PSO was initially enhanced using a
random integer matrix (RMPSO), followed by proposing
two parallel variants of RMPSO based on a Multi-core
system (MRMPSO) with shared memory and a many core-
GPU system (GRMPSO). The GRMPSO outperformed the
MRMPSO in decreasing the total cost and running time of
the algorithm. The proposed G-RMPSO used fine-grained
GPU threads to accelerate RMPSO particles’ computations.
During experiments, the number of threads varied from 2 to
12 for OpenMP and from 4 to 20 for CUDA.

In another study, a parallel Squirrel Search Algorithm
(SAEA) combined with fuzzy logic optimally scheduled
independent tasks on the cloud to minimize makespan,
degree of imbalance, security threats, and energy cost under
high load conditions [19]. The population was divided into
subgroups to evolve independently. After a specific number
of iterations, the best squirrels were placed in the next sub-
population by replacing the worst squirrels. Fuzzy logic was
used to calculate the fitness of each squirrel based on total
execution time, makespan, energy cost, degree of imbalance,
and security value. However, the communication strategy in
SAEA was fixed. The population of squirrels was divided
into ten sub-populations to facilitate the convergence of
separate groups of squirrels. Subsequently, the best squirrels
were migrated to the next sub-populations to increase the
exploration of search space and avoid the local optima.

Task prioritization poses a bottleneck in exploration-
based scheduling approaches that use various techniques for
prioritizing tasks, resulting in increased execution times. Pri-
oritizing tasks based on the shortest execution time deemed
appropriate. To address this challenge, a parallel Genetic
Algorithm using MapReduce (GAMR) was proposed for
cloud workflow scheduling, incorporating different priority
queues to reduce the makespan [20]. In the first phase,
the GA and earliest finish time approach assigned tasks
to processors followed by using GA with MapReduce to
assign jobs to processors in a heterogenous cloud envi-
ronment. GAMR outperformed PSO, WOA, Moth-Flame
Optimization (MFO), and Intelligent Water Drops (IWD).
Nonetheless, only the mutation operation was parallelized in
the proposed algorithm.

The unpredictable nature of workload on cloud servers is a
major pitfall for reduced resource utilization and efficiency.
A task scheduling strategy based on binary JAYA was
implemented in [28] to alleviate the above issues. It not
only increased the resource utilization, but also reduced the
energy consumption and minimized the makespan. In the
first stage, tasks were evenly distributed on virtual machines,
subsequently executing the proposed JAYA algorithm for
the best possible matchmaking among tasks and virtual
machines. Both independent and dependent tasks were
simulated in experiments to reduce both the makespan and
energy consumption, improve load balancing, and maximize
the resource utilization. However, the proposed algorithm
was evaluated against the old versions of Genetic Algorithm,
Particle Swarm Optimization, and Round Robin.

A hybrid firebug and Tunicate Optimization (HFTO)
algorithm optimized makespan, response time, and fault
tolerance [29]. The proposed algorithm offered an enhanced
searching capability with faster convergence. HFTO is a
preemptive technique that assigns smaller tasks to virtual
machines with peak load, while assigning bigger tasks on
machines with lower CPU utilization. It improved makespan,
average execution time, and load balancing among the
machines. The task preemption also improved both the
execution time and response time.

Another scheduling technique called the Johnson Sequenc-
ing algorithm was originally used in a manufacturing unit.
In [30], the Johnson Sequencing algorithm was adapted using
a three step approach for task scheduling in cloud computing
across three servers minimizing the completion time of all
tasks. First, a precedence constraint graph was developed for
identification of dependencies among jobs. Second, the jobs
were assigned to servers followed by employing the Johonson
Sequencing to determine the best ordering of the jobs on
each server. The proposed Johonson Sequencing algorithm
minimized makespan and improved resource utilization
in addition to exhibiting better scalability. However, the
scalability analysis was based on a limited number of
jobs during simulations. In [31], a hybrid algorithm based
on Genetic Algorithm and Gravitational Emulation Local
Search (GELS) was developed, minimizing makespan and
increasing resource utilization while scheduling task in the
cloud. However, the comparative analysis only included the
primitive versions of GA and PSO.

Task schedulers based on priority rules struggle to meet
user satisfaction. To tackle this problem, a Priority Based
Fair Scheduling (PBFS) was presented in to minimize the
makespan, flow time and total tardiness [14]. However, only
two dataset instances of GoCJ were utilized out of nineteen
during simulations. In continuation of this study, the Priority
Based Fair Scheduling (PBFS) algorithm was improved
by proposing Shortest Gap-PBFS (SG-PBFS), a backfilling
technique utilizing gaps in the job schedule [15]. The
proposed algorithm outperformed other Shortest Gap based
algorithms such as SG-SJF, SG-LJF, and SG-(Max-Min)

23532 VOLUME 12, 2024

Z. A. Khan et al.: Parallel Enhanced Whale Optimization Algorithm

etc. in terms of minimizing makespan, missed deadlines,
reducing both delays and flowtime. However, the nature
(homogeneous or heterogeneous) of virtual machines was not
stated. Moreover, SG-PBFS favors shorter jobs to execute on
a priority basis that may result into lower resource utilization.
The experiments have not used all the instances of GoCJ
workload.

In the literature, there are abundant studies based on
parallel meta-heuristic algorithms for task scheduling, but
the keyword ‘‘Parallel’’ refers to parallelism in two dif-
ferent perspectives. One involves parallelism among tasks’
execution, while the other entails parallel execution of
the scheduling algorithm. Most of the studies primarily
focus on the first interpretation, which involves running
multiple tasks in parallel after the scheduling decision has
been made. However, this work focuses on the parallel
execution of a meta-heuristic algorithm for independent task
scheduling on the cloud. Therefore, [18], [19], and [20]
represent the most relevant studies found in the literature that
are considered for comparative analysis with the proposed
Parallel Whale Optimization Algorithm. Furthermore, [18]
and [19] dealt with independent tasks scheduling, while [20]
addressed the scheduling of dependent tasks. Similarly, [18]
and [20] parallelized the computations performed by the
agents, while [19] parallelized the sub-populations of agents.
The proposed PEWOA also parallelizes the computations
performed on all whales in the population. Table 1 presents
the summary of the related studies.

III. MATHEMATICAL MODELING
A cloud data center contains hundreds of host machines
that provide various types of resources to end users.
Each host machine often resides thousands of dynamically
generated virtual machines [32]. Similarly, multiple hosts
can collectively generate a single virtual machine [33].
Cloud providers offer different types of virtual machines
with various performance and pricing specifications. This
paper presents the allocation of virtual machines to incoming
independent tasks. It is assumed that each task will run
on a single virtual machine and cannot be divided. Task
scheduling with heterogeneous resources is a combinatorial
optimization problem, where the tasks and virtual machines
can be expressed as Eq. (1) and Eq. (2) respectively.

T = {t1, t2, , tn} (1)

VM = {vm1, vm2, , vmm} (2)

The set T contains the number of instructions for each
task, while VM represents a set of virtual machines with
compute capacities in Millions of Instruction Per Second
(MIPS). Generally, the number of tasks is greater than the
number of vms. The sets T and VM serve are inputs for a
scheduling algorithm, and an optimized mapping of all tasks
over a set of vms present a final solution expressed in the form
of a map, as shown in Eq. (3):

Map = {(t1, vm2), (t2, vm1), , (tn, vmm)} (3)

In the solution map, the first item (task) of every tuple will
be unique, while the second item (vm) can be repeated. Each
task will be allocated only one vm, whereas a vm can have
multiple tasks mapped to it. The Execution Time (ET) of taski
on vmj can be computed using Eq. (4).

ETtaskivmj = No. of Instructions in ti/vmj MIPS (4)

It is assumed that each virtual machine will execute
multiple tasks in a specific order without preemption. The
Completion Time (CT) of all assigned tasks on a specific vm
is expressed as Eq. (5):

CTvmj =
n∑
i=1

(No. of Instructions in ti/vmj MIPS) (5)

Here faster machines will have shorter completion times as
compared to slower machines. In a meta-heuristic algorithm,
the agents are manipulated in various ways before finding
their fitness, therefore the assigned tasks on a vm will keep
on changing during the execution of an algorithm. If a
replacement of task x on a vm with task y is required, the
completion time of all tasks on that vm will be updated
through Eq. (6):

CTvmj = CTvmj − (No. of Instructions in tx/vmj MIPS)

+ (No. of Instructions in ty/vmj MIPS) (6)

One of the important factors during tasks scheduling is
makespan, which is the completion time of all tasks on a given
set of virtual machines. It is represented by Eq. (7) [10]:

makespan = max(CTvmj) ∀j ∈ 1, 2, . . . , k (7)

The unit used to represent execution time, completion time,
and makespan in this paper is seconds. As it is beneficial
to use a resource in its entirety before employing another
instance on cloud, a higher resource utilization is favorable
during task scheduling. The Average Resource Utilization
(ARU) of a host machine is computed using Eq. (8) [10]:

ARU = (
m∑
i=1

CTvmj/m)/makespan (8)

The sum of completion time for all vms is divided by the
number of vms (m). The resulting value is then divided by
makespan.

The efficiency of a system can be expressed in terms of
throughput, which is the number of tasks executed per unit
time. It can be expressed by Eq. (9) [11] as:

Throughput = Total No. of tasks/Makespan (9)

Throughput is equal to the total number of tasks divided
by makespan. The unit for throughput will be the number of
tasks completed in one second.

After the scheduling decision, the time a vm takes to
start executing a task is referred to as Response Time (RT).
Multiple vms often share the same physical host and multiple

VOLUME 12, 2024 23533

Z. A. Khan et al.: Parallel Enhanced Whale Optimization Algorithm

TABLE 1. Summary of related studies.

23534 VOLUME 12, 2024

Z. A. Khan et al.: Parallel Enhanced Whale Optimization Algorithm

TABLE 1. (Continued.) Summary of related studies.

tasks can run on a single vm. Eq. (10) [10] represents the
average response time of all tasks on a set of vms as follows:

RT = (
m∑
j=1

n∑
i=1

RTi)/m (10)

The sum of the execution start times of all tasks is divided
by the total number of tasks to yield average response time of
a single vm. Then the sum of the average response times for
each vm is divided by the total number of vms.

Table 2 lists down the description of all notations used in
equations and pseudocode of the proposed algorithm.

IV. PROPOSED PARALLEL ENHANCED WHALE
OPTIMIZATION ALGORITHM
The proposed algorithm is an enhanced version of Whale
Optimization Algorithm (WOA) [34]. The WOA was formu-
lated as a population based meta-heuristic algorithm inspired
from humpback whales. In this approach, several whales
serve as agents, each representing a prospective solution
to the optimization problem. A group of whales is aware
of prey’s location and employes a hunting strategy called
bubble net feeding. It involves two types of maneuvers: a
circular movement and a shrinking move that reduce the
circumference of the circle, as illustrated in Figure 2. The
whales also release air bubbles that ascend from the whales to
the top of the seawater. Several whales start these maneuvers,
gradually ascending to sea’s surface while simultaneously
shrinking the circle and bubbling, effectively trapping the
prey (a school of fish or krill) in a confined area.

The shrinking encircling mechanism facilitates exploita-
tion of the solution space that is governed by a variable A
using Eq. (11) and (12).

a = 2− itr ∗ (2/maxItr) (11)

A = (2.0 ∗ a ∗ r1)− a (12)

r1 is a random number whereas ‘‘a’’ linearly decreases
from 2 to 0 that shrinks the circle around the prey. Similarly,

TABLE 2. Notation and descriptions.

A is a random value in the range of [-a,a]. If the value of
A is greater than/equal to 1, a new random whale position
(nRWPos) in the search space is selected using Eq. (13) to

VOLUME 12, 2024 23535

Z. A. Khan et al.: Parallel Enhanced Whale Optimization Algorithm

FIGURE 2. Movement of whales during bubble net attack.

explore the solution space.

nRWPos = randPos− A ∗ |C ∗ randPos− cWPos| (13)

Conversely, if the value of A is less than 1, a new position will
be computed using the best whale’s position by Eq. (14).

nWPos = bWPos− A ∗ |(C ∗ bWPos− cWPos)| (14)

There is another random variable p with a range of [0,1] that
represents the probability of using bubble net feeding. If p is
equal to/greater than 0.5 (50% probability), bubble net attack
is triggered to update the whale’s position (nWPos) according
to Eq. (15), otherwise the whale keeps on shrinking the circle
according to Eq. (14) as shown in Figure 2.

nWPos = |bWPos− cWPos| ∗ ebl ∗ cos(2π l)+ bWPos

(15)

l is also a random number in the range [−1,1], while b
is a constant defining the shape of spiral. In our proposed
algorithm the value of b ranges from 1 to 2.5 to determine the
logarithmic spiral shape. If the new whale position (nWPos)
is outside the solution space, it is assigned a random position.

After computing the new position of a whale, its fitness is
calculated. The process of updating the whales’ positioning
continues until the maximum number of iterations are
completed. In every iteration, the best whale is selected and
kept in memory.

Due to the limited exploration abilities of whale opti-
mization algorithm, a modified encircling maneuver and
an adaptive bubble net attacking mechanism are proposed
in addition to parallelism. If the solution space contains
local optima, WOA tends to trap in it. Unlike continuous
optimization problems, combinatorial optimization faces a
narrow search space with a high probability of local optima.

FIGURE 3. WOA convergence behavior.

The proposed enhancements enable PEWOA to move out
of the local optimum regions. The shrinking encircling
mechanism is enhanced using Eq. (16) to replace Eq. (11).

a = 3− itr ∗ (2/maxItr) (16)

The proposed change in Eq. (16) increases the solution
diversity by generating the values of a in the range of [1,3].
It improves the exploration potential of PEWOA. Further, Eq.
(17) is used to modify the coefficient of the spiral updating
mechanism, altering the shape of the logarithmic spiral during
bubble net attacking mode.

b = 1+ (w100)+ (w%2.25) ∗ (itrmaxItr) (17)

Eq. (17) allows different shapes of the logarithmic
spiral for whales, thus enabling a better balance between
exploration and local search. A lower value of b favors global
search, while a higher value exploits the best known solutions
in the search space. Eq. (17) keeps the value of a below 1 for
roughly 60% of the time, while it reaches up to 3 in the later
stages to refine the existing solutions.

In the proposed PEWOA, a separate thread using Java
Executor Framework [35] is allocated to the encircling and
bubble net attacking maneuvers of each whale using a distinct
set of values for faster convergence. It utilizes a master-
slave parallelization model with multiple threads and a
shared memory to explore different regions of the solution
space. It provides minimal communication among threads
and between master and slave nodes as depicted in Figure 4.
Unlike the master-slave model used in MRMPSO [18],

the threads in PEWOA do not send back the result to a
master node; instead, every thread updates a shared memory
to store the global best solution. If any thread is stuck
in local optima, others could still perform the exploration
of the solution space and converge to the global optimal
solution. The shared variables and maps among the whales
are accessed via locks to ensure data consistency. Whale

23536 VOLUME 12, 2024

Z. A. Khan et al.: Parallel Enhanced Whale Optimization Algorithm

FIGURE 4. Parallelization model.

Optimization Algorithm, in general, involves a number
of complex operations, making it a computation-intensive
procedure. Therefore, a parallelization strategy is valuable
to reduce the execution time of PEWOA. Following 1 is the
pseudocode of the proposed algorithm.

A sets of tasks (T) and virtual machines (VM) serve as the
inputs for PEWOA, while the final schedule is represented as
a hashmap with T as keys and VM as values. In lines (1)-(4),
hashmaps are declared for whales (wMap), virtual machines
(vmMap), best whales (bWsMap), and global best whale
(gBWMap). The number of whales and maximum iterations
are specified in line 5. Best whale makespan (bWMk) and
global best value (gBValue) are initialized with maximum
values in line 6. In line 7, all maps are initialized.

A while loop spanning over line 8 to 52 iterates 220 times.
At line 9, a pool of threads is created based on the population
size of whales. A for loop for each whale begins at line 10 and
continues until line 52, implementing various types of
changes for each whale. The shrinking encircling parameter
is updated in each iteration ranging from 3 to 1 (line 11)
followed by the declaration of three random numbers r1, r2,
and p (probability) in the range of [0,1] (line 12). At lines
13-14, A and C are declared as coefficients with ranges
[−3,3] and [0,2] respectively, while l is variable with values
[−1,1] (line 15). b ranges from 0 to 3 (line 16) and variables
Drand, D, D′, nRWPos, nWPos, and randVm are initialized
to zero (line 17). The description of these variables is given
in Table 1.
A for loop iterates (line 18) over all tasks in a whale to

manipulate the assignment of virtual machines for each task.
At line 19 and 20, the current task and vm are assigned to
cloudlet and vm variables respectively. Line 21 to 32 presents
an if construct based on the value of p. If p is less than 0.5 and
the absolute value of A in a nested if statement (line 22) is
greater than or equal to 1, the distance is computed from
the current whale position to any random whale position
(line 23). Based on the random distance, the new whale

Algorithm 1 Parallel Enhanced Whale Optimization
Algorithm
Input: Set of Tasks (T), set of virtual machines (VM)
Output: Map(T, VM)
1: wMap← (Integer, Map(Cloudlet, Vm)) = null
2: vmMap← (Integer, Map(Integer, Double)) = null
3: bWsMap← (Integer, Double) = null
4: gBWMap← (Integer, Map(Cloudlet, Vm)) = null
5: whales = 60, maxItr = 220
6: bWMk, gBValue← max_value
7: Initialize vmMap, bWsMap, gBWMap, and wMap
8: while itr < maxItr do
9: Pool of threads (Whales)
10: for w = 0tonoOfthreads do
11: a← 3.0− (itr · 2.0

maxItr)
12: r1, r2, p← randNo(0, 1)
13: A← (2.0 · a · r1)− a
14: C ← 2.0 · r2
15: l ← (randNo(0, 1) · 2.0)− 1.0
16: b← 1+ w

100 +
w mod 2.25·itr

maxItr
17: Drand,D,D′, nRWPos, nWPos, randVm← 0
18: for each task do
19: cld ← currentCloudlet
20: vm← CloudletVm
21: if p < 0.5 then
22: if |A| ≥ 1 then
23: Drand ← |C · randVm− cWPos|
24: nRWPos← randVm−A · Drand
25: else if |A| < 1 then
26: D← |C · gBWMapPos− cWPos|
27: nWPos← gBWMapPos−A · D
28: end if
29: else if p ≥ 0.5 then
30: D′← |gBWMapPos− cWPos|
31: nWPos ← D′ · ebl · cos(2π · l) +

gBWMapPos
32: end if
33: if nWPos > vmListSizeornWPos < 0 then
34: nWPos← randPos
35: end if
36: randVm← vmList(nWPos)
37: oLd ← cldLength

vmMips

38: nLd ← cldLength
randVmMips

39: update_vmMap(vm, oLd, nLd)
40: update wMap
41: end for
42: synchronized (lock)
43: bWMk ← getPBMap(vmMap)
44: if bWMk < bWsMap then
45: Update bWsMap
46: if bWMk < gBWValue then
47: gBValue← bWMk
48: Update gBWMap
49: end if
50: end if
51: end for
52: end while

VOLUME 12, 2024 23537

Z. A. Khan et al.: Parallel Enhanced Whale Optimization Algorithm

position is calculated at line 24 using A. If p is less than
0.5 and the absolute value of A is less than 1 in the else part of
the second if clause (line 25), the distance is computed from
the current whale to the best whale found so far (line 26).
At line 27 the new whale position is computed by utilizing
the best whale positioning and A. The nested if clause ends at
line 28. If p is greater than or equal to 0.5 in the else part of the
first if clause, the algorithm enters the bubble net attacking
mode (line 29). Now the distance of the current whale is
calculated from the best whale without using the value of
C (line 30). The new whale position is computed using the
location of the best whale, the corresponding distance (D′),
and a spiral manoeuvre (ebl ∗ cos(2 ∗π ∗ l)) at line 31. The if
statement at line (21) ends at line 32.

Another if statement (line 33-35) checks the new whale
position. If it is outside the solution space, a random position
is assigned to the whale. Based on the new whale position,
the relevant vm is selected from the list of virtual machines
(line 36). The execution time of a task on the already assigned
vm is calculated and saved in oLd (line 37). At line 38, the
execution time of the task on the new Vm is computed and
stored in nLd. A function update_vmMap() propagates the
new load of task by adding and removing the execution times
on the two virtual machines (line 39). The whales map is
updated at line 40 and the loop ends at line 41. The code
from line 42 to 51 can only be executed by a single thread
at a time. At line 43, the best whale’s makespan is calculated
using getPBMap() function. If the new makespan is less than
the whale’s old makespan (line 44), then the best whales
map will be updated with the new fitness value (line 45).
At line 46, if the newly calculated makespan is less than the
global best makespan, it will also be assigned the new value
of makespan (line 47). The new global best whale will be
kept in memory at line 48 as the final solution. Lines 49 to
52 terminate the nested if statements and the for loop started
at line 18 respectively.

The time complexity of an algorithm is fundamental to
evaluate its practicality in an elastic cloud environment. For
PEWOA, it is computed as O(T (NW ∗ D) + FitFun ∗ NW)
which is the same as WOAmM. Here, T is the number
of iterations, NW is the number of whales in population,
D is the dimension of a problem, and FitFun is the cost of
evaluating a fitness function. However, WOAmM possesses
a greater number of operations in comparison to PEWOA.
Although all whale optimization algorithms have a higher
inherent complexity, the parallelization in PEWOAmakes its
execution time much lower.

V. WORKLOAD DATASETS
The proposed PEWOA and other comparative algorithms are
assessed using the following two datasets.

A. GOOGLE CLOUD JOBS (GOCJ)
TheGoogle Cluster Traces [36] is a real time log of workloads
that ran on Google Borg cluster, comprising 12.5k machines.

The trace covers information such as the submission time,
scheduling information, and usage of resources. However
it does not provide the size of jobs or their deadlines.
The trace contains data for 25 million tasks grouped into
650 thousand jobs over a span of 29 days [37]. All the
provided data in the trace is normalized and obfuscated
to avoid disclosing confidential information. Some jobs
(0.003%) are omitted from the trace as they ran on nodes
not part of this trace. Some task and job events, 0.013%
and 0.0008% respectively, have non empty missing fields.
Moreover, data is missing for an average of 0.05% of
job/task scheduling events and less than 1% of resource usage
records.

It is tedious and infeasible to utilize such an enormous
number of tasks in simulations, especially when faced with
limited resources. Therefore, the Google Cloud Jobs (GoCJ)
dataset is adopted that is derived from Google Cluster
Traces 2011 [36] using bootstrapped Monte Carlo (MC)
simulation [38]. The GoCJ is a realistic dataset that reflects
the workload bahavior of Google Cluster Traces, as asserted
by [39], [40], [41], [42], and [43] and analysis of the
MapReduce logs from M45 supercomputing cluster by [44].
Instead of randomly choosing values, the original dataset

is repeatedly sampled by selecting a single datapoint from
the origional dataset in bootstrapping. A list of 50 different
sized jobs from the origional dataset is input into the MC
boostrapping with equal probability, considering an average
computing power of 1000 MIPS for machines. There is a
covariance of 2.49 between the origional and average GoCJ
datasets. Figure 5 shows the comparison of data distribution
for the Original Dataset(O-Dataset) and the 19 GoCJ
instances.

In the context of GoCJ, the terms ‘‘job’’ and ‘‘task’’
are used interchangeably, both referring to an independent
set of instructions. The distinction between these terms
becomes essential when there are dependencies among tasks.
Furthermore, it is importatnt to note that the granularity of
tasks is higher than that of jobs.

Themedian of all datasets falls within the range of 870000-
970000 MIPS. Similarly the ranges for the first quartile and
third quartile are 610000-670000 and 115000-112000 MIPS
respectively. The minium and maximum sizes of jobs in all
the datasets are also the same. The size of jobs is calculated
using the expected time to completion figures in the original
dataset, as per Eq. (18).

Size of Job (MIPS) = Machine(MIPS) x ETC (18)

The ratio of different categories of jobs with the cor-
reponding ranges of instructions in GoCJ is shown in
Figure 4. Medium sized jobs (40%) clearly constitue the
highest percentage, followed by large (30%) and small
(20%) jobs. Figure 5 illustrates that the extra-large (6%)
and huge (4%) sized jobs are the least in proportions
respectively.

23538 VOLUME 12, 2024

Z. A. Khan et al.: Parallel Enhanced Whale Optimization Algorithm

FIGURE 5. Data distribution of google cluster traces and GoCJ instances.

FIGURE 6. Resource mapping distribution in 106 articles included in this
study.

B. HETEROGENEOUS COMPUTING SCHEDULING
PROBLEM (HCSP)
The Heterogeneous Computing Scheduling Problem dataset
[45] is based on the notion of Expected Time to Compute
(ETC) for tasks in a heterogeneous environment. The
workload assumes each task as an atomic unit and non-
preemptive. Additinally, it also assumes that the execution
time of a task varies from machine to machine, aiming to
minimizes the makespan of tasks. The dataset offers three
types of instances (small, medium, and large) based on the
size and complexity of tasks and virtual machines. In this
paper, the small HCSP instance has been utilized having
1024 tasks and 32 virtual machines.

HCSP uses a notation of c/i_heterogeneity for tasks (hi/lo)
and VMs (hi/lo). The ‘‘c’’ and ‘‘i’’ stand for consistency and

TABLE 3. HCSP instances.

inconsistency respectively. Heterogeneity for tasks and VMs
can be either ‘‘hi’’ or ‘‘lo’’. Low heterogeneity (lo) signifies
similar computing resources, while high heterogeneity (ho)
indicates a wide range of computing machines. Similarly, the
degree of similarity among task execution times is denoted
as low heterogeneity and vice versa. For reflecting a realistic
scenario, HCSP classifies the workload as consistent (c),
inconsistent (i), or semi-consistent (s). Consistency occurs
when if a machine executes a task faster than other machines,
and it’s likely that the same machine will execute other tasks
faster in comparision with the rest of machines. In case of
inconsistent behavior, a machine may be faster to execute a
task, but may not perform similary with other workloads. This
category mirros a distributed infrastructure of heterogenous
resources with a variety of tasks. A third category is a semi-
consistent model, combining characteristics of the first two
workloads. Table 3 shows the different configurations of
HCSP instances.

The ETC matrices are designed using a range based
method that incoporates task heterogeneity (RTASK), machine
heterogeneity (RMACH), and consistency. Initially a Tx1 base-
line vector (B) is generated using a uniform distribution of
floating point values in the range [1,RTASK]. Subsequetly,
the rows of ETC(tixmj) matrix are constructed by multiplying
the vector B with another uniform random number X (called
row multiplier), which falls in the range [1,RMACH]. As a

VOLUME 12, 2024 23539

Z. A. Khan et al.: Parallel Enhanced Whale Optimization Algorithm

TABLE 4. HCSP workload.

result, the ETC matrix comprises the values within the range
[1,RTASK xRMACH].
The minimum and maximum values for task heterogeneity

are 100 and 3000 respectively, while the corresponding values
for machine heterogeneity are 10 and 1000 respectively.
The wider range of task heterogeneity (100-3000) compared
to machine heterogeniety (10-1000) reflects the greater
variablitly in heterogenity for tasks in real world scenarios.
For consistent data, the ETC rows are sorted from left to
right in descending order creating an ordered dataset. The
unsorted ETC matrix constitutes the inconsistent dataset.
In the case of semi-consistent data, the even indexed columns’
data is extracted for each row, sorted and replaced, while the
odd indexed columns remain unchanged. The ETC matrix
represents the task dataset, while the participating X table
listing the virtual machines. This paper utilizes a small dataset
comprising 1024 tasks and 32 machines. In total there are
four workload instances as c_lohi, i_lohi, i_hilo, and c_hilo.
The size ranges of tasks and virtual machines are provided in
Table 4.

VI. EXPERIMENTS AND RESULTS
The experiments are conducted on an Intel Core i7-4790
3.60 GHz processor, equipped with 8 GB of RAM and 1 TB
storage. To assess the performance of the proposed Parallel
Enhanced Whale Optimization Algorithm (PEWOA), simu-
lations are carried out in CloudSim 3.0.3 using the datasets
of Google Cloud Jobs Dataset (GoCJ) and Heterogeneous
Computing Scheduling Problem (HCSP). Table 5 details the
datacenter configuration for GoCJ according to [18] and
HCSP.

The performance of every meta-heuristic algorithm is sen-
sitive to the number of agents and iterations; therefore [18],
[19], and [20] will be executed with their proposed number
of agents and iterations provided in Table 6. The authors
used random generated tasks with a uniform distribution to
evaluate benchmark algorithms. For PEWOA and WOAmM,
60 number of agents and 220 number of iterations are
selected. With these given numbers, PEWOA provides
adequate performance with optimum running time.

While comparing meta-heuristic algorithms, another per-
tinent aspect to consider is the seed generation (intial
population). All algorithms in this paper are using the
same seed, except SAEA which undergoes minor changes
to simulate location and mapping matrices. The values

TABLE 5. Datacenter configuration for GoCJ and HCSP.

TABLE 6. No. of Agents and iterations.

TABLE 7. Relative increase in average makespan.

presented in all experiments indicate the average figures of
ten different runs of the algorithms.

A. PERFORMANCE ANALYSIS OF PEWOA
1) MAKESPAN
In cloud computing, makespan is the one of the most
crucial factors during task scheduling [46]. It represents the
completion time of all tasks scheduled on a a set of virtual
machines, as expressed by Eq. (7) [10]. A lower makespan
makes a cloud server efficient to execute workloads swiftly.
In Figure 7, the makespan of all algorithms increases with
the increasing number of tasks. However, the proposed
PEWOA performs considerably well to keep the makespan
low through the optimal assignment of virtual machines to
incoming tasks. The second best makespan figures are shown
byWOAmM [17], an enhanced whale optimiation algorithm.
The bahavior of SAEA and GAMR is similar, while
RMPSO and MRMPSO exhibit nearly identical makespans,
as MRMPSO is a parallel version of RMPSO. The relative
increase in average makespan for all algorithms is illustrated
in Table 7.
PEWOA demonstrates the ability to handle an increasing

number of tasks with a relatively modest increase in
makespan. In Table 7, PEWOA indicates the least increase
(4.31%) in average makespan over 19 GoCJ instances,
showcasing better scalability. WOAmM possess the second

23540 VOLUME 12, 2024

Z. A. Khan et al.: Parallel Enhanced Whale Optimization Algorithm

FIGURE 7. Makespan of tasks on various GoCJ instances.

least increase (8.99%) in average makespan. RMPSO and
MRMPSO remain the third-best algorithms, with increasing
makespan figures of 16.84% and 16.91% respectively. The
worst figures (28.98% and 23.95%) are exhibited by SAEA
and GAMR respectively, indicating thier minimal ability to
schedule a growing number of tasks. It is pertinent to mention
that the makespan figures of SAEA and GAMR show
unpredicted highs and lows with various GoCJ instances.
The average makespan values for all algorithms are provided
in Table 8. Cloud service providers often have SLAs with
users specifying the maximum time frame for executing their
workload. So, a minimum makespan helps companies to
provide results within the agreed upon time duration.

On HCSP workload, a similar behavior is observed with
reduced makespan as shown in Figure 8. For a consistent
dataset comprising of low heterogeneous tasks and highly
heterogeneous vms, the makespan of PEWOA is the lowest
as compared to WOAmM, RMPSO, MRMPSO, SAEA,
and GAMR, but with a relatively less margin especially
in comparision to GAMR. The smallar bars in the graph
for c_lohi result from the higher MIPS capacities of vms
compared to the smaller size of tasks. There is a small
difference between WOAmM and PEWOA for c_lohi, but
the difference in makespan increases with the increasing
complexity of tasks and vms in i_hilo. For i_lohi, the
makesapan of both PEWOA andWOAmM remain unaffected
by the low heterogeneous tasks and high heterogeneous
vms unlike other algorithms. GAMR struggles with the
inconsistent behavior of i_lohi. For i_hilo, where the ratio
of the size of tasks to vms is the largest, the makespan
of all algorithms is the highest. Despite the parallelism in
MRMPSO, RMPSO andMRMPSO have the same makespan
figures, while PEWOA still outperforms others. Although
SAEA and GAMR are parallelized algorithms utilizing
multiple subpopulations and concurrent fitness evaluation
respectively, yet they show the worst results. The SAEA
is dominant over GAMR by effectively managing the high
heterogenity of tasks. In case of c_hilo, the results are
similar to c_lohi, but the different magnitude of the bars.

FIGURE 8. Makespan of tasks on four HCSP instances.

PEWOA continues to provide a better makespan with high
task heterogeneity. WOAmM shows minimum makespan
figures after PEWOA. The results of both PSO variants are
identical, but the scheduling behavior of both SAEA and
GAMR differs, with GAMR performing better than SAEA.
The average makespan values for all algorithms are provided
in Table 13.

2) RESOURCE UTILIZATION
A higher resource utilization enables the use of fewer
resources, resulting in savings and a number of advantages.
Cloud providers strive to use fewer resources while meeting
QoS using Eq. (8) [10]. Figure 9 clearly indicates that the
proposed PEWOA achieves the highest resource utilization
compared to the benchmark algorithms. WOAmM has better
resource utilization than RMPSO, and MRMPSO, while
GAMR displays better resource utilization than SAEA.
Despite implementing a migration policy, SAEA has the
lowest resource utilization among all algorithms. The average
values of resource utilization for all algorithms are presented
in Table 9.
In Figure 10, for c_lohi, the resource utilization of PEWOA

is significantly higher than others due to the execution of par-
allel threads and enhancements, while RMPSO, MRMPSO,
and GAMR show nearly identical utilization of resources.

VOLUME 12, 2024 23541

Z. A. Khan et al.: Parallel Enhanced Whale Optimization Algorithm

FIGURE 9. Resource utilization on various GoCJ instances.

FIGURE 10. Resource utilization on four HCSP instances.

WOAMm has consistently better performance in all the
tests after PEWOA. The parallelization of multiple sub-
populations in SAEA does not lead to improved results. It is
evident that the inconsistent nature of i_lohi has negatively
the resource utilization of all algorithms, with the least impact
on SAEA. Similarly, MRMPSO and PEWOA show identical
reductions in resource utilization. Better resource utilization
reduces the idle time of individual resources in the cloud. Idle
resources represent wasted capacity that could be used for
executing tasks. The ability to scale with dynamic workloads
also depends on the proper resource utilization of avaiable
resources. PEWOAmanage to provide better performance on
varying workloads due to its improved resource utilization.
Similarly, resource utilization has multifaceted effects on
factors such as cost and energy consumption; however, these
aspects are beyond the scope of this study. The average
values of resource utilization for all algorithms are provided
in Table 17.

3) THROUGHPUT
Throughput is a key indicator of the overall efficiency of a
cloud. It is defined as the number of tasks completed per
unit time, expressed by Eq. (9) [11]. A system with high
throughput makes efficient utilization of resources. Figure 11
illustrates the highest throughput achieved by PEWOA,
primarily attributed to running multiple threads and the

modified encircling move and logrithmic spiral mechanism.
There is a notable difference between the throughput of the
proposed algorithm and the rest of benchmark algorithms.
The average values of throughput for all algorithms are
provided in Table 11.
On HCSP, Figure 12 depicts the least difference in

throughput among all algorithms for i_hilo, followed by
c_hilo. The number of tasks executed per second is the
highest for all algorithms in the case of c_lohi because all
algorithms perform well with a consistent set of tasks and
vms. However, for i_lohi, the throughput of all algorithms is
negatively affected, particularly GAMR. The average values
of throughput for all algorithms are provided in Table 15.

4) RESPONSE TIME
The time a virtual machine takes to start executing a
mapped task after task scheduling is called response time.
A lower response time indicates a higher level of productivity
and performance. For task scheduling in a virtualized
environment, Eq. (10) computes the average response time.
In Figure 13, the average response time of all benchmark
algorithms is the same, but our proposed PEWOA shows
relatively the minimum figures for 16 out of 19 GoCJ
instances. The average values of response time for all
algorithms are provided in Table 10.

Unlike other optimizaion metrics, the response time of
all HCSP instances is nearly the same for all algorithms,
execpt for c_lohi where GAMR and PEWOA show better
response time. For i_hilo, the response time of all algorithms
is identical, while for i_lohi and c_hilo, both WOAmM and
PEWOA indicate minor improvements over the benchmark
algorithms as depicted in Figure 14. The average values of
response time for all algorithms are provided in Table 16.

5) EXECUTION TIME
The execution time of a meta-heuristic algorithm is also
crucial in a scalable environment. It is measured as the
difference of starting time and complete execution of
an algorithm. In Figure 15, WOAMm exhibit the worst

23542 VOLUME 12, 2024

Z. A. Khan et al.: Parallel Enhanced Whale Optimization Algorithm

FIGURE 11. Throughput on various GoCJ instances.

FIGURE 12. Throughput on four HCSP instances.

execution time due to the internal complexity of whale
optimization algorithm followed by RMPSO. However, the
parallelized variant of RMPSO shows a considerably lower
execution time. The proposed PEWOA has a lower execution
time than RMPSO and MRMPSO, even though it involves
more computations. However, it is still inferior to SAEA
and GAMR. SAEA has low time complexity due to its
simple internal structure and the utilization of multiple sub-
population of squirrels. GAMRhas the lowest execution time,
attributed to its undemanding implementation of crossover
and mutation. The average values of execution time for
different algorithms are provided in Table 12.
Similarly, in Figure 16, GAMR exhibits the lowest

execution time with a mutation probability of less than
0.7. PEWOA has the second best execution time because
of multithreading. The migration of squirrels in SAEA is
complicated, possibly contributing to its higher execution
time. Notably, there is a significant difference observed
between RMPSO and MRMPSO for the first time. The
latter uses a master-slave parallelization model, reducing the
overall execution time as compared to the former. PEWOA
shows better execution time on HCSP as compared to GoCJ,
where it has the second lowest execution time. WOAMm
has the highest execution time on HCSP workload as well.
A scheduling algorithm with lower execution time enables
the handling of diverse workloads effectively. The average

TABLE 8. Average makespan on GoCJ.

values of execution time for all algorithms are provided in
Table 17.

The proposed algorithm exhibits a considerably lower
makespan than WOAmM, RMPSO, MRMPSO, SAEA, and
GAMR. It also demonstrates superior utilization of virtual
resources and higher throughput for both workload instances
of GoCJ and HCSP. The execution time of PEWOA has been
reduced using multi-threading to schedule tasks efficiently.
The algorithm consistently achieves lower makespan, higher
resource utilization, and greater throughput for various
workload instances, demonstrating better scalability. This
scalability makes PEWOA well-suited for an elastic cloud
infrastructure, where the scale of workloads continuously
grows and shrinks.

B. STATISTICAL TESTS
1) STANDARD DEVIATION
It represents the variation or dispersion in a given set
of values. Table 18 illustrates that PEWOA has the most
consistent makespan followed by WOAmM. Although the
PEWOA average resource utilization is better among all,
MRMPSO shows more consistent figures. Similary, despite

VOLUME 12, 2024 23543

Z. A. Khan et al.: Parallel Enhanced Whale Optimization Algorithm

FIGURE 13. Task Response time on various GoCJ instances.

FIGURE 14. Task Response time on various GoCJ instances.

TABLE 9. Average resource utilization on GoCJ.

the PEWOA’s impressive throughput, SAEA shows consis-
tent behavior for the number of tasks completed per unit
time. The response time of SAEA and GAMR display the
least variation. Additionally, the execution time of GAMR is
the lowest among all algoirthms and is least affected by the
increasing number of GoCJ tasks.

The standard deviation figures (in Table 19) on HCSP
shows a similar pattern with minor changes for MRMPSO
and SAEA, where the latter has a lower range of resource
utilization values than the former. The response time for

TABLE 10. Average response time on GoCJ.

RMPSO, MRMPSO, and SAEA does not show any variation
across the four HCSP instances.

2) FRIEDMAN TEST
The Friedman test [47] is a non-parametric statistical test
developed by Milton Friedman. It is used to detect changes
in various techniques applied on a particular dataset. To illus-
trate the behavior of PEWOA againts other algorithms, the
Friedman test is performed on all instances of GoCJ and

23544 VOLUME 12, 2024

Z. A. Khan et al.: Parallel Enhanced Whale Optimization Algorithm

FIGURE 15. Execution Time on various GoCJ instances.

FIGURE 16. Execution Time on four HCSP instances.

TABLE 11. Average throughput on GoCJ.

HCSP. The values for the test statistic also known as chi
square (χ2) for makespan, resource utilization, throughput,
response time, and exeuction time are provided in Table 20.
Based on the given values, the null hypothesis (H0) (that
there is no difference among the given algorithms) is rejected
for both GoCJ and HCSP datasets. The computed chi square
values are significantly larger than the corresponding critical
values at 5 degrees of freedom (df).

TABLE 12. Average execution time on GoCJ.

TABLE 13. Average makespan figures on HCSP.

TABLE 14. Average resource utilization figures on HCSP.

3) WILCOXON TEST
The Wilcoxon Signed-rank test [48] is another non-
parametric test developed by Frank Wilcoxon. It is employed
to identify any significant difference between two pairs
of data. This test is also performed on every benchmark

VOLUME 12, 2024 23545

Z. A. Khan et al.: Parallel Enhanced Whale Optimization Algorithm

TABLE 15. Average throughput figures on HCSP.

TABLE 16. Average response time figures on HCSP.

TABLE 17. Average execution time figures on HCSP.

TABLE 18. Standard deviation of various optimization metrics on GoCJ.

TABLE 19. Standard deviation of various optimization metrics on all
HCSP instances.

TABLE 20. χ2 values for GoCJ and HCSP.

algorithm against PEWOA for any significant differences in
makespan, resource utilization, response time, and execution
time. With four instances in HCSP, the Wilcoxon test is

TABLE 21. Wilcoxon statistic values for GoCJ and HCSP.

unable to identify any difference. Therefore, instead of the
average values over ten separate runs, all records have been
used, making the total number of records 40 to calculate the
Wilcoxon test successfully. The values of Wilcoxon Statistic
(W) for both GoCJ and HCSP are provided in Table 21.

For GoCJ, the critical value of Wilcoxon‘s statistic is 46,
therefore H0 is rejected for PEWOA against all algorithms.
Similarly, on HCSP workload, H0 is rejected except for
response time because the Wilcoxon’s statistic values are
greater than the critical value of 264. Hence, there is not
a significant difference in the response time of PEWOA in
comparison to WOAmM, RMPSO, MRMPSO, SAEA, and
GAMR.

VII. CONCLUSION
Task scheduling poses a significant NP-hard problem in cloud
computing, impacting the efficiency and resource utilization
of cloud datacenters. Efficient scheduling is a prime factor
for better quality of service. Heuristic algorithms such as
DRALBA, OG-RADL and SG-PBFS etc. schedule tasks
on a given set of resources by either prioritizing tasks or
ranking resources that hamper the resource utilization of a
system and ultimately lower makespan. However, a meta-
heuristic algorithm treats all tasks and resources impartially.
However, the right balance between global search and local
search in a meta-heuristic algorithm is exigent to provide
an optimal result. In response to this, a Parallel Enhanced
Whale Optimization Algorithm (PEWOA) is proposed for
scheduling of independent tasks on heterogeneous virtual
machines in the cloud. PEWOA incorporates parallelization,
an updated encircling maneuver and a bubble net attacking
mechanism to enhance the solution diversity, avoid local
optima, and improve convergence. The enhanced encircling
maneuver and bubble net attacking mechanism optimized
the solution quality by hitting the right balance between
exploration and exploitation at the right time. Despite the
internal complexity, parallelization reduced its execution
time. Extensive simulations demonstrate that PEWOA min-
imizes makespan, response time, and increases resource

23546 VOLUME 12, 2024

Z. A. Khan et al.: Parallel Enhanced Whale Optimization Algorithm

utilization and throughput against WOAmM, RMPSO,
MRMPSO, SAEA, and GAMR. The proposed PEWOA
provides superior scalability and efficient task scheduling
across 19 workload instances of GoCJ. In the case of HCSP
with four workload instances, PEWOA maintains similar
performance figures while addressing various heterogeneity
levels among tasks and virtual machines. Statistical tests,
including Standard Deviation, Friedman test, and Wilcoxon
test, confirm the significance of the results. In future, it is
planned to further improve the algorithm, specifically tailored
for task scheduling on fog computing environments.

REFERENCES
[1] J. K. Konjaang and L. Xu, ‘‘Meta-heuristic approaches for effective

scheduling in infrastructure as a service cloud: A systematic review,’’
J. Netw. Syst. Manage., vol. 29, no. 2, pp. 1–57, Apr. 2021.

[2] M. K. Hussein, M. H. Mousa, and M. A. Alqarni, ‘‘A placement
architecture for a container as a service (CaaS) in a cloud environment,’’
J. Cloud Comput., vol. 8, no. 1, pp. 1–15, Dec. 2019.

[3] A. Almadhor, A. Alharbi, A. M. Alshamrani, W. Alosaimi, and H. Alyami,
‘‘A new offloading method in the green mobile cloud computing based
on a hybrid meta-heuristic algorithm,’’ Sustain. Comput. Informat. Syst.,
vol. 36, Dec. 2022, Art. no. 100812.

[4] Z. Tong, F. Ye, B. Liu, J. Cai, and J. Mei, ‘‘DDQN-TS: A novel bi-
objective intelligent scheduling algorithm in the cloud environment,’’
Neurocomputing, vol. 455, pp. 419–430, Sep. 2021.

[5] Z. A. Khan, I. Ullah, M. Ibrahim, M. Fayaz, A. Aljarbouh, and
M. S. Qureshi, ‘‘Virtualization based efficient service matching and
discovery in Internet of Things,’’ Electronics, vol. 9, no. 6, p. 1007,
Jun. 2020.

[6] M. S. Ajmal, Z. Iqbal, F. Z. Khan, M. Ahmad, I. Ahmad, and B. B. Gupta,
‘‘Hybrid ant genetic algorithm for efficient task scheduling in cloud data
centers,’’ Comput. Electr. Eng., vol. 95, Oct. 2021, Art. no. 107419.

[7] A. A. Khan, M. Zakarya, R. Khan, I. U. Rahman, M. Khan, and
A. U. R. Khan, ‘‘An energy, performance efficient resource consolidation
scheme for heterogeneous cloud datacenters,’’ J. Netw. Comput. Appl.,
vol. 150, Jan. 2020, Art. no. 102497.

[8] H. Cao, S. Wu, G. S. Aujla, Q. Wang, L. Yang, and H. Zhu, ‘‘Dynamic
embedding and quality of service-driven adjustment for cloud networks,’’
IEEE Trans. Ind. Informat., vol. 16, no. 2, pp. 1406–1416, Feb. 2020.

[9] A. Hussain, M. Aleem, M. A. Iqbal, and M. A. Islam, ‘‘SLA-RALBA:
Cost-efficient and resource-aware load balancing algorithm for cloud
computing,’’ J. Supercomput., vol. 75, no. 10, pp. 6777–6803, Oct. 2019.

[10] S. Nabi and M. Ahmed, ‘‘OG-RADL: Overall performance-based
resource-aware dynamic load-balancer for deadline constrained cloud
tasks,’’ J. Supercomput., vol. 77, no. 7, pp. 7476–7508, Jul. 2021.

[11] S. Nabi, M. Ibrahim, and J. M. Jimenez, ‘‘DRALBA: Dynamic and
resource aware load balanced scheduling approach for cloud computing,’’
IEEE Access, vol. 9, pp. 61283–61297, 2021.

[12] Ä.M. Eligüzel and E.Özceylan, ‘‘Application of an improved discrete crow
search algorithm with local search and elitism on a humanitarian relief
case,’’ Artif. Intell. Rev., vol. 54, no. 6, pp. 4591–4617, Aug. 2021.

[13] Y. Wang, J. Zhao, K. Jiang, Q. Zhou, Z. Kang, C. Chen, and H. Zhang,
‘‘Prediction of TBM operation parameters using machine learning models
based on BPSO,’’ Adv. Eng. Informat., vol. 56, Apr. 2023, Art. no. 101955.

[14] S. A. Murad, Z. R. M Azmi, F. J. Brishti, M. Saib, and A. K. Bairagi,
‘‘Priority based fair scheduling: Enhancing efficiency in cloud job
distribution,’’ in Proc. IEEE 8th Int. Conf. Softw. Eng. Comput. Syst.
(ICSECS), Aug. 2023, pp. 170–175.

[15] S. A. Murad, Z. R. M. Azmi, A. J. M. Muzahid, M. K. B. Bhuiyan,
M. Saib, N. Rahimi, N. J. Prottasha, and A. K. Bairagi, ‘‘SG-PBFS:
Shortest gap-priority based fair scheduling technique for job scheduling in
cloud environment,’’ Future Gener. Comput. Syst., vol. 150, pp. 232–242,
Jan. 2024.

[16] Z. A. Khan, I. A. Aziz, N. A. B. Osman, and I. Ullah, ‘‘A review on
task scheduling techniques in cloud and fog computing: Taxonomy, tools,
open issues, challenges, and future directions,’’ IEEE Access, vol. 11,
pp. 143417–143445, 2023.

[17] S. Chakraborty, A. K. Saha, S. Sharma, S. Mirjalili, and R. Chakraborty,
‘‘A novel enhanced whale optimization algorithm for global optimization,’’
Comput. Ind. Eng., vol. 153, Mar. 2021, Art. no. 107086.

[18] X. Tang, C. Shi, T. Deng, Z. Wu, and L. Yang, ‘‘Parallel random matrix
particle swarm optimization scheduling algorithms with budget constraints
on cloud computing systems,’’ Appl. Soft Comput., vol. 113, Dec. 2021,
Art. no. 107914.

[19] B. M. H. Zade, N. Mansouri, and M. M. Javidi, ‘‘SAEA: A security-
aware and energy-aware task scheduling strategy by parallel squirrel search
algorithm in cloud environment,’’ Expert Syst. Appl., vol. 176, Aug. 2021,
Art. no. 114915.

[20] Z. Peng, P. Pirozmand,M.Motevalli, and A. Esmaeili, ‘‘Genetic algorithm-
based task scheduling in cloud computing using MapReduce framework,’’
Math. Problems Eng., vol. 2022, pp. 1–11, Sep. 2022.

[21] M. A. Elaziz, S. Xiong, K. P. N. Jayasena, and L. Li, ‘‘Task scheduling in
cloud computing based on hybrid moth search algorithm and differential
evolution,’’ Knowl.-Based Syst., vol. 169, pp. 39–52, Apr. 2019.

[22] S. Ben Alla, H. Ben Alla, A. Touhafi, and A. Ezzati, ‘‘An efficient energy-
aware tasks scheduling with deadline-constrained in cloud computing,’’
Computers, vol. 8, no. 2, p. 46, Jun. 2019.

[23] M. S. Sanaj and P. M. J. Prathap, ‘‘Nature inspired chaotic squirrel
search algorithm (CSSA) for multi objective task scheduling in an IAAS
cloud computing atmosphere,’’ Eng. Sci. Technol., Int. J., vol. 23, no. 4,
pp. 891–902, Aug. 2020.

[24] M. R. Shirani and F. Safi-Esfahani, ‘‘Dynamic scheduling of tasks
in cloud computing applying dragonfly algorithm, biogeography-based
optimization algorithm and Mexican hat wavelet,’’ J. Supercomput.,
vol. 77, no. 2, pp. 1214–1272, Feb. 2021.

[25] J. Prassanna and N. Venkataraman, ‘‘Adaptive regressive holt–winters
workload prediction and firefly optimized lottery scheduling for load
balancing in cloud,’’ Wireless Netw., vol. 27, no. 8, pp. 5597–5615,
Nov. 2021.

[26] M.A. Elaziz and I. Attiya, ‘‘An improvedHenry gas solubility optimization
algorithm for task scheduling in cloud computing,’’ Artif. Intell. Rev.,
vol. 54, no. 5, pp. 3599–3637, 2021.

[27] A. Tarafdar, M. Debnath, S. Khatua, and R. K. Das, ‘‘Energy andmakespan
aware scheduling of deadline sensitive tasks in the cloud environment,’’
J. Grid Comput., vol. 19, no. 2, pp. 1–25, Jun. 2021.

[28] M. Kaushik, P. Jharashree, and K. Santosh, ‘‘A dynamic load scheduling
in IaaS cloud using binary Jaya algorithm,’’ J. King Saud Univ., vol. 12,
pp. 2–4, Sep. 2020.

[29] M. Nanjappan, G. Natesan, and P. Krishnadoss, ‘‘HFTO: Hybrid firebug
tunicate optimizer for fault tolerance and dynamic task scheduling in
cloud computing,’’Wireless Pers. Commun., vol. 129, no. 1, pp. 323–344,
Mar. 2023.

[30] P. Banerjee, S. Roy, A. Sinha, M. M. Hassan, S. Burje, A. Agrawal,
A. K. Bairagi, S. Alshathri, and W. El-Shafai, ‘‘MTD-DHJS:
Makespan-optimized task scheduling algorithm for cloud computing
with dynamic computational time prediction,’’ IEEE Access, vol. 11,
pp. 105578–105618, 2023.

[31] S. P. Praveen, H. Ghasempoor, N. Shahabi, and F. Izanloo, ‘‘A hybrid
gravitational emulation local search-based algorithm for task scheduling
in cloud computing,’’Math. Problems Eng., vol. 2023, pp. 1–9, Feb. 2023.

[32] J. Yan, Y. Lu, L. Chen, S. Qin, Y. Fang, Q. Lin, T. Moscibroda,
S. Rajmohan, and D. Zhang, ‘‘Solving the batch stochastic bin packing
problem in cloud: A chance-constrained optimization approach,’’ in Proc.
28th ACM SIGKDD Conf. Knowl. Discovery Data Mining, Aug. 2022,
pp. 2169–2179.

[33] M. Ewais and P. Chow, ‘‘Disaggregated memory in the datacenter:
A survey,’’ IEEE Access, vol. 11, pp. 20688–20712, 2023.

[34] S. Mirjalili and A. Lewis, ‘‘The whale optimization algorithm,’’
Adv. Eng. Softw., vol. 95, pp. 51–67, May 2016, doi:
10.1016/j.advengsoft.2016.01.008.

[35] L. S. Nair, ‘‘An analytical study of performance towards task-level
parallelism on many-core systems using Java API,’’ in Proc. 6th Int. Conf.
Commun. Electron. Syst. (ICCES), Jul. 2021, pp. 1255–1259.

[36] Google. Accessed: Sep. 18, 2023. [Online]. Available:
https://github.com/google/cluster-data

[37] G. Yao, Q. Ren, X. Li, S. Zhao, and R. Ruiz, ‘‘A hybrid fault-tolerant
scheduling for deadline-constrained tasks in cloud systems,’’ IEEE Trans.
Services Comput., vol. 15, no. 3, pp. 1371–1384, Jun. 2022.

VOLUME 12, 2024 23547

http://dx.doi.org/10.1016/j.advengsoft.2016.01.008

Z. A. Khan et al.: Parallel Enhanced Whale Optimization Algorithm

[38] A. Hussain and M. Aleem, ‘‘GoCJ: Google cloud jobs dataset for
distributed and cloud computing infrastructures,’’Data, vol. 3, no. 4, p. 38,
Sep. 2018.

[39] Z. Liu and S. Cho, ‘‘Characterizing machines and workloads on a Google
cluster,’’ in Proc. 41st Int. Conf. Parallel Process. Workshops, Sep. 2012,
pp. 397–403.

[40] I. S. Moreno, P. Garraghan, P. Townend, and J. Xu, ‘‘An approach for
characterizing workloads in Google cloud to derive realistic resource
utilization models,’’ in Proc. IEEE 7th Int. Symp. Service-Oriented Syst.
Eng., Mar. 2013, pp. 49–60.

[41] Analysis and Lessons From a Publicly Available Google Cluster Trace.
Accessed: Sep. 24, 2023. [Online]. Available: https://www2.eecs.berkeley.
edu/Pubs/TechRpts/2010/EECS-2010-95.html

[42] C. Reiss, ‘‘Towards understanding heterogeneous clouds at scale: Google
trace analysis,’’ Ph.D. dissertation, Intel Sci. Technol. Center Cloud
Comput., Carnegie Mellon Univ., Pittsburgh, PA, USA, 2012.

[43] C. Liu, C. Liu, Y. Shang, S. Chen, B. Cheng, and J. Chen, ‘‘An adaptive
prediction approach based on workload pattern discrimination in the
cloud,’’ J. Netw. Comput. Appl., vol. 80, pp. 35–44, Feb. 2017.

[44] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, ‘‘An analysis of traces
from a productionMapReduce cluster,’’ inProc. 10th IEEE/ACM Int. Conf.
Cluster, Cloud Grid Comput., May 2010, pp. 94–103.

[45] Heterogeneous Computing Scheduling Problem. Accessed: Sep. 18, 2023.
[Online]. Available: https://www.fing.edu.uy/inco/grupos/cecal/hpc/
HCSP/index.htm

[46] A. A. Motlagh, A. Movaghar, and A. M. Rahmani, ‘‘Task scheduling
mechanisms in cloud computing: A systematic review,’’ Int. J. Commun.
Syst., vol. 33, no. 6, Apr. 2020, Art. no. e4302.

[47] R. H. Riffenburgh, ‘‘Chapter summaries,’’ in Statistics in Medicine
(Second Edition), 2nd ed. New York, NY, USA: Academic Press, 2006,
pp. 533–580. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780120887705500678

[48] M. D. Riina, C. Stambaugh, N. Stambaugh, and K. E. Huber, ‘‘Chapter
28—Continuous variable analyses: T-test, mannwhitney, wilcoxin rank,’’
in Translational Radiation Oncology, A. E. Eltorai, J. A. Bakal, D. W.
Kim, and D. E. Wazer, Eds. Cambridge, MA, USA: Academic Press, 2023,
ch. 2, pp. 153–163. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/B9780323884235000704

ZULFIQAR ALI KHAN received the Bachelor of
Science degree (Hons.) in information technology
from the Virtual University of Pakistan, and the
Master of Science degree in computing from the
Shaheed Zulfikar Ali Bhutto Institute of Science
and Technology (SZABIST), Islamabad. He is
currently pursuing the Ph.D. degree with Univer-
siti Teknologi PETRONAS (UTP), Malaysia. His
research interests include task scheduling, cloud
computing, optimization, fog computing, meta-

heuristics algorithms, and the Internet of Things (IoT).

IZZATDIN ABDUL AZIZ received the Ph.D.
degree in information technology from Deakin
University, Australia, working in the domain of
hydrocarbon exploration and cloud computing.
He is currently an Associate Professor with Uni-
versiti Teknologi PETRONAS (UTP), Malaysia.
He is also heading the Center for Research in Data
Science (CeRDaS), solving complex upstream
and downstream Oil and Gas (O&G) industry
problems utilizing machine learning and big data

analytics. He is also working closely with O&G companies in delivering
solutions for complex problems, such as Offshore O&G pipeline corrosion
rate prediction, O&G pipeline corrosion detection, rotating machines, and
process failure prediction, securing data on clouds, and bridging upstream
and downstream oil and gas businesses through data analytics. Additionally,
he is also working on fundamental computer science problems, such as
algorithm’s optimization.

NURUL AIDA BT OSMAN is currently a Lecturer
with Universiti Teknologi PETRONAS and a
Researcher with the Centre of Research in Data
Science (CeRDaS). She served in MIMOS Berhad
under the Artificial Intelligence Research Labora-
tory. Her research interests include machine learn-
ing, predictive analytics, recommender systems,
ontology development, and sentiment analysis.

SAID NABI received the Ph.D. degree in com-
puter sciences from the Capital University of
Science and Technology (CUST), Islamabad. He is
currently a Lecturer with the Department of
Computer Sciences and Information Technology,
Virtual University of Pakistan, Islamabad. His
research interests include cloud computing (cloud
jobs/applications and resource scheduling, cloud
load-balancing, optimization, SLA, and the qual-
ity of services (QoS) aware cloud scheduling),

machine learning, cloud applications/services development, fog computing,
the IoT, big data, and recommender systems. He also served with the I.T
Excellence Center, Directorate of Information Technology, Peshawar, and
Esided Solutions (a U.S. based company) as a Software Developer and a
Team Lead.

23548 VOLUME 12, 2024

