
Received 25 December 2023, accepted 5 February 2024, date of publication 9 February 2024, date of current version 16 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3365079

Evolution of Microservices Identification
in Monolith Decomposition:
A Systematic Review
IDRIS OUMOUSSA AND RAJAA SAIDI
SI2M Laboratory, National Institute of Statistics and Applied Economics (INSEA), Rabat 10100, Morocco

Corresponding author: Idris Oumoussa (ioumoussa@insea.ac.ma)

ABSTRACT Modernizing monolithic systems through microservices architectures (MSAs) promises
significant benefits in terms of scalability, agility, and cloud adoption. However, this transition hinges
on accurate and efficient microservices identification, a complex area of research still in its evolution.
This systematic literature review delves into this challenge by exploring three critical questions: First,
we examine how the field of microservices identification has evolved over time, analyzing publication
trends, categorizing existing research, and mapping out different research objectives and methodologies
employed. Second, we dive into the current state-of-the-art, showcasing cutting-edge methodologies and
tools developed to address microservices identification challenges.We highlight promising approaches while
identifying potential limitations. Third, we unveil both existing hurdles and future challenges in this domain,
painting a comprehensive picture of the obstacles and opportunities that lie ahead. Our findings illuminate
key areas demanding further attention, including the need for more automated and accurate identification
tools, standardized evaluation benchmarks, and a deeper understanding of the human factors involved in
successful transitions. By addressing these critical gaps, we aim to pave the way for smoother and more
effective modernization of monolithic systems through microservices adoption.

INDEX TERMS Microservices, microservices architecture, microservices identification, monolith
application decomposition, monolith to microservices migration.

I. INTRODUCTION
In the face of increasingly complex software systems and
a relentless drive for agility, monolithic architectures have
begun to reveal their limitations. Microservices architectures,
with their emphasis on independent, self-contained services,
offer a compelling alternative, promising enhanced scalabil-
ity, faster deployment cycles, and improved maintainabil-
ity [1], [2], [3]. However, the transition to this fragmented
paradigm is not without its challenges. One of the most
formidable is the decomposition of existing monoliths into
cohesive microservices.

Effectively identifying microservice boundaries and func-
tional responsibilities within a monolithic software system is

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudia Raibulet .

a critical task, yet often proves elusive. Various techniques
have emerged to assist in this process, analyzing features,
dependencies, and execution patterns to potentially carve
out well-defined microservices [4], [5], [6], [7], [8]. Despite
these advancements, a comprehensive understanding of the
strengths, weaknesses, and ongoing challenges of existing
decomposition strategies remains elusive.

This systematic literature review aims to bridge this
knowledge gap. Through a rigorous methodology, we sys-
tematically compile, analyze, and synthesize research contri-
butions on monolith decomposition, with a specific focus on
techniques for microservices identification. Our exploration
probes into the research objectives, evaluation methods, and
persistent challenges that characterize this domain, seeking to
establish a robust classification of decomposition approaches
and illuminate avenues for further refinement.

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 23389

https://orcid.org/0000-0002-3785-8612
https://orcid.org/0000-0002-8292-3188
https://orcid.org/0000-0002-7194-3159


I. Oumoussa, R. Saidi: Evolution of Microservices Identification in Monolith Decomposition

Despite burgeoning interest, microservices identification
remains in its infancy, grappling with several critical limi-
tations: Fragmented data collection and analysis techniques
hinder the extraction of crucial features frommonolithic soft-
ware, impeding effective identification. Scarce head-to-head
comparisons of existing methods obscure the most effective
approaches for different scenarios. Universally accepted
quality metrics for potential microservice candidates remain
elusive, making objective assessment a challenge. Finally,
a lack of integrated tools to seamlessly support the entire
identification pipeline, from data gathering to candidate
refinement, further complicates the process. This systematic
literature review aims to shed light on these obstacles and
chart a path towards more precise and reliable microservices
identification techniques.

The remaining sections of this paper are organised
as follows. Section II defines microservices architecture
and microservices identification. Section III describes the
methodology used to locate the chosen works. Section IV
focuses on the objectives, methods, and evaluations utilised
in microservices identification research. Section V provides a
summary of the state of the art in microservices identification
research. Section VI identifies open microservices identi-
fication challenges that are either partially or completely
unresolved by current research. The validity of this paper is
described in Section VII. Finally, Section VIII concludes the
paper.

II. PRELIMINARIES
This section briefly introduces the concept of microservice
architectures and provides an overview of microservices
identification.

A. MICROSERVICES ARCHITECTURES
As a modern computing paradigm that has gained popularity
in software engineering. MSA breaks down traditional mono-
lithic applications into fine-grained, independent services
that can be designed, tested, and deployed individually [9].
It enhances application scalability, simplifies partnerships
and service integration across well-defined interfaces [4].
Microservices are characterized by their lightweight

nature, where each service has discrete responsibilities
and collaborates with similar services through well-defined
interfaces. They communicate using lightweight protocols
like asynchronous message buses [10]. Microservices can be
developed independently, utilizing various frameworks, pro-
gramming languages, and resources. Functional decomposi-
tion of applications is a key aspect of microservices, allowing
the construction of applications or services at a higher level
by combining various services. Fine granularity and loose
coupling are essential properties of microservices [11].
Furthermore, deploying a single business capability per

microservice enables their use across diverse applications
and domains. The primary attributes distinguishing the
microservices architectural style from both monolithic and

service-oriented architectures are the reduced size, scalabil-
ity, and autonomy of each component composing a system.

B. FROM MONOLITHIC TO MICROSERVICES
The inherent complexity of monolithic architectures, char-
acterized by tightly coupled components, poses significant
challenges for maintainability and scalability. As soft-
ware systems evolve, these challenges become increasingly
burdensome, hindering both development and deployment
agility. Microservices with their independent and cohe-
sive services, offer a compelling alternative, enabling the
construction of intricate applications through modularity
and simplified integration. However, transitioning to this
paradigm entails a multifaceted process involving meticulous
migration procedures, sophisticated microservices extraction
techniques, and rigorous service quality assessment.

At the core of this transition lies the critical phase
of microservices identification. The success of the newly
composed architecture hinges on the selection of optimal
services, characterized by fine granularity to facilitate agile
change management, convenient maintenance, and effortless
reuse. Identifying these services necessitates a systematic
approach, encompassing thorough dissection of the existing
system into distinct functional units, precise definition of
service boundaries, and the strategic application of both
static and dynamic analysis techniques. While essential,
the task of pinpointing optimal microservices remains
intricate, demanding a methodological approach potentially
augmented by automated detection techniques to navigate the
complexities with greater efficiency and accuracy.

III. METHODOLOGY
In our paper, we employed a methodical, organized, and
systematic approach to produce a survey on the topic of
microservices identification. Our approach was based on the
recommendations and guidance provided by Kitchenham and
Charterss [12] and Petersen et al. [13].

A. RESEARCH QUESTIONS
This systematic literature review comprehensively analyzes
the current state of research on microservices identification,
serving as a reference for existing techniques and identifies
unresolved research questions. To achieve this, we have
developed the following research questions (RQs):

- RQ1: How has the area of study on microservices
identification evolved ?We aim to examine published studies
on microservices identification, summarize and classify
them, describe their objectives, evaluate methodologies used,
and discuss trends. We present our findings for this RQ in
Section IV.
- RQ2:What is the current state-of-the-art in microservices

identification research ? We will present state-of-the-art
methodologies and tools proposed for addressing microser-
vices identification challenges. We present our findings in
Section V.

23390 VOLUME 12, 2024



I. Oumoussa, R. Saidi: Evolution of Microservices Identification in Monolith Decomposition

- RQ3: What are the current and potential challenges
associated with microservices identification ? Our goal is to
identify both existing and future challenges in microservices
identification research.We present our findings in SectionVI.

B. LITERATURE REPOSITORY SELECTION
Search string used in this study is designed to be generic and
simple. It is constructed based on search terms concerned
with population and intervention as suggested by Petticrew
and Roberts in [14]. Population refers to the application
area which is microservices and monolith where intervention
is identification, decomposition and migration. Accordingly,
final adopted search string is:

(‘‘monolith’’ OR ‘‘existing’’ OR ‘‘legacy’’)
AND

(‘‘microservices’’ OR ‘‘micro-services’’)
AND

(‘‘identification’’ OR ‘‘decomposition’’ OR ‘‘extraction’’)

To establish the selection criteria for online literature
repositories, we consulted prior state-of-the-art literature
reviews in software engineering [15], [16]. We first picked
publications from the following technical publishers:

- ACM Digital Library
- Elsevier Science Direct
- IEEE Xplore Digital Library
- Springer Online Library
- Wiley Online Library

We enhanced our literature search for microservices iden-
tification studies by conducting a specific search on Google
Scholar using the keyword ‘‘microservices identification’’.
This strategy aimed to expand our coverage of technical
publications,1 we utilised ‘‘microservices identification’’ and
ensure the inclusion of a wide range of relevant articles. Addi-
tionally, we performed manual searches of the references in
our initial selection using forward and backward snowballing
techniques, leveraging Google Scholar to identify additional
works related to our research objectives.

C. LITERATURE SEARCH AND SELECTION
We conducted literature searches in our predefined reposi-
tories using the exact search phrase ‘‘microservices identi-
fication’’. The results, as shown in Table 1, display the total
number of publications found in each library. We manually
filtered these results, retaining only those that met the
following criteria:

- Studies must be written in English
- Studies must be related to computer science or
software engineering

- Studies should have a relation to microservices
identification

- Studies must not be a Master or PhD thesis

1Repository of our primary studies and classifications: https://github.com/
Ioumoussa/MicroservicesIdentificationSurveyPapers

TABLE 1. Number of studies returned by each repository.

- Studies must be fully available from one or more
online library

A flowchart of our publication selection process can be
found in figure 1. Initially, we identified 35 publications
through our filtering process. An additional 133 papers
were included after reviewing the references of selected
papers, as some relevant publications may have been missed
due to terminology variations (e.g., ‘‘microservices extrac-
tion’’ instead of ‘‘microservices identification’’). In total,
we selected 168 articles (or primary studies) for this survey
based on our initial search results and references that met our
filtering criteria.

D. OVERVIEW OF PRIMARY STUDIES
The publications in this study are distributed across various
venues, with variations in prominence. The ‘‘Journal of
Systems and Software’’ stands out as the primary journal,
hosting nine papers related to microservices identification,
while ‘‘IEEE Access’’ also contributes significantly with six
journal publications. Figure 2 illustrates that most microser-
vices identification publications are conference papers,
followed by journal papers, while books make up a minimal
portion.

We classified the 168 publications in our sample into
five contribution types using an open-card sorting approach.
These types were determined based on author and publisher
keywords, publication venue information, and our subjective
judgment. The five contribution types are:

1) NewTools and Techniques: This category encompasses
publications introducing novel tools and techniques
specifically designed for microservices identification.

2) Empirical Studies: Focused on data analysis and
evidence-based findings, this category includes pub-
lications presenting empirical evaluations of existing
methodologies or novel approaches.

3) Tools and Technique Proposals: While laying out
innovative tools or techniques, publications belonging
to this category lack implementations or experimental
results.

4) Surveys: These publications offer systematic analyses
of multiple existing works within the field of microser-
vices identification.

5) Datasets: This category comprises publications that
contribute and share novel datasets specifically geared
towards advancing future research in microservices
identification.

VOLUME 12, 2024 23391



I. Oumoussa, R. Saidi: Evolution of Microservices Identification in Monolith Decomposition

FIGURE 1. Our paper selection process.

FIGURE 2. Overall venue distribution.

TABLE 2. Microservices identification publication contribution types.

The detailed classification results are available in Table 2.
To assess the significance of our primary investigations
on microservices identification, we employed Word Clouds
as recommended in [17]. Figure 3 displays the most
prevalent terms in titles and abstracts, such as microservice,
architecture, and service. Terms related to identification
methods like clustering, classification, and similarity are also
common. The Word Cloud underscores the importance of the
break-down process in identifyingmicroservices and the need
for effective extraction and classification procedures.

IV. EVOLUTION OF MICROSERVICES IDENTIFICATION
RESEARCH
In response to RQ1, which addresses the evolution of
microservices identification research, we provide a two-part

FIGURE 3. Keyword cloud of primary research.

response: (1) research goals in microservices identification
and (2) microservices identification research evaluation.

A. MICROSERVICES IDENTIFICATION RESEARCH GOALS
In response to the first part of RQ1, we have identified
various research objectives within the field of microservices
identification. This research primarily focuses on decompos-
ing monolithic applications into microservices, emphasizing
the importance of identifying appropriate microservice
boundaries to ensure loose coupling, maintainability, and
scalability. Achieving these objectives often involves empir-
ical studies to observe monolithic application behavior and
identify potential candidate services, which are then validated
using automated or manual techniques. The overarching
goal of microservices identification research is to develop
tools and techniques that facilitate the migration process.

23392 VOLUME 12, 2024



I. Oumoussa, R. Saidi: Evolution of Microservices Identification in Monolith Decomposition

This includes identifying service dependencies, pinpointing
performance bottlenecks, and ensuring data consistency
across microservices. We have categorized research con-
tributions into types such as Datasets, Empirical Studies,
Tools and Techniques Proposals, Surveys, and New Tools
and Techniques to gain insights into primary research goals
and trends. These objectives may encompass improving
the precision and efficiency of microservices identification,
addressing challenges in microservices integration, and
devising innovative migration strategies.

1) NEW TOOLS AND TECHNIQUES
The landscape of microservices identification tools and
techniques brims with innovation, each contributing unique
approaches to tackle themultifaceted challenges of transition-
ing frommonolithic architectures. Analyzing codebases [18],
[19] is a common approach, while techniques like automation
[20], [21] and even cutting-edge methods like genetic
algorithms [22] and neural networks [23] are emerging.
Some tools prioritize simplifying microservices for improved
maintainability [24], while others focus on preserving com-
patibility with existing systems [25]. This vibrant research
realm paves the way for streamlined migration, empowering
organizations to reap the benefits of microservices, while
avoiding pitfalls like complex architectures and intricately
tangled service dependencies. Ultimately, these innovative
tools and techniques equip developers with the power to
efficiently dissect monolithic behemoths and sculpt them into
well-defined, independent microservices, unlocking the true
potential of this transformative architectural paradigm.

Answers of RQ1: New tools and techniques typically
aim to assist with microservices identification. They
aim to resolve issues that can arise for developers
during this migration, such as tools for microservices
migration, or to reduce the development effort needed
for identifying and managing microservices.

2) EMPIRICAL STUDIES
Empirical investigations represent the third-largest category
of publications in microservices identification. These studies
include data-mining research, case studies, and user studies.

- Data-mining Studies: These studies use large datasets
to identify problems and assess their impact onmicroser-
vices. They examine issues such as microservices
failure, system evolution, and compatibility [26], [27],
[28], [29].

- Case Studies: Case studies typically focus on a small
number of systems, often fewer than ten. The findings
from these studies are specific to the systems under
investigation and address various research objectives
and challenges. Researchers have explored a wide range
of topics, including the impact of microservices identi-
fication on system users [7], the influence of technical

debt on the success of migrating to microservices [30],
and the factors contributing to the long-term success of
microservices frameworks [31].

- User Studies:
These papers rely heavily on human responses to address
their usability-focused research queries. While they pri-
marily focus on enhancing microservices’ usability, it’s
essential to consider that a user-friendly microservices
architecture often begins with effective identification
and design. The papers explore the learning barriers
in end-user systems [32], the needs of developers for
microservices deprecation [33], the failures of microser-
vices documentation [34], what makes microservices
difficult to learn [1], and microservices usability [35].
Understanding user perspectives is a crucial aspect of the
broader microservices identification and development
process.

Answers of RQ1: Empirical studies related to
microservices identification often use diverse methods
like large datasets, case studies, and user studies to
reveal challenges and solutions. These typically focus on
usability and maintainability.

3) TOOLS AND TECHNIQUE PROPOSALS
When it comes to migrating from a monolithic system to
microservices, various tools and techniques are proposed
to aid in microservices identification. These proposals aim to
tackle existing issues in the field and offer potential solutions
to migration-related challenges. Like the ‘‘New Tools and
Techniques’’ category, these proposals address previously
identified problems and suggest possible solutions. For
instance, some propose automated techniques for identifying
microservices based on their functionality or dependencies,
while others suggest tools for visualizing the structure of a
monolithic system and identifying potential microservices.
However, it’s important to note that these proposals are
preliminary and lack comprehensive solution specifications
or thorough evaluations.

Answers of RQ1: Tools and techniques proposals
related to microservices identification typically seek to
highlight existing concerns in the field, and provide
potential approaches to resolving these problems.

4) SURVEYS
Like this research paper, surveys of existing literature aim
to provide a rigorous evaluation of a research topic [12].
Typically, the surveys presented in this paper begin with a
research topic and examine existing literature to provide a
perspective on the subject at hand. Our dataset comprises five
microservices identification-related surveys. Abdellatif et al.
[36] reviewed 41 studies from 2004 to 2019, aiming to

VOLUME 12, 2024 23393



I. Oumoussa, R. Saidi: Evolution of Microservices Identification in Monolith Decomposition

identify inputs, processes, outputs, and the usability of
service identification approaches for modernizing monolithic
software. Their taxonomy covered broader contexts, assisting
practitioners. Our focus, in contrast, is on identifying
microservices when migrating from a monolithic to a
microservices-based system. Ponce et al. [37] conducted a
swift evaluation of the transition frommonolithic tomicroser-
vices architecture. They analyzed 20 research publications to
investigate migration methods, their application to different
systems, validation techniques, and encountered challenges.
The study identified Model-Driven (MD), Static Analysis
(SA), and Dynamic Analysis (DA) as migration approaches.
Wolfart et al. [2] investigate the migration from monolithic
systems to microservices, identifying 11 migration drivers
like improved scalability, autonomous deployment, stream-
lined maintenance, team autonomy, and more. They also
outline eight tasks across the initiation, planning, execution,
and monitoring phases in the modernization process. The
extensive review in [38] classifies research into distinct
approach categories: Static Code Analysis (SCA), Meta-Data
Assistance (MDA), Workload-Data Assistance (WDA), and
Dynamic Microservices Composition (DMC). It evaluates
these methods based on different criteria and offers a
decision guide for them. However, it does not cover microser-
vices decomposition techniques. This comprehensive review
spans diverse topics, encompassing greenfield microservices
development and monolithic application decomposition.
Abgaz et al. [39] propose a framework for decomposing
monoliths into microservices. Their findings reveal an early
stage of progress in monolith decomposition, with a need for
methods to integrate various data types, and insufficient tool
support.

Answers of RQ1: Survey papers, like this systematic
literature review, typically seek to present an overview
of a subject using existing literature to provide clar-
ity for their given subject and allow for effective
stepping-stones for future research. The survey papers
we reviewed delve into topics related to microservices
identification evolution without a central focus on
microservices identification evolution itself.

5) DATASETS
As a result of our investigation into microservices identifi-
cation research, we discovered several articles focused on
developing datasets related to microservices identification.
For instance, Bandeira et al. [40] presented a dataset
containing 1,043 microservice-related technical posts from
StackOverflow, while Rahman et al. [41] described a
dataset that includes web application microservices and their
dependencies. Furthermore, Brogi et al. [42] set the ground-
work for the first reference dataset of microservice-based
applications. These datasets are crucial for the development

FIGURE 4. Keyword cloud of primary research.

and evaluation of precise and efficient microservices identi-
fication techniques.

B. MICROSERVICES IDENTIFICATION RESEARCH
EVALUATION
We aim to ascertain how microservices identification
research is typically evaluated when migrating from a
monolithic to a microservices architecture. Identifying
microservices requires typically more than merely observing
a system manually. Studies rely on a variety of evaluation
methods and software metrics to evaluate their findings.

We identify a variety of microservices identification eval-
uation techniques. Multiple subject systems were evaluated
empirically utilising quantitative metrics such as coupling,
Interface Number (IFN), Lack of Cohesion (LOC), and
Structural Modularity (SMQ). Additionally, case studies
were conducted using a singular subject system to acquire
subject-related metrics and outcomes. Furthermore, user
studies were conducted employing survey techniques and
user or developer interviews. Focusing on the five paper
categories, we identify the evaluation metrics employed in
these papers. We uncovered 31 distinct evaluation metrics
utilised in our publication sample. We grouped metrics that
occurred fewer than five times and lacked known statistical
properties into global metric types, such as qualitative
metrics, and others. We obtained 9 metric categories as a
result. Their annual tendencies are shown in Figure 4. Using
the data we uncovered, we can see that while cohesionmetrics
are still widely used, performance metrics (e.g., precision,
recall, etc.) are gaining significant popularity, particularly
for assessing the performance of candidate microservices in
cloud environments. However, a large proportion of papers
continue to employ a wide range of non-standard absolute
value metrics. CPU usage and network overhead are among
the absolute value metrics used to evaluate experiments and
instruments [43], [44]. None of these metrics are flawed,
but the lack of standardisation makes it difficult to compare
comparable experiments and evaluate progress.

23394 VOLUME 12, 2024



I. Oumoussa, R. Saidi: Evolution of Microservices Identification in Monolith Decomposition

1) NEW TOOLS AND TECHNIQUES
As discussed in Section IV-A, a significant portion of
existing literature is dedicated to introducing new tools and
techniques for microservices identification during migration
from monolithic systems. Surprisingly, many of these tools
and techniques lack a formal evaluation of their effectiveness.
While the authors may have conducted evaluations, they
are often not presented formally. For instance, some tools
are introduced in brief papers and evaluated in subsequent
publications, as seen in the case of [45]. Therefore, consumers
should exercise caution when seeking an evaluation of a
tool’s reliability. Recent publications have shown a growing
interest in using standardized metrics such as precision,
recall, and F1-score as part of evidence for the effectiveness
of supervised machine learning approaches [45], [46], [47],
[48]. Over the past decade, there has been an increasing
trend in the use of standardized metrics for experimentation,
as depicted in Figure 4. In cases where it may be challenging
to determine recall, as in the detection of changes in the
utilization of a mined framework [49], authors often resort to
manual comparisons or cohesion measures instead [50], [51].

2) EMPIRICAL STUDIES
All empirical studies focused on quantitative analysis to
evaluate their findings regarding microservices identification
during migration from monolithic to microservices-based
systems. Depending on the study, metrics such as changes
in microservices (e.g., addition, modification, removal) [52],
changes in lines of code [53], code smells [54], and
microservices’ popularity [55] were evaluated. The most
common evaluation criteria for identifying microservices
included the analysis of the business domain and system
characteristics, such as functional requirements, domain
models, and transactions. Quantifying microservice changes
through added/modified/removed microservices appeared to
be a common practice in case studies on microservices
identification.

While the majority of microservices case studies examined
and quantified microservice changes, some also relied on
qualitative assessments [26], [56]. Qualitative data like this
requires manual extraction by the authors. Case studies
are well-suited for uncovering new evaluation metrics for
microservices to reveal previously unknown information,
such as the types of ripple effects caused by changes to soft-
ware ecosystems, and microservices migration issues [57].
Therefore, case studies may introduce new, relatively rare
metrics as they seek to identify previously undiscovered
factors. The insights gained from case studies can subse-
quently be applied to larger-scale empirical studies of various
microservices.

3) TOOLS AND TECHNIQUE PROPOSALS
Migration from a monolithic system to a microservices
architecture presents numerous challenges and complexities,
which are often discussed in presentations and expert panels

focusing on microservices identification. These presentations
delve into the characteristics of the business domain and
the system. However, many of these papers lack clear
and transparent evaluation criteria for their methods. Some
recommended practices papers propose specific software
metrics that could benefit from developer expertise, such as
metrics related to coupling reduction [58]. Additionally, tool
proposals often include evaluation metrics to assess the tool’s
precision and effectiveness, alongside user studies designed
to collect feedback from developers [26], [56].

4) SURVEYS
During the migration from a monolithic system to microser-
vices, there are two main categories of survey papers. The
first category focuses on existing literature, for example the
survey conducted by [39]. Surveys of this type examine
and summarize existing techniques but often do not employ
specific metrics to evaluate the papers included in their
findings. Instead, they rely on the evaluations presented
within each surveyed paper. Additionally, surveys of this type
typically define a specific scope and set of criteria, which are
manually assessed by the author. Similarly, in our systematic
literature review, we rely on the evaluations provided in
the papers we sampled. However, we also incorporate
quantitative data to identify publishing and evaluation trends,
as well as the emergence of microservices identification
sub-fields.

The second category of survey papers provides results
obtained from queries used to gather information from
participants. These papers offer quantifiable data that can be
analyzed in various ways. For example, [59] includes raw
data from survey responses conducted in a related study,
along with a quantitative evaluation of those responses.
Meanwhile, other works, like the study by [60], investi-
gate the behavior of programmers in relation to specific
microservices identification-related tasks. It is important to
note that there is no standardized dataset or evaluation
method commonly used for microservices identification
surveys. Current evaluation methods tend to be tailored to
specific papers. The absence of a standardized evaluation
methodology within the community is a matter that should
be addressed, as it hinders research comparisons and makes it
challenging to determine the progress made in microservices
identification.

5) DATASETS
The shortage of datasets is a significant challenge, as most
studies resort to utilizing open-source applications of rela-
tively modest size, typically with fewer than 200,000 lines of
code. This shortage of available datasets and benchmarking
data represents a relatively underexplored area in microser-
vices identification research. Researchers typically opt for
monolithic applications for their experiments due to the ready
availability of monolithic source code, often sourced from
Open Source Software. However, there has been a recent

VOLUME 12, 2024 23395



I. Oumoussa, R. Saidi: Evolution of Microservices Identification in Monolith Decomposition

emergence of monolithic applications that come paired with
their corresponding microservices implementations. Some
noteworthy examples include JPetStore [22], [34], [61], [62],
DayTrader [23], [61], [63], Acme Air [61], [63], Petclinic [8],
[63], [64], and Cargo Tracking System [21], [65]. Other
studies featured in this review employ distinct codebases to
illustrate and validate their proposed methods.

Answers of RQ1: Empirical evaluation in microser-
vices identification studies in general has not yet
converged on specific styles and metrics. A surpris-
ing number of microservices identification tools and
techniques do not include any empirical evaluation,
while studies with similar tools and techniques assess
precisionmetrics and IFN.Meanwhile, empirical studies
on microservices identification rely on various metrics,
with the frequency of cohesion metrics being the most
common, but not always. Survey papers, tools, and
techniques proposal papers similarly present a variety of
evaluation criteria with no clear standards. While some
flexibility is indeed required to accommodate various
research goals, there is still work to be done to evaluate
similar research goals using consistent evaluation styles
and metrics.

V. SEMINAL AND RECENT PUBLICATIONS
To answer RQ2: What is the current state of the art in
microservices identification research ?, we first present
publication trends within the state of the art. We then
concentrate on the seminal and most recent concepts and
research works. We chose these seminal works based on the
novelty of their content, and the number of works that present
similar ideas and build on these seminal works. This section
is also divided by publication contribution category, as in
Section IV-A.

A. NEW TOOLS AND TECHNIQUES
A variety of tools and techniques have been developed over
time to facilitate microservices identification and migration
from monolithic systems. These tools and techniques are
generally focused on decoupling monolithic systems into
microservices while ensuring their functionality and efficacy.
We categorize microservices identification tools and tech-
niques into general topics such as documentation, examples,
migrations, and recommendations, and others. As stated in
Section III-D, these tool topics were either identified in prior
surveys [2], [36], [37], [38], [39], or by using publication
keywords, titles, abstracts as well as our own judgement.
We provide a general overview of the state-of-the-art for each
tool topic.

- Microservices Documentation Tools: State-of-the-art
documentation tools and techniques include using Stack
Overflow posts to supplement documentation for lexi-
cal queries [40], dynamically generating microservice

documentation based on service interactions [44],
and employing Natural Language Processing (NLP)
techniques to extract and summarize microservice
documentation [7], [66]. Other tools focus on visualizing
microservice dependencies [67] or extracting the com-
munication patterns between microservices [32], [68] to
aid in documentation efforts.

- Microservices Examples Tools: The examples aid in
comprehending how microservices operate in the real
world and facilitate their incorporation into the larger
system. This will enable developers to comprehend how
microservices interact and how to utilise them effec-
tively. Exemplary microservices tools have been lauded
for their utility in comprehending how microservices
function [62], [69]. MSExtracter [20] and Decomposer
[50] extract microservice examples from existing source
code. In order to identify instances of microservices,
techniques employing log visualisation [70] have also
been utilised.

- Microservices Migration Tools: Existing services
must be identified and partitioned in order to migrate
from a monolithic system to microservices. This task
has been facilitated by the creation of tools and
methods. Microservice Miner [69] employs source
code analysis to determine service boundaries and
interdependencies. Microservice Miner [71] provides
a model-driven migration strategy from monolithic to
microservices. Other tools, such as the Microservice
Migration Assistant (MMA) [72], use static and dynamic
analysis to identify microservice entry points and their
interactions. ExploreViz [73] provides a graphical user
interface for visualising the structure of a monolithic
system and investigating potential microservices.

- Microservices Recommendation Tools: Recommen-
dations are exemplary design, implementation, and
maintenance practises for microservices. Recommen-
dations may consist of coding standards, security
policies, and release management procedures [74]. Pop-
ular recommendation tools for microservices include
Microservices.io [75] and Netflix OSS [76], which
offer templates, patterns, and guidance for creating
microservices. These tools can help developers save
time and effort in identifying and separating existing
services, leading to a smoother and more efficient
migration from a monolithic system to microservices.
Various industrial solutions have emerged to tackle
the challenge of breaking down monolithic systems
into microservices. Notable examples include IBM’s
Mono2Micro tool 2 and Amazon’s AWS Microservice
Extractor for NET.3

- Microservices Usage Mining Tools: Static and
dynamic data extraction techniques have been proposed

2https://www.ibm.com/cloud/blog/announcements/ibm-mono2micro
3https://aws.amazon.com/about-aws/whats-new/2021/11/aws-

microservice-extractor-net/

23396 VOLUME 12, 2024



I. Oumoussa, R. Saidi: Evolution of Microservices Identification in Monolith Decomposition

to identify microservices. Kieker [22], [34] gathers
dynamic information from Java applications [77],
while Dbeaver [73] is employed to retrieve runtime
database table access within a monolithic system. These
techniques involve analyzing the codebase to identify
modules with high cohesion and low coupling, which
are good candidates for microservices [78]. In addition,
tools such as Scipy Python Library [52], Arcan [79], and
DISCO [80] can be used to visualise and analyse the
communication patterns betweenmicroservices, thereby
facilitating their identification and separation from a
monolithic system.

Different tools are vital for transitioning from a monolithic
system tomicroservices. They offer a wide range of solutions,
aiding developers in achieving a successful transition.

Answers of RQ2: State-of-the-art tools and techniques
related to microservices identification, aim to, in order
of importance, enhance microservices utilization, facil-
itate adaptation to changes, automate microservices
migration, offer microservices recommendations, miti-
gate microservices misuse, and enhance microservices
documentation and examples.

B. EMPIRICAL STUDIES
In the context of migrating from a monolithic system to
microservices, recent empirical research extensively investi-
gates the identification and management of microservices.

- Microservice Identification: These studies delve into
various aspects of identifying microservices, addressing
concerns like decomposing the monolithic system,
defining service boundaries, understanding granularity,
and managing dependencies. A systematic approach
to microservice identification can reduce the risk of
dependency failures and improve maintainability [81].
Automated tools are suggested to assist developers
in identifying service boundaries [82]. Recent stud-
ies propose multiple techniques, including clustering-
based, dependency-based, and data-driven approaches,
for microservice identification [83], [84].

- Microservice Maintenance: Once microservices
are identified and deployed, ensuring their long-term
maintainability becomes crucial. This encompasses
testing, monitoring, debugging, versioning, and evo-
lution [85], [86]. Effective diagnostic techniques are
essential for problem resolution, and versioning allows
governance over microservices’ evolution [87]. Some
studies explore the application of heuristics for tasks like
defect diagnosis and performance optimization [88].

Recent empirical studies offer valuable insights into
addressing the challenges and best practices for microservice
identification and management, which are vital for a success-
ful transition from a monolithic system to microservices.

Answers of RQ2: Empirical studies on microservices
identification maintainability typically focus on chal-
lenges related to the rate of microservice changes, and
the impact of changes.

C. TOOLS AND TECHNIQUE PROPOSALS
The proposals for tools and techniques in this context
primarily address existing issues while suggesting solutions
for future research. They aim to advance microservices
identification and maintenance. Recent proposals high-
light the importance of distinguishing between different
microservices [89] and developing techniques for extracting
microservices from monolithic codebases [90]. Another
proposal focuses on challenges such as establishing precise
connections between microservices, capturing application
context and synthesizing documentation [19]. Additionally,
techniques employing genetic algorithms [91], and natural
language processing for microservices identification require-
ments gain popularity [7]. These proposals provide valuable
insights into the evolving needs of researchers and developers
in microservices identification and maintenance.

Answers of RQ2: Tools and technique proposals
aim to enhance microservices identification and main-
tenance by addressing issues such as distinguishing
microservices and employing genetic algorithms and
natural language processing.

D. SURVEYS
Surveys inherently highlight pioneering concepts and the
latest advancements. As mentioned in Section IV-A, we’ve
identified five survey papers in line with the methodol-
ogy outlined in Section III. These papers explore various
aspects of microservices, including recommendation sys-
tems [92], [93], software ecosystems [94], property inference
techniques [63], and fusion techniques [3]. We leverage
metrics, classifications, and challenges drawn from pre-
vious surveys [8], [93], [95], [96], [97] to reinforce our
findings and categorize the tools and techniques discussed
in microservices identification and empirical studies in
Sections V and VI. Additionally, these survey papers pinpoint
ongoing challenges and future research directions within their
domains. While some of these issues have been addressed
since the surveys were conducted, a few persist, andwe revisit
them in Section VI, alongside our own discoveries.

Answers of RQ2: Surveys associated to microservices
identification tend to highlight the state-of-the-art in
research as well as current research challenges and
future research directions.

VOLUME 12, 2024 23397



I. Oumoussa, R. Saidi: Evolution of Microservices Identification in Monolith Decomposition

E. DATASETS
The focus of papers primarily centred on datasets is future
research. Two papers that introduce datasets are considered
primary contributions [41], [42]. However, publications
categorized under different primary contributions (e.g.,
Empirical studies) may also include datasets as secondary
contributions. For instance, some publications contribute
methodologies [98], [99] alongside datasets. The practice of
open-sourcing research datasets is emerging as a research
area that needs to be addressed.

Answers of RQ2: State-of-the-art datasets are essen-
tial. The emergence of open-sourcing research datasets
is an area requiring attention.

Answers of RQ2: We discussed influential and recent
works in microservices identification. Their objectives
include simplifying microservices identification, han-
dling microservices changes, and offering recommen-
dations. They also seek to minimize microservices
misuse and enhance microservices documentation. They
propose that future efforts should concentrate on devel-
oping automated microservices identification tools and
creating datasets for consistent migration evaluations.

VI. CURRENT AND FUTURE CHALLENGES
To address RQ3: What are the current and future challenges
in microservices identification during the transition from a
monolithic system?Wemanually identified both existing and
unsolved challenges, as presented in Table 3. Despite the
rapid growth in microservices research and the emergence of
promising tools, significant challenges persist in the field of
microservices identification.

Challenges related to microservices identification are scat-
tered throughout the literature, often intertwined with both
advancements and persistent obstacles.While conducting this
literature review, we compiled a list of challenges mentioned
in published works. Challenges for which solutions have
been proposed are considered existing challenges (EC), while
those without known solutions are regarded as emerging
or unsolved challenges (UC). We have supplemented these
unsolved challenges with additional insights from our review.

We identified existing challenges in the field of new
tools and techniques, as well as empirical studies. No exist-
ing challenges were found in proposals or surveys, only
unsolved ones. Among these challenges, we believe that
Lehman’s eighth law, the Feedback System [100], represents
a significant barrier to future research in microservices
identification.

A. NEW TOOLS AND TECHNIQUES
Existing Challenges: Issue: Limited research has focused on
microservices identification tools designed specifically for

Web APIs, highlighting the need for more comprehensive
studies and tools that address the unique challenges posed
by Web APIs in microservices identification (EC-10).
Identifying microservices involves considering factors such
as service boundaries, service quality, and the absence of
exhaustive microservices listings [52], [98]. Propositions:
Researchers can leverage existing research, such as microser-
vices migration approaches [47], [50], [64], [72], [107],
[108], high-quality code summary generation [109], misuse
identification [99], and the use of relational topic models for
examples [62], as foundations for enhancing microservices
identification tools (EC-11). Modern migration techniques
should explore hybrid approaches (EC-12) that combine
API-side learning with client-side learning [105] and domain
adaptation techniques (EC-13) to address out-of-vocabulary
problems, a current challenge in microservices identifi-
cation [106]. Issue: The development of identification,
recommendation, and misuse detectors for microservices
is an ongoing challenge. Propositions: Addressing these
challenges requires active involvement of microservices
users, as they are the ones most affected. Furthermore, tools
designed to assist with these issues should offer support for
additional programming languages and Web APIs.
Unresolved Challenges: Issue: While numerous tools

and techniques have been developed to address microser-
vices identification issues, most tools focus on specific
challenges and do not fully account for feedback cycles
involved in microservices identification. Although individ-
ual tools demonstrate promising results [8], [101], [110],
none can claim to be 100 % effective in resolving their
target problem. With the emergence of machine learning
approaches as potential solutions to key microservices
identification issues [3], [23], [47], [88], questions arise
regarding the suitability of current approaches for user
adoption, their applicability to all issues, and the need for
performance enhancements before widespread tool adoption
(UC-3). Fuzzy and ambiguous intent (UC-4) and the rapid
evolution of software services using microservices, such
as IoT devices, present challenges in the evolution of
microservices [10], [107]. Propositions: Effective microser-
vices engineering should aim to resolve technical issues
stemming from microservices and bridge the knowledge gap
between microservices developers and users (UC-5). New
tools are needed to help microservices developers produce
user-friendly microservices [8], [101], [110] (UC-6), and
improved techniques should assist microservices users in
understanding how to use these microservices [2] (UC-7).
Researchers should seek to understand what constitutes a
‘‘good’’ microservice and why users prefer one microservice
over another to address these challenges.

Issue: Many organizations aspire to migrate from mono-
lithic to microservices architecture [47], [50]. Identifying the
appropriate microservices to separate from the monolithic
system remains a challenging task. The effectiveness of exist-
ing monolithic systems’ decomposition into microservices is
still uncertain (UC-8).

23398 VOLUME 12, 2024



I. Oumoussa, R. Saidi: Evolution of Microservices Identification in Monolith Decomposition

TA
B

LE
3.

O
pe

n
ch

al
le

ng
es

in
m

ic
ro

se
rv

ic
es

id
en

ti
fi

ca
ti

on

VOLUME 12, 2024 23399



I. Oumoussa, R. Saidi: Evolution of Microservices Identification in Monolith Decomposition

Issue: Microservices identification has garnered signifi-
cant attention in migration research but remains unresolved.
The assumption underlying most current approaches [20],
[23], [38] is that microservices identification is solely
the responsibility of application developers. Propositions:
Research should explore the potential efficiency gains of
shifting some of the burden to infrastructure developers
(UC-9), such as having them provide tools or scripts
for microservices identification. Additionally, tools should
be developed to streamline microservices engineering and
reduce the identification workload on the application side.

Issue: Several tools have been developed to analyze
monolithic systems and identify potential microservices [8].
Propositions: This information should be utilized to establish
a feedback cycle to assist application developers in enhancing
their microservices (e.g., using microservice dependencies as
areas for improvement [21]) (UC-10). Over the past decade,
migration research has predominantly focused on application
developers rather than infrastructure developers.

B. EMPIRICAL STUDIES
Existing Challenges: Issue/Proposition: Studies have
revealed the need for future work on microservices develop-
ers and microservices development to support the migration
of monolithic systems to microservices [57], define best
fit microservices [104] (EC-14), and automatically iden-
tify factors driving microservices changes [31] (EC-15).
Issue/Proposition: In their study on microservices identifi-
cation, [7] emphasise the need for future research into the
semantics and dependencies of programs (EC-16), as well as
the need for tools that can manage alternative patterns for the
same microservice. Issue/Proposition: Aksakalli et al. [87]
have proposed the need for tools to deploy problem solutions
to multiple microservices simultaneously (EC-17).
Unresolved Challenges: Issue: The majority (96%) of

empirical studies on microservices identification focus
on systems written in the Java programming language.
A small percentage (≤ 5 % each) of empirical investigations
cover other languages such as C, C++, COBOL, and
Python. Proposition: Future research should be extended
to languages other than Java (UC-13). Issue: A large
proportion (74%) of empirical studies do not use statistical
analyses to evaluate their findings. The majority of these
studies exhibit metrics such as Lines-Of-Code (LOC) or
the number of service changes; however, there is currently
no method to normalise these results so that they can be
compared across studies (UC-14). Proposition: Comparison
of the migration methods, particularly across programming
languages, remains a challenge.

C. DATASETS
Unsolved Challenges: Issue: The lack of widely accepted and
up-to-date datasets makes it difficult to evaluate and compare
variousmicroservices identification techniques.Proposition:
To advance research in microservices identification and

enable direct comparisons of different techniques (UC-15),
there is a pressing need for more datasets. However,
producing such datasets is challenging due to the subjective
and context-sensitive nature of microservices identification.

D. OTHERS
Other research objectives on identifying microservices, tools
and technique proposals, and surveys are scarcer, so we
discuss them together in this section.
Existing Challenges: Issue/Proposition: One of the

challenges of migrating from a monolithic system to
microservices is determining which microservices to employ.
There is a need for tools that can accurately identify
microservices by combining textual, syntactic, and semantic
techniques (EC-1). Although some programmes, such as
MOGA-WSI [101] and MicroserviceExtraction [8], have
attempted this, a commercially viable solution has not yet
been developed (EC-2). When identifying microservices,
it is also essential to integrate domain-specific information,
which has been attempted with varying degrees of success
(EC-3). However, it appears that current solutions are context-
dependent, and more research is required in this area.

Issue/Proposition: While there have been some studies
attempting to develop theories about microservices [25], [35],
[60], [92], the majority of tools and research appear to be
closely tied to factors such as microservices ecosystems
and the programming languages used for microservices
(UC-11). We have found that there is currently no established
systematic methodology for evaluating the identification of
microservices. Although their survey laid the groundwork
for comparing microservice identification techniques, there
has been limited progress in implementing a systematic
evaluation methodology (EC-4). The reasons for this lack of
adoption remain unclear but could be attributed to limited
exposure or the inherent complexities associated with the
proposed approach. Addressing this challenge should be a
priority to enhance the visibility of existing methodologies
and guide future research towards more systematic and
comparable evaluations.

Issue/Proposition: According to [103], theories regarding
software ecosystems and the services they entail are fre-
quently either too general (EC-5) or too abstract. Due to the
high variability of the field, it is difficult to study software
ecosystems, and the same difficulty applies to identifying
microservices within these ecosystems (EC-6).

Issue/Proposition: In [104], the authors highlight sev-
eral open challenges with respect to automating repetitive
software changes when migrating to microservices. One of
the challenges is finding input examples to automate the
process (EC-7). Integrating testing with code recommenda-
tion and dealing with various levels of code granularity for
microservice recommendations and migrations also remain
open challenges (EC-8). Current recommendation tools rely
heavily on human intervention to determine the correctness of
the recommendation (EC-9). Although [104] have attempted
to automate the process of identifying microservices, this

23400 VOLUME 12, 2024



I. Oumoussa, R. Saidi: Evolution of Microservices Identification in Monolith Decomposition

challenge has not been fully solved. More work is needed to
extract code examples relevant to user queries and determine
the similarity of multiple examples.
Unsolved Challenges: Issue: Currently, there is a lack

of standardized benchmarks to evaluate the performance
of microservice identification techniques. The results of
these techniques are therefore at the mercy of the dataset
and evaluation methodologies chosen by their authors,
preventing comparisons between techniques. Proposition:
Future research should seek to use a standard evaluation
such as the one provided by [102] to improve the ease of
comparison between various approaches (UC-1).

Issue: Identifying microservices is a context-sensitive
problem, and there is a need to incorporate domain-specific
information into tools to account for this context sen-
sitivity. However, it is unclear how to best support the
context-sensitive nature of microservice identification tools
and how their usagemight affect the overall migration process
(UC-2).

Issue: Few studies have attempted to determine whether
the severity of the various problems in identifying microser-
vices is present in all programming languages (UC-12).
Proposition: Systematic studies to determine the impact
of identifying microservices during migration and the
helpfulness of microservice identification tools are required
to understand whether such aid is universally required or
language dependent.

Answers of RQ3: Table 3 4summarises and labels
existing challenges (EC-1 through EC-17) and unsolved
challenges (UC-1 through UC-15) identified during this
systematic literature review. It shows that existing and
unsolved challenges concern new tools and techniques
and empirical studies first. We also consider unsolved
challenges with datasets. They are concerned first and
foremost with microservices identification during migra-
tion from a monolithic system to microservices, and
the evaluation/validation of microservices identification
tools and their results.

VII. THREATS TO VALIDITY
Construct validity. While we acknowledge that the search
phrase ‘‘Microservices Identification’’ may not be perfect,
and different search queries could yield additional results,
we have included a substantial number of studies to provide a
comprehensive representation of the field. Our taxonomywas
developed with some ad-hoc elements, introducing potential
subjectivity bias [111]. To address this, we employed classi-
fications found in existing papers, synonyms for established
terminology.

4It shows the main references presenting existing challenges. Emerging
unsolved challenges are indirectly referenced because they are recently
emerging and have not yet been thoroughly discussed and addressed in the
literature.

External validity. Although it is improbable that we have
identified every paper related to microservices identification,
we believe that our selection of publications is indicative
of the state of the art in this field. We are confident that
the majority of relevant works are included, and the trends
and findings presented reflect the current state-of-the-art.
Our efforts to mitigate this included utilizing six different
publication search engines and implementing forward and
backward snowballing to capture papers that might have been
missed.
Internal validity. To minimize potential biases, we, drawing
on our expertise in microservices identification, agreed on
the selection criteria and paper categorization. The categories
used for classification were also collectively determined.
While the majority of paper selection and classification was
conducted by one author, we conducted a test-retest reliability
assessment to ensure internal consistency, yielding excellent
results.

VIII. CONCLUSION
In this systematic survey of the literature on microservices
identification, we uncovered the publication trends as well as
questions and goals common in the literature. We answered
three research questions: RQ1: How has microservice iden-
tification research evolved? RQ2: What is the current state
of microservice identification research? RQ3: What are the
current and future challenges in microservice identification?

We observed that there are five research goals, in
Section IV-A: new tools and techniques, empirical investiga-
tions, proposed tools, surveys, and datasets. In Section IV-B,
we observed a variety of evaluation metrics, with cohesion
metrics, IFN, and LOC being the most common, but
these metrics aren’t consistently applied in all studies.
Consequently, it’s challenging to compare the effectiveness
of methods proposed in different studies. Future research
should aim to establish a standard set of metrics for monolith
analysis and microservices identification. Metrics are not
only essential in the analysis and identification phases; there’s
also a notable lack of consistent evaluation of the resulting
microservices, which calls for the publication of datasets.
These datasets should encompass key elements, such as the
monolith source code, the extracted microservices, and the
metrics used at different stages. To facilitate systematic
comparisons and advancements, we recommend adopting
standard benchmarks and evaluation techniques. Fur-
thermore, exploring the impact of microservice migration
and assessing their evolution represents valuable research
directions.

We studied the tools and techniques from existing literature
and found that their primary purposes are to improve
microservices identification, offer guidance for microser-
vices recommendations, assist in microservices migra-
tion, mitigate issues in microservices usage, and enhance
microservices documentation. We recommend enhancing
these tools with domain-specific knowledge, develop-
ing tools designed for identifying microservices within

VOLUME 12, 2024 23401



I. Oumoussa, R. Saidi: Evolution of Microservices Identification in Monolith Decomposition

Web APIs, and developing tools to help microservices
developers improve their microservices. We also suggest
exploring the use of NLP techniques to address challenges
in microservices identification.

Empirical research on microservice identification predom-
inantly focuses on usability and maintainability. It delves into
disruptive changes, integration challenges, standards, usage,
abuse, and documentation. We recommend studying the
influence of microservices on application scalability.

A lot of the research done so far has concentrated on
a limited set of programming languages, with a strong
preference for Java. However, many big business mono-
lithic systems have been constructed using languages like
COBOL and C/C++. We believe it’s crucial to give
more consideration to this aspect. We propose exploring
various programming languages beyond Java to enhance
adaptability and uncover shared or distinct factors.

The need for faster software updates and the rise of cloud
computing for distributed software systems make breaking
down monolithic systems into microservices important for
software development. We encourage researchers to make
their benchmarks and datasets publicly available. While
challenges like ongoing change and complexity persist,
the next frontier lies in mastering feedback systems in
microservice identification.We believe this study will benefit
existing work and inspire future research in microservice
identification.

REFERENCES
[1] S. Newman, Building Microservices. Sebastopol, CA, USA: O’Reilly

Media, 2021.
[2] D. Wolfart, W. K. G. Assunção, I. F. da Silva, D. C. P. Domingos,

E. Schmeing, G. L. D. Villaca, and D. D. N. Paza, ‘‘Modernizing legacy
systems with microservices: A roadmap,’’ in Proc. Eval. Assessment
Softw. Eng.New York, NY, USA: Association for Computing Machinery,
Jun. 2021, pp. 149–159, doi: 10.1145/3463274.3463334.

[3] A. Balalaie, A. Heydarnoori, P. Jamshidi, D. A. Tamburri, and T. Lynn,
‘‘Microservices migration patterns,’’ Software: Pract. Exper., vol. 48,
no. 11, pp. 2019–2042, Nov. 2018, doi: 10.1002/spe.2608.

[4] G. Kecskemeti, A. C. Marosi, and A. Kertesz, ‘‘The ENTICE approach
to decompose monolithic services into microservices,’’ in Proc. Int. Conf.
High Perform. Comput. Simul. (HPCS), Jul. 2016, pp. 591–596, doi:
10.1109/HPCSim.2016.7568389.

[5] A. Selmadji, A.-D. Seriai, H. L. Bouziane, C. Dony, and R. O.Mahamane,
‘‘Re-architecting OO software into microservices,’’ in Proc. Service-
Oriented Cloud Comput., 2018, pp. 65–73, doi: 10.1007/978-3-319-
99819-0_5.

[6] A. Levcovitz, R. Terra, and M. Tulio Valente, ‘‘Towards a technique
for extracting microservices from monolithic enterprise systems,’’ 2016,
arXiv:1605.03175.

[7] S.-P. Ma, Y. Chuang, C.-W. Lan, H.-M. Chen, C.-Y. Huang, and C.-Y. Li,
‘‘Scenario-based microservice retrieval usingWord2 Vec,’’ in Proc. IEEE
15th Int. Conf. e-Business Eng. (ICEBE), Oct. 2018, pp. 239–244, doi:
10.1109/ICEBE.2018.00046.

[8] G. Mazlami, J. Cito, and P. Leitner, ‘‘Extraction of microservices from
monolithic software architectures,’’ in Proc. IEEE Int. Conf. Web Services
(ICWS), Jun. 2017, pp. 524–531, doi: 10.1109/ICWS.2017.61.

[9] I. Oumoussa, S. Faieq, and R. Saidi, ‘‘Microservices: Investigating
underpinnings,’’ in Proc. Int. Conf. Netw., Intell. Syst. Secur., 2022,
pp. 343–351, doi: 10.1007/978-3-031-15191-0_33.

[10] D. Lu, D. Huang, A. Walenstein, and D. Medhi, ‘‘A secure microservice
framework for IoT,’’ in Proc. IEEE Symp. Service-Oriented Syst. Eng.
(SOSE), Apr. 2017, pp. 9–18, doi: 10.1109/SOSE.2017.27.

[11] D. Yu, Y. Jin, Y. Zhang, and X. Zheng, ‘‘A survey on security issues
in services communication of microservices-enabled fog applications,’’
Concurrency Comput., Pract. Exper., vol. 31, no. 22, p. e4436, Nov. 2019,
doi: 10.1002/cpe.4436.

[12] B. Kitchenham and S. Charterss, ‘‘Guidelines for performing systematic
literature reviews in software engineering,’’ School Comput. Sci. Math.,
Softw. Eng. Group, Keele Univ., Keele, U.K., Tech. Rep. EBSE-2007-
01, 2007.

[13] K. Petersen, S. Vakkalanka, and L. Kuzniarz, ‘‘Guidelines for con-
ducting systematic mapping studies in software engineering: An
update,’’ Inf. Softw. Technol., vol. 64, pp. 1–18, Aug. 2015, doi:
10.1016/j.infsof.2015.03.007.

[14] M. Petticrew and H. Roberts, Systematic Reviews in the Social
Sciences: A Practical Guide. Hoboken, NJ, USA: Wiley, 2008, doi:
10.1002/9780470754887.

[15] Z. M. Jiang and A. E. Hassan, ‘‘A survey on load testing of large-
scale software systems,’’ IEEE Trans. Softw. Eng., vol. 41, no. 11,
pp. 1091–1118, Nov. 2015.

[16] R. Huang, W. Sun, Y. Xu, H. Chen, D. Towey, and X. Xia, ‘‘A
survey on adaptive random testing,’’ IEEE Trans. Softw. Eng., vol. 47,
no. 10, pp. 2052–2083, Oct. 2021, doi: 10.1109/TSE.2019.2942921.
https://doi.org/10.1109/TSE.2019.2942921

[17] M. Kuhrmann, D. M. Fernández, and M. Daneva, ‘‘On the pragmatic
design of literature studies in software engineering: An experience-
based guideline,’’ Empirical Softw. Eng., vol. 22, no. 6, pp. 2852–2891,
Dec. 2017, doi: 10.1007/s10664-016-9492-y.

[18] O. Al-Debagy and P. Martinek, ‘‘A microservice decomposition method
through using distributed representation of source code,’’ Scalable
Comput., Pract. Exper., vol. 22, no. 1, pp. 39–52, Feb. 2021, doi:
10.12694/scpe.v22i1.1836.

[19] A. Furda, C. Fidge, O. Zimmermann, W. Kelly, and A. Barros,
‘‘Migrating enterprise legacy source code to microservices: On
multitenancy, statefulness, and data consistency,’’ IEEE Softw.,
vol. 35, no. 3, pp. 63–72, May 2018, doi: 10.1109/MS.2017.
440134612.

[20] I. Saidani, A. Ouni, M. W. Mkaouer, and A. Saied, ‘‘Towards automated
microservices extraction using muti-objective evolutionary search,’’ in
Proc. Service-Oriented Comput., 17th Int. Conf., Toulouse, France, 2019,
pp. 58–63, doi: 10.1007/978-3-030-33702-5_5.

[21] M. Daoud, A. El Mezouari, N. Faci, D. Benslimane, Z. Maamar,
and A. El Fazziki, ‘‘A multi-model based microservices identification
approach,’’ J. Syst. Archit., vol. 118, Sep. 2021, Art. no. 102200, doi:
10.1016/j.sysarc.2021.102200.

[22] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng, ‘‘Service
candidate identification from monolithic systems based on execution
traces,’’ IEEE Trans. Softw. Eng., vol. 47, no. 5, pp. 987–1007, May 2021,
doi: 10.1109/TSE.2019.2910531.

[23] U. Desai, S. Bandyopadhyay, and S. Tamilselvam, ‘‘Graph neu-
ral network to dilute outliers for refactoring monolith applica-
tion,’’ in Proc. AAAI Conf. Artif. Intell., 2021, vol. 35, no. 1,
pp. 72–80.

[24] T. Kinoshita and H. Kanuka, ‘‘Automated microservice decomposition
method as multi-objective optimization,’’ in Proc. IEEE 19th Int. Conf.
Softw. Archit. Companion (ICSA-C), Mar. 2022, pp. 112–115, doi:
10.1109/ICSA-C54293.2022.00028.

[25] S. S. De Toledo, A. Martini, P. H. Nguyen, and D. I. K. Sjøberg,
‘‘Accumulation and prioritization of architectural debt in three
companies migrating to microservices,’’ IEEE Access, vol. 10,
pp. 37422–37445, 2022, doi: 10.1109/ACCESS.2022.3158648.
https://doi.org/10.1109/ACCESS.2022.3158648

[26] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann, ‘‘Microser-
vices migration in industry: Intentions, strategies, and challenges,’’ in
Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2019,
pp. 481–490, doi: 10.1109/ICSME.2019.00081.

[27] S. Eski and F. Buzluca, ‘‘An automatic extraction approach: Transition
to microservices architecture from monolithic application,’’ in Proc.
19th Int. Conf. Agile Softw. Development: Companion. New York, NY,
USA: Association for Computing Machinery, May 2018, pp. 1–6, doi:
10.1145/3234152.3234195.

[28] J. Ghofrani and A. Bozorgmehr, ‘‘Migration to microservices: Barriers
and solutions,’’ in Applied Informatics. New York, NY, USA: Springer,
2019, pp. 269–281, doi 10.1007/978-3-030-32475-9_20.

23402 VOLUME 12, 2024

http://dx.doi.org/10.1145/3463274.3463334
http://dx.doi.org/10.1002/spe.2608
http://dx.doi.org/10.1109/HPCSim.2016.7568389
http://dx.doi.org/10.1007/978-3-319-99819-0_5
http://dx.doi.org/10.1007/978-3-319-99819-0_5
http://dx.doi.org/10.1109/ICEBE.2018.00046
http://dx.doi.org/10.1109/ICWS.2017.61
http://dx.doi.org/10.1007/978-3-031-15191-0_33
http://dx.doi.org/10.1109/SOSE.2017.27
http://dx.doi.org/10.1002/cpe.4436
http://dx.doi.org/10.1016/j.infsof.2015.03.007
http://dx.doi.org/10.1002/9780470754887
http://dx.doi.org/10.1109/TSE.2019.2942921
http://dx.doi.org/10.1007/s10664-016-9492-y
http://dx.doi.org/10.12694/scpe.v22i1.1836
http://dx.doi.org/10.1109/MS.2017.440134612
http://dx.doi.org/10.1109/MS.2017.440134612
http://dx.doi.org/10.1007/978-3-030-33702-5_5
http://dx.doi.org/10.1016/j.sysarc.2021.102200
http://dx.doi.org/10.1109/TSE.2019.2910531
http://dx.doi.org/10.1109/ICSA-C54293.2022.00028
http://dx.doi.org/10.1109/ACCESS.2022.3158648
http://dx.doi.org/10.1109/ICSME.2019.00081
http://dx.doi.org/10.1145/3234152.3234195
http://dx.doi.org/10.1007/978-3-030-32475-9_20


I. Oumoussa, R. Saidi: Evolution of Microservices Identification in Monolith Decomposition

[29] M.-D. Cojocaru, A. Uta, and A.-M. Oprescu, ‘‘Attributes assessing the
quality of microservices automatically decomposed from monolithic
applications,’’ inProc. 18th Int. Symp. Parallel Distrib. Comput. (ISPDC),
Jun. 2019, pp. 84–93, doi: 10.1109/ISPDC.2019.00021.

[30] V. Lenarduzzi, F. Lomio, N. Saarimäki, and D. Taibi, ‘‘Does migrat-
ing a monolithic system to microservices decrease the technical
debt?’’ J. Syst. Softw., vol. 169, Nov. 2020, Art. no. 110710, doi:
10.1016/j.jss.2020.110710.

[31] A. V. Zarras, P. Vassiliadis, and I. Dinos, ‘‘Keep calm and wait for the
spike! insights on the evolution of Amazon services,’’ in Proc. Adv. Inf.
Syst. Eng., 2016, pp. 444–458, doi: 10.1007/978-3-319-39696-5_27.

[32] G. Vale, F. F. Correia, E. M. Guerra, T. de Oliveira Rosa, J. Fritzsch, and
J. Bogner, ‘‘Designing microservice systems using patterns: An empirical
study on quality trade-offs,’’ in Proc. IEEE 19th Int. Conf. Softw.
Archit. (ICSA), Mar. 2022, pp. 69–79, doi: 10.1109/ICSA53651.2022.
00015.

[33] J. Lewis and M. Fowler, ‘‘Microservices: A definition of this new
architectural term,’’MartinFowler. Com, vol. 25, nos. 14–26, p. 12, 2014.

[34] Y. Zhang, B. Liu, L. Dai, K. Chen, and X. Cao, ‘‘Automated microservice
identification in legacy systems with functional and non-functional
metrics,’’ in Proc. IEEE Int. Conf. Softw. Archit. (ICSA), Mar. 2020,
pp. 135–145, doi: 10.1109/ICSA47634.2020.00021.

[35] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Berlin, Germany:
Springer, 2012, doi: 10.1007/978-3-642-29044-2.

[36] M. Abdellatif, A. Shatnawi, H. Mili, N. Moha, G. E. Boussaidi,
G. Hecht, J. Privat, and Y.-G. Guéhéneuc, ‘‘A taxonomy of service
identification approaches for legacy software systems modernization,’’ J.
Syst. Softw., vol. 173,Mar. 2021, Art. no. 110868, doi: 10.1016/j.jss.2020.
110868.

[37] F. Ponce, G. Márquez, and H. Astudillo, ‘‘Migrating from monolithic
architecture to microservices: A rapid review,’’ in Proc. Int.
Conf. Chilean Comput. Sci. Soc. (SCCC), 2019, pp. 1–7, doi:
10.1109/SCCC49216.2019.8966423.

[38] J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner, ‘‘From monolith
to microservices: A classification of refactoring approaches,’’ in Software
Engineering Aspects of Continuous Development and. New York, NY,
USA: Springer, 2019, pp. 128–141, doi: 10.1007/978-3-030-06019-0_10.

[39] Y. Abgaz, A. McCarren, P. Elger, D. Solan, N. Lapuz, M. Bivol,
G. Jackson, M. Yilmaz, J. Buckley, and P. Clarke, ‘‘Decomposition
of monolith applications into microservices architectures: A systematic
review,’’ IEEE Trans. Softw. Eng., vol. 49, no. 8, pp. 4213–4242,
Jul. 2023, doi: 10.1109/TSE.2023.3287297.

[40] A. Bandeira, C. A. Medeiros, M. Paixao, and P. H. Maia, ‘‘We need
to talk about microservices: An analysis from the discussions on
StackOverflow,’’ in Proc. IEEE/ACM 16th Int. Conf. Mining Softw.
Repositories (MSR), May 2019, pp. 255–259, doi: 10.1109/MSR.2019.
00051.

[41] M. Imranur, Rahman, P. Sebastiano, and T. Davide, ‘‘A curated dataset of
microservices-based systems,’’ 2019, arXiv:1909.03249.

[42] A. Brogi, A. Canciani, D. Neri, L. Rinaldi, and J. Soldani, ‘‘Towards
a reference dataset of microservice-based applications,’’ in Proc. Softw.
Eng. Formal Methods, 2018, pp. 219–229, doi: 10.1007/978-3-319-
74781-1_16.

[43] W. K. G. Assunção, T. E. Colanzi, L. Carvalho, J. A. Pereira, A. Garcia,
M. J. de Lima, and C. Lucena, ‘‘A multi-criteria strategy for redesigning
legacy features as microservices: An industrial case study,’’ in Proc.
IEEE Int. Conf. Softw. Anal., Evol. Reengineering (SANER), 2021,
pp. 377–387, doi: 10.1109/SANER50967.2021.00042.

[44] A. A. C. De Alwis, A. Barros, C. Fidge, and A. Polyvyanyy,
‘‘Remodularization analysis for microservice discovery using syntactic
and semantic clustering,’’ in Advanced Information Systems Engineering.
New York, NY, USA: Springer, 2020, pp. 3–19, doi: 10.1007/978-3-030-
49435-3_1.

[45] S. Rochimah and B. Nuralamsyah, ‘‘Decomposing monolithic to
microservices: Keyword extraction and BFS combination method to
cluster Monolithic’s classes,’’ Jurnal RESTI (Rekayasa Sistem dan
Teknologi Informasi), vol. 7, no. 2, pp. 263–270, Mar. 2023, doi:
10.29207/resti.v7i2.4866.

[46] K. Sellami, M. A. Saied, and A. Ouni, ‘‘A hierarchical DBSCAN method
for extracting microservices from monolithic applications,’’ in Proc. Int.
Conf. Eval. Assessment Softw. Eng., New York, NY, USA, Jun. 2022,
pp. 201–210, doi: 10.1145/3530019.3530040.

[47] M. Dehghani, S. Kolahdouz-Rahimi, M. Tisi, and D. Tamzalit, ‘‘Facil-
itating the migration to the microservice architecture via model-driven
reverse engineering and reinforcement learning,’’ Softw. Syst. Model.,
vol. 21, no. 3, pp. 1115–1133, Jun. 2022, doi: 10.1007/s10270-022-
00977-3.

[48] X. Sun, S. Boranbaev, S. Han, H. Wang, and D. Yu, ‘‘Expert system for
automatic microservices identification using API similarity graph,’’ Exp.
Syst., Oct. 2022, Art. no. e13158, doi: 10.1111/exsy.13158.

[49] M. Cojocaru, A. Uta, and A.-M. Oprescu, ‘‘MicroValid: A validation
framework for automatically decomposed microservices,’’ in Proc.
IEEE Int. Conf. Cloud Comput. Technol. Sci. (CloudCom), Dec. 2019,
pp. 78–86, doi: 10.1109/CLOUDCOM.2019.00023.

[50] L. Baresi, M. Garriga, and A. De Renzis, ‘‘Microservices identification
through interface analysis,’’ in Proc. Service-Oriented Cloud Com-
put., 2017, pp. 19–33, doi: 10.1007/978-3-319-67262-5_2.

[51] A. Selmadji, A.-D. Seriai, H. L. Bouziane, R. O. Mahamane,
P. Zaragoza, and C. Dony, ‘‘From monolithic architecture style to
microservice one based on a semi-automatic approach,’’ in Proc.
IEEE Int. Conf. Softw. Archit. (ICSA), Mar. 2020, pp. 157–168, doi:
10.1109/ICSA47634.2020.00023.

[52] L. Nunes, N. Santos, andA. R. Silva, ‘‘From amonolith to amicroservices
architecture: An approach based on transactional contexts,’’ in Proc.
Softw. Archit., Paris, France, Sep. 2019, pp. 37–52, doi: 10.1007/978-3-
030-29983-5_3.

[53] K. Justas and M. Dalius, ‘‘Analysis of monolithic monolithic soft-
ware decomposition into microservices,’’ in Proc. Doctoral Consor-
tium/ForumDBIS, 2020, pp. 25–32.

[54] D. Taibi and V. Lenarduzzi, ‘‘On the definition of microservice bad
smells,’’ IEEE Softw., vol. 35, no. 3, pp. 56–62, May 2018, doi:
10.1109/MS.2018.2141031.

[55] L. J. Kirby, E. Boerstra, Z. J. C. Anderson, and J. Rubin, ‘‘Weighing
the evidence: On relationship types in microservice extraction,’’ in Proc.
IEEE/ACM 29th Int. Conf. Program Comprehension (ICPC), May 2021,
pp. 358–368, doi: 10.1109/ICPC52881.2021.00041.

[56] L. Carvalho, A. Garcia, T. E. Colanzi, W. K. G. Assunção,
J. A. Pereira, B. Fonseca, M. Ribeiro, M. J. de Lima, and C. Lucena,
‘‘On the performance and adoption of search-based microservice
identification with toMicroservices,’’ in Proc. IEEE Int. Conf.
Softw. Maintenance Evol. (ICSME), Sep. 2020, pp. 569–580, doi:
10.1109/ICSME46990.2020.00060.

[57] D. Taibi, V. Lenarduzzi, and C. Pahl, ‘‘Processes, motivations, and issues
for migrating to microservices architectures: An empirical investigation,’’
IEEE Cloud Comput., vol. 4, no. 5, pp. 22–32, Sep. 2017, doi:
10.1109/MCC.2017.4250931.

[58] M. Hitz and B. Montazeri, ‘‘Measuring coupling and cohesion in
objectoriented systems,’’ in Proc. Int. Symp. Appl. Corporate Comput.,
Monterrey, Mexico, 1995.

[59] P. Di Francesco, P. Lago, and I. Malavolta, ‘‘Migrating towards microser-
vice architectures: An industrial survey,’’ in Proc. IEEE Int. Conf. Softw.
Archit. (ICSA), Apr. 2018, pp. 29–2909, doi: 10.1109/ICSA.2018.00012.

[60] Y. Wang, H. Kadiyala, and J. Rubin, ‘‘Promises and challenges of
microservices: An exploratory study,’’ Empirical Softw. Eng., vol. 26,
no. 4, p. 63, Jul. 2021, doi: 10.1007/s10664-020-09910-y.

[61] A. K. Kalia, J. Xiao, R. Krishna, S. Sinha, M. Vukovic, and D. Banerjee,
‘‘Mono2Micro: A practical and effective tool for decomposingmonolithic
Java applications to microservices,’’ in Proc. 29th ACM Joint Meeting
Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., New York, NY, USA,
Aug. 2021, pp. 1214–1224, doi: 10.1145/3468264.3473915.

[62] M. Brito, J. Cunha, and J. Saraiva, ‘‘Identification of microservices
from monolithic applications through topic modelling,’’ in Proc. 36th
Annu. ACM Symp. Appl. Comput., Mar. 2021, pp. 1409–1418, doi:
10.1145/3412841.3442016.

[63] S. Agarwal, R. Sinha, G. Sridhara, P. Das, U. Desai, S. Tamil-
selvam, A. Singhee, and H. Nakamuro, ‘‘Monolith to microser-
vice candidates using business functionality inference,’’ in Proc.
IEEE Int. Conf. Web Services (ICWS), Sep. 2021, pp. 758–763, doi:
10.1109/ICWS53863.2021.00104.

[64] A. F. A. A. Freire, A. F. Sampaio, L. H. L. Carvalho, O. Medeiros,
and N. C. Mendonça, ‘‘Migrating production monolithic systems to
microservices using aspect oriented programming,’’ Software, Pract.
Exper., vol. 51, no. 6, pp. 1280–1307, Jun. 2021.

[65] S. Li, H. Zhang, Z. Jia, Z. Li, C. Zhang, J. Li, Q. Gao, J. Ge, and
Z. Shan, ‘‘A dataflow-driven approach to identifying microservices
from monolithic applications,’’ J. Syst. Softw., vol. 157, Nov. 2019,
Art. no. 110380.

VOLUME 12, 2024 23403

http://dx.doi.org/10.1109/ISPDC.2019.00021
http://dx.doi.org/10.1016/j.jss.2020.110710
http://dx.doi.org/10.1007/978-3-319-39696-5_27
http://dx.doi.org/10.1109/ICSA53651.2022.00015
http://dx.doi.org/10.1109/ICSA53651.2022.00015
http://dx.doi.org/10.1109/ICSA47634.2020.00021
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1016/j.jss.2020.110868
http://dx.doi.org/10.1016/j.jss.2020.110868
http://dx.doi.org/10.1109/SCCC49216.2019.8966423
http://dx.doi.org/10.1007/978-3-030-06019-0_10
http://dx.doi.org/10.1109/TSE.2023.3287297
http://dx.doi.org/10.1109/MSR.2019.00051
http://dx.doi.org/10.1109/MSR.2019.00051
http://dx.doi.org/10.1007/978-3-319-74781-1_16
http://dx.doi.org/10.1007/978-3-319-74781-1_16
http://dx.doi.org/10.1109/SANER50967.2021.00042
http://dx.doi.org/10.1007/978-3-030-49435-3_1
http://dx.doi.org/10.1007/978-3-030-49435-3_1
http://dx.doi.org/10.29207/resti.v7i2.4866
http://dx.doi.org/10.1145/3530019.3530040
http://dx.doi.org/10.1007/s10270-022-00977-3
http://dx.doi.org/10.1007/s10270-022-00977-3
http://dx.doi.org/10.1111/exsy.13158
http://dx.doi.org/10.1109/CLOUDCOM.2019.00023
http://dx.doi.org/10.1007/978-3-319-67262-5_2
http://dx.doi.org/10.1109/ICSA47634.2020.00023
http://dx.doi.org/10.1007/978-3-030-29983-5_3
http://dx.doi.org/10.1007/978-3-030-29983-5_3
http://dx.doi.org/10.1109/MS.2018.2141031
http://dx.doi.org/10.1109/ICPC52881.2021.00041
http://dx.doi.org/10.1109/ICSME46990.2020.00060
http://dx.doi.org/10.1109/MCC.2017.4250931
http://dx.doi.org/10.1109/ICSA.2018.00012
http://dx.doi.org/10.1007/s10664-020-09910-y
http://dx.doi.org/10.1145/3468264.3473915
http://dx.doi.org/10.1145/3412841.3442016
http://dx.doi.org/10.1109/ICWS53863.2021.00104


I. Oumoussa, R. Saidi: Evolution of Microservices Identification in Monolith Decomposition

[66] D. Jurafsky and J. H. Martin, Speech and Language Processing: An Intro-
duction to Natural Language Processing, Computational Linguistics, and
Speech Recognition. Upper Saddle River, NJ, USA: Prentice-Hall, 2024.

[67] J. Soldani, G. Muntoni, D. Neri, and A. Brogi, ‘‘The µTOSCA toolchain:
Mining, analyzing, and refactoring microservice-based architectures,’’
Software, Pract. Exper., vol. 51, no. 7, pp. 1591–1621, Jul. 2021, doi:
10.1002/spe.2974.

[68] C. Bandara and I. Perera, ‘‘Transforming monolithic systems to
microservices—An analysis toolkit for legacy code evaluation,’’ in Proc.
20th Int. Conf. Adv. ICT Emerg. Regions (ICTer), Nov. 2020, pp. 95–100,
doi: 10.1109/ICTer51097.2020.9325443.

[69] T. Matias, F. F. Correia, J. Fritzsch, J. Bogner, H. S. Ferreira, and
A. Restivo, ‘‘Determining microservice boundaries: A case study using
static and dynamic software analysis,’’ in Proc. Softw. Archit., 2020,
pp. 315–332, doi: 10.1007/978-3-030-58923-3_21.

[70] B. Liu, J. Xiong, Q. Ren, S. Tyszberowicz, and Z. Yang, ‘‘Log2MS: A
framework for automated refactoring monolith into microservices using
execution logs,’’ in Proc. IEEE Int. Conf. Web Services (ICWS), Jul. 2022,
pp. 391–396, doi: 10.1109/ICWS55610.2022.00065.

[71] A. Bucchiarone, K. Soysal, and C. Guidi, ‘‘A model-driven approach
towards automatic migration to microservices,’’ in Proc. Softw. Eng.
Aspects Continuous Develop. New Paradigms Softw. Prod. Deploy-
ment, 2020, pp. 15–36, doi: 10.1007/978-3-030-39306-9_2.

[72] C.-Y. Li, S.-P. Ma, and T.-W. Lu, ‘‘Microservice migration using
strangler fig pattern: A case study on the green button system,’’
in Proc. Int. Comput. Symp. (ICS), Dec. 2020, pp. 519–524, doi:
10.1109/ICS51289.2020.00107.

[73] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga, and D. Kröger,
‘‘Microservice decomposition via static and dynamic analysis of the
monolith,’’ in Proc. IEEE Int. Conf. Softw. Archit. Companion (ICSA-C),
Mar. 2020, pp. 9–16, doi: 10.1109/ICSA-C50368.2020.00011.

[74] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and
J. Carriere, ‘‘The architecture tradeoff analysis method,’’ in Proc. 4th
IEEE Int. Conf. Eng. Complex Comput. Syst., 1998, pp. 68–78, doi:
10.1109/ICECCS.1998.706657.

[75] R. Malhotra, Rapid Java Persistence and Microservices: Persistence
Made Easy Using Java EE8, JPA and Spring. New York, NY, USA:
Apress, 2019.

[76] Netflix. Netflix Oss. Accessed: Feb. 27, 2023. [Online]. Available:
https://netflix.github.io/

[77] A. van Hoorn, J. Waller, and W. Hasselbring, ‘‘Kieker: A framework for
application performance monitoring and dynamic software analysis,’’ in
Proc. 3rd ACM/SPEC Int. Conf. Perform. Eng., Apr. 2012, pp. 247–248.

[78] N. Alshuqayran, N. Ali, and R. Evans, ‘‘A systematic mapping
study in microservice architecture,’’ in Proc. IEEE 9th Int. Conf.
Service-Oriented Comput. Appl. (SOCA), Nov. 2016, pp. 44–51, doi:
10.1109/SOCA.2016.15.

[79] I. Pigazzini, F. Arcelli Fontana, and A. Maggioni, ‘‘Tool support for the
migration to microservice architecture: An industrial case study,’’ inProc.
Softw. Archit., 2019, pp. 247–263, doi: 10.1007/978-3-030-29983-5_17.

[80] D. Taibi and K. Systä, ‘‘A decomposition and metric-based evaluation
framework for microservices,’’ in Proc. Int. Conf. Cloud Comput.
Services Sci., Heraklion, Crete, Greece, Cham, Switzerland: Springer,
2019, pp. 133–149.

[81] C. Pahl and P. Jamshidi, ‘‘Microservices: A systematic mapping study,’’
in Proc. 6th Int. Conf. Cloud Comput. Services Sci., 2016, pp. 137–146,
doi: 10.5220/0005785501370146.

[82] M. Söylemez, B. Tekinerdogan, and A. K. Tarhan, ‘‘Challenges
and solution directions of microservice architectures: A systematic
literature review,’’ Appl. Sci., vol. 12, no. 11, p. 5507, May 2022, doi:
10.3390/app12115507.

[83] N. Gonçalves, D. Faustino, A. R. Silva, and M. Portela, ‘‘Monolith
modularization towards microservices: Refactoring and performance
trade-offs,’’ in Proc. IEEE 18th Int. Conf. Softw. Archit. Companion
(ICSA-C), Mar. 2021, pp. 1–8, doi: 10.1109/ICSA-C52384.2021.00015.

[84] R. Chen, S. Li, and Z. Li, ‘‘From monolith to microservices: A dataflow-
driven approach,’’ in Proc. 24th Asia–Pacific Softw. Eng. Conf. (APSEC),
Dec. 2017, pp. 466–475, doi: 10.1109/APSEC.2017.53.

[85] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, ‘‘Fault
analysis and debugging of microservice systems: Industrial survey,
benchmark system, and empirical study,’’ IEEE Trans. Softw. Eng.,
vol. 47, no. 2, pp. 243–260, Feb. 2021, doi: 10.1109/TSE.2018.2887384.
https://doi.org/10.1109/TSE.2018.2887384

[86] M. Bozkurt, M. Harman, and Y. Hassoun, ‘‘Testing and verification in
service-oriented architecture: A survey,’’ Softw. Test., Verification Rel.,
vol. 23, no. 4, pp. 261–313, Jun. 2013, doi: 10.1002/stvr.1470.

[87] I. K. Aksakalli, T. Celik, A. B. Can, and B. Tekinerdogan,
‘‘Systematic approach for generation of feasible deployment
alternatives for microservices,’’ IEEE Access, vol. 9,
pp. 29505–29529, 2021, doi: 10.1109/ACCESS.2021.3057582.
https://doi.org/10.1109/ACCESS.2021.3057582

[88] A. A. C. De Alwis, A. Barros, A. Polyvyanyy, and C. Fidge, ‘‘Function-
splitting heuristics for discovery of microservices in enterprise systems,’’
in Service-Oriented Computing. Cham, Switzerland: Springer, 2018,
pp. 37–53, doi: 10.1007/978-3-030-03596-9_3.

[89] F.-D. Eyitemi and S. Reiff-Marganiec, ‘‘System decomposition to
optimize functionality distribution in microservices with rule based
approach,’’ in Proc. IEEE Int. Conf. Service Oriented Syst. Eng. (SOSE),
Aug. 2020, pp. 65–71, doi: 10.1109/SOSE49046.2020.00015.

[90] M. Kamimura, K. Yano, T. Hatano, and A. Matsuo, ‘‘Extracting
candidates of microservices from monolithic application code,’’ in Proc.
25th Asia–Pacific Softw. Eng. Conf. (APSEC), Dec. 2018, pp. 571–580,
doi: 10.1109/APSEC.2018.00072.

[91] F. H. Vera-Rivera, E. Puerto, H. Astudillo, and C. M. Gaona, ‘‘Microser-
vices backlog—A genetic programming technique for identification and
evaluation of microservices from user stories,’’ IEEE Access, vol. 9,
pp. 117178–117203, 2021, doi: 10.1109/ACCESS.2021.3106342.

[92] P. Di Francesco, P. Lago, and I. Malavolta, ‘‘Architecting with
microservices: A systematic mapping study,’’ J. Syst. Softw., vol. 150,
pp. 77–97, Apr. 2019, doi: 10.1016/j.jss.2019.01.001.

[93] A. Razzaq, ‘‘A systematic review on software architectures for IoT
systems and future direction to the adoption of microservices architec-
ture,’’ Social Netw. Comput. Sci., vol. 1, no. 6, p. 350, Oct. 2020, doi:
10.1007/s42979-020-00359-w.

[94] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G. Márquez, ‘‘Design,
monitoring, and testing of microservices systems: The practitioners’
perspective,’’ J. Syst. Softw., vol. 182, Dec. 2021, Art. no. 111061, doi:
10.1016/j.jss.2021.111061.

[95] M. F. Gholami, F. Daneshgar, G. Low, and G. Beydoun, ‘‘Cloudmigration
process—A survey, evaluation framework, and open challenges,’’ J. Syst.
Softw., vol. 120, pp. 31–69, Oct. 2016, doi: 10.1016/j.jss.2016.06.068.

[96] J. Ghofrani and D. Lübke, ‘‘Challenges of microservices architecture: A
survey on the state of the practice,’’ in Proc. ZEUS, 2018, pp. 1–8.

[97] A. Christoforou, L. Odysseos, and A. Andreou, ‘‘Migration of software
components to microservices: Matching and synthesis,’’ in Proc. 14th Int.
Conf. Eval. Novel Approaches to Softw. Eng., 2019, pp. 134–146, doi:
10.5220/0007732101340146.

[98] Z. Ren, W. Wang, G. Wu, C. Gao, W. Chen, J. Wei, and T. Huang,
‘‘Migrating web applications from monolithic structure to microservices
architecture,’’ in Proc. 10th Asia–Pacific Symp. Internetware, 2018,
pp. 1–12, doi: 10.1145/3275219.3275230.

[99] O. Al-Debagy and P. Martinek, ‘‘Extracting Microservices’ candidates
from monolithic applications: Interface analysis and evaluation metrics
approach,’’ in Proc. IEEE 15th Int. Conf. Syst. Syst. Eng. (SoSE),
Jun. 2020, pp. 289–294, doi: 10.1109/SoSE50414.2020.9130466.

[100] M. M. Lehman, ‘‘Laws of software evolution revisited,’’ in Proc. Softw.
Process Technol., 1996, pp. 108–124, doi: /10.1007/BFb0017737.

[101] H. Jain, H. Zhao, and N. R. Chinta, ‘‘A spanning tree based approach
to identifying web services,’’ Int. J. Web Services Res., vol. 1, no. 1,
pp. 1–20, Jan. 2004, doi: 10.4018/jwsr.2004010101.

[102] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford,
‘‘Automated API property inference techniques,’’ IEEE Trans. Softw.
Eng., vol. 39, no. 5, pp. 613–637, May 2013, doi: 10.1109/TSE.2012.63.
https://doi.org/10.1109/TSE.2012.63

[103] K. Manikas, ‘‘Revisiting software ecosystems research: A longitudinal
literature study,’’ J. Syst. Softw., vol. 117, pp. 84–103, Jul. 2016, doi:
10.1016/j.jss.2016.02.003.

[104] M. Abdullah, W. Iqbal, and A. Erradi, ‘‘Unsupervised learning approach
for web application auto-decomposition into microservices,’’ J. Syst.
Softw., vol. 151, pp. 243–257, May 2019, doi: 10.1016/j.jss.2019.
02.031.

[105] S. Scalabrino, G. Bavota, M. Linares-Vásquez, M. Lanza, and
R. Oliveto, ‘‘Data-driven solutions to detect API compatibility issues
in android: An empirical study,’’ in Proc. IEEE/ACM 16th Int. Conf.
Mining Softw. Repositories (MSR), May 2019, pp. 288–298, doi:
10.1109/MSR.2019.00055.

23404 VOLUME 12, 2024

http://dx.doi.org/10.1002/spe.2974
http://dx.doi.org/10.1109/ICTer51097.2020.9325443
http://dx.doi.org/10.1007/978-3-030-58923-3_21
http://dx.doi.org/10.1109/ICWS55610.2022.00065
http://dx.doi.org/10.1007/978-3-030-39306-9_2
http://dx.doi.org/10.1109/ICS51289.2020.00107
http://dx.doi.org/10.1109/ICSA-C50368.2020.00011
http://dx.doi.org/10.1109/ICECCS.1998.706657
http://dx.doi.org/10.1109/SOCA.2016.15
http://dx.doi.org/10.1007/978-3-030-29983-5_17
http://dx.doi.org/10.5220/0005785501370146
http://dx.doi.org/10.3390/app12115507
http://dx.doi.org/10.1109/ICSA-C52384.2021.00015
http://dx.doi.org/10.1109/APSEC.2017.53
http://dx.doi.org/10.1109/TSE.2018.2887384
http://dx.doi.org/10.1002/stvr.1470
http://dx.doi.org/10.1109/ACCESS.2021.3057582
http://dx.doi.org/10.1007/978-3-030-03596-9_3
http://dx.doi.org/10.1109/SOSE49046.2020.00015
http://dx.doi.org/10.1109/APSEC.2018.00072
http://dx.doi.org/10.1109/ACCESS.2021.3106342
http://dx.doi.org/10.1016/j.jss.2019.01.001
http://dx.doi.org/10.1007/s42979-020-00359-w
http://dx.doi.org/10.1016/j.jss.2021.111061
http://dx.doi.org/10.1016/j.jss.2016.06.068
http://dx.doi.org/10.5220/0007732101340146
http://dx.doi.org/10.1145/3275219.3275230
http://dx.doi.org/10.1109/SoSE50414.2020.9130466
http://dx.doi.org//10.1007/BFb0017737
http://dx.doi.org/10.4018/jwsr.2004010101
http://dx.doi.org/10.1109/TSE.2012.63
http://dx.doi.org/10.1016/j.jss.2016.02.003
http://dx.doi.org/10.1016/j.jss.2019.02.031
http://dx.doi.org/10.1016/j.jss.2019.02.031
http://dx.doi.org/10.1109/MSR.2019.00055


I. Oumoussa, R. Saidi: Evolution of Microservices Identification in Monolith Decomposition

[106] H. Knoche andW. Hasselbring, ‘‘Usingmicroservices for legacy software
modernization,’’ IEEE Softw., vol. 35, no. 3, pp. 44–49, May 2018, doi:
10.1109/MS.2018.2141035.

[107] A. A. C. De Alwis, A. Barros, C. Fidge, and A. Polyvyanyy,
‘‘Microservice remodularisation of monolithic enterprise systems for
embedding in industrial IoT networks,’’ inProc. Adv. Inf. Syst. Eng., 2021,
pp. 432–448, doi: 10.1007/978-3-030-79382-1_26.

[108] D. Bajaj, U. Bharti, A. Goel, and S. C. Gupta, ‘‘Partial migration for re-
architecting a cloud native monolithic application into microservices and
FaaS,’’ in Proc. Inf., Commun. Comput. Technol., 2020, pp. 111–124, doi:
10.1007/978-981-15-9671-1_9.

[109] M. Liu, X. Peng, A. Marcus, Z. Xing, W. Xie, S. Xing, and
Y. Liu, ‘‘Generating query-specific class API summaries,’’ in Proc. 27th
ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng.,
Aug. 2019, pp. 120–130, doi: 10.1145/3338906.3338971.

[110] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann, ‘‘Service
cutter: A systematic approach to service decomposition,’’ in Proc.
Service-Oriented Cloud Comput., 2016, pp. 185–200, doi: 10.1007/978-
3-319-44482-6_12.

[111] M. Usman, R. Britto, J. Börstler, and E. Mendes, ‘‘Taxonomies in
software engineering: A systematic mapping study and a revised
taxonomy development method,’’ Inf. Softw. Technol., vol. 85, pp. 43–59,
May 2017, doi: 10.1016/j.infsof.2017.01.006.

IDRIS OUMOUSSA received the bachelor’s
degree in software engineering from Ibn Zohr
University, in 2018. He is currently a Software
Engineer with a passion for modernizing IT
landscapes, delves into the complexities of
microservices architectures with the National
Institute of Statistics and Applied Economics
(INSEA), Morocco, as a Ph.D. Researcher.
His research interests include microservice
architectures, cloud computing, component-based

software, artificial intelligence, and agile software development.

RAJAA SAIDI received the dual Ph.D. degree
in information systems and software engineering
from Mohammed V University (UM5), Rabat,
Morocco, and the Grenoble Institute of Tech-
nology (INPG), France. She is currently a Full
Professor of computer science with the National
Institute of Statistics and Applied Economics
(INSEA), Morocco, where she is a member with
the Information Systems, Intelligent Systems and
Mathematical Modelling Laboratory (SI2M). Her

research interests include information systems engineering, business process
management, ubiquitous computing, context-aware information systems,
service-oriented architectures, and component-based engineering.

VOLUME 12, 2024 23405

http://dx.doi.org/10.1109/MS.2018.2141035
http://dx.doi.org/10.1007/978-3-030-79382-1_26
http://dx.doi.org/10.1007/978-981-15-9671-1_9
http://dx.doi.org/10.1145/3338906.3338971
http://dx.doi.org/10.1007/978-3-319-44482-6_12
http://dx.doi.org/10.1007/978-3-319-44482-6_12
http://dx.doi.org/10.1016/j.infsof.2017.01.006

