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ABSTRACT There has been a surge in research focused on the analysis of vital signs using remote
photoplethysmography (rPPG) sensors, as opposed to traditional photoplethysmography (PPG) methods.
Unlike PPG, rPPG imposes no spatial constraints and employs a straightforward measurement technique,
making it increasingly prevalent. Its integration into image processing, harnesses the remarkable advances in
artificial-intelligence technology, achieving accuracy that is comparable to that of traditional PPG sensors.
In prior studies, obtaining vital signs often necessitated an unnecessary and procedural fixation of facial
positions within frames to enhance predictive accuracy. Despite such fixation, achieving notably high
accuracy remained elusive. Here, we introduce a simple yet robust approach utilizing videos captured by
an rPPG sensor, ensuring both high accuracy and resilience to noise. We propose a convolutional neural
networkmodelmeticulously designed to resist interference from noise data that may arise in the initial stages,
coupled with effective preprocessing techniques to attain superior predictive accuracy. Data extracted by a
facial extractor undergoes preprocessing via normalization. Leveraging the Temporal Shift Module (TSM),
this normalization efficiently captures temporal relationships without incurring additional computational
overhead. Mitigating noise signal interference from non-facial data through the use of multiple attention
masks and augmenting prediction accuracy via skip connections. Moreover, we compile a specially tailored
dataset for pulse rate and breath rate data, catering specifically to the East Asian population. The proposed
process demonstrates outstanding performance in predicting both pulse rate and breath rate.

INDEX TERMS Attention network, convolutional neural network (CNN), remote PPG (rPPG), skip
connection, unconstrained sensor, vital signs.

I. INTRODUCTION
In recent decades, the acquisition of human vital signs has
become a prominent area of study [1], [2], [3]. Monitoring
vital signs plays a crucial role in patient health management
and has proven valuable in aspects such as disease prevention,
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especially for senior populations [4], [5]. The primary vital
signs of interest include pulse rate (PR), breath rate (BR), and
stress index (SI). While previous research primarily focused
on PR and BR, recent studies [6] have introduced methods to
measure SI based on PR.

Methods for acquiring vital signs can be broadly cat-
egorized into those that employ constrained sensors and
those that employ unconstrained sensors. Constrained sensor
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methods, such as photoplethysmography (PPG) and elec-
trocardiography (ECG), are well-established for their high
accuracy [7]. ECG involves the attachment of electrodes to
the skin to record the electrical activity of the heart, providing
pulse rate (PR) information. PPG sensors, typically placed on
the fingertip or other areas, emit light into the blood to capture
PR information through its interactionwith the blood. Despite
their accuracy, constrained sensors require direct skin contact,
which can be uncomfortable for users [8].

To overcome these limitations, a measurement method
based on remote photoplethysmogram (rPPG) has been
proposed [9]. It is the most researched computer vision-based
approach for extracting vital signs from video sequences.
This method capitalizes on the phenomenon of rPPG, which
results from periodic changes in local tissue blood volume
due to heartbeats. Importantly, it does not require any special-
ized equipment; rather, it uses video data from Red, Green,
Blue (RGB) cameras readily available in daily life, like
smartphone cameras or webcams. The post-COVID era has
significantly heightened the interest in remote physiological
measurement through rPPG [10], [11]. Nevertheless, existing
methods for vital-sign analysis through traditional rPPG
encounter limitations, particularly concerning noise such as
variations in lighting conditions and facial movements [12].
The integration of deep learning (DL) into computer

vision, owing to the remarkable advances in artificial
intelligence, has yielded numerous achievements [13], [14],
[15]. DL has been instrumental in improving conven-
tional computer-vision technology and achieving high accu-
racy [16]. Various DL models have emerged, with some
incorporating convolutional neural networks (CNNs) in rPPG
analysis [17], [18], [19]. Physnet [17] used a 3D-CNN to
harness spatiotemporal information, whereas rPPGNet [18]
also achieved excellent performance using a multi-layered
3D-CNN architecture. Both models demonstrated outstand-
ing results. Deepphys [19] used 2D-CNN and a skin
reflection mechanism to extract information from various
facial regions, outperforming existing methods. However,
DL still poses a significant challenge in dealing with spatial
noise in critical conditions, which is considered an ongoing
obstacle [20], [21]. To mitigate the impact of such noise,
approaches involving multi-task mechanisms [22] have been
proposed.

Recent studies have proposed approaches to address
noise caused by facial movements using state-of-the-art
Face Detectors. By extracting only the region of interest
(ROI) - the face - through facial detection, researchers aim
to overcome the drawbacks induced by facial movements for
rPPG analysis. However, since facial detectors operate based
on deep learning CNN algorithms, they cannot guarantee
100% accuracy, occasionally detecting non-facial areas.
Consequently, during the process of frame extraction, images
from non-facial regions might enter the model as input. The
inclusion of noisy data alongside regular data can cause
confusion in the model’s inference, leading to a decline in
inference accuracy.

This study presents a straightforward yet highly accurate
and robust approach using videos captured by an rPPG
sensor. Our approach focuses on extracting facial data
through facial detection from sensor-recorded videos without
constraints, emphasizing on preprocessing and utilizing CNN
algorithms for vital signs monitoring. To ensure robustness
against non-facial noise data mixed with regular data via
facial detection, we structured the process accordingly. The
extracted facial data undergoes a series of calculations during
preprocessing to identify relationships between frames.
Subsequently, in the proposed CNN model, we employ
the Temporal Shift Module (TSM) to transform the data
into time-series data. Attention networks are utilized to
emphasize facial features during intermediate training stages,
incorporating skip connections to retain attention masks
and features concerning temporal changes. Additionally,
we constructed a dataset for vital signs monitoring targeting
individuals of East Asian descent. Videos from 30 East Asian
participants were recorded, and using a unconstrained sensor,
we measured vital signs (PR, BR) to calculate rPPG.

This paper is structured as follows: Section II presents
related works. Section III explains the proposed vital-sign
acquisition process. Section IV provides details about the
dataset, evaluation methods, and training. Section V conducts
experiments covering the model’s training results through
convergence speed, Model’s Ablation experiments proposed
by us, comparative performance experiments with other
models, and investigations into the relationship between PR
and SI. Finally, Sections VI and VII discuss the findings and
draw conclusions.

II. RELATED WORKS
A. TRADITIONAL METHODS OF RPPG
The rPPG study was first conducted by Verkruysee et al
[24]. It was initially proposed as a contactless method for
measuring PR by capturing variations in skin color using
RGB cameras, based on the principles of the existing PPG
method. Over time, many researchers made significant efforts
to enhance the accuracy of PR analysis using rPPG [25], [26],
[27], [28], [29], resulting in three distinct methods: methods
based on blind source separation (BSS)techniques, optical
model, and data.

BSS involves the separation of independent source signals
from mixed input signals. Independent component analysis
(ICA) and principal component analysis are the most
commonly used techniques in BSS. With ICA, researchers
can isolate the RGB signal most independent from the
rest and identify the signal most closely related to PR.
High accuracy in PR calculation using ICA has been
achieved [30], [31].

The optical-model-based method estimates PR and blood
flow information based on optical properties. This method
calculates color-difference signal features by combining
RGB signals between frames, and uses these features to
estimate PR. Changes in the color-difference signal are
attributed to variations in skin reflection and blood absorption
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spectra, enabling the measurement of PR. This approach is
widely employed in non-invasive heart-rate monitoring, and
it allows for accurate PRmeasurement through a combination
of optical properties and data analysis [32], [33].

Data-based methods estimate PR using extensive training
data. This approach leverages machine-learning and deep-
learning techniques to train models that estimate PR and
blood flow information from data. By using diverse and
abundant datasets, these models recognize intricate patterns
and features, providing accurate PR predictions. Data-based
methods enable remote, non-invasive vital-sign monitoring
and find applications in various fields, including medical,
sports, and smart wearable devices [34], [35], [36].

B. USING ATTENTION NETWORK FOR DEEP-LEARNING
TRAINING
In the realm of DL, CNNs have demonstrated remarkable
achievements in image processing tasks [37], [38], [39].
However, with the surge in demand for more efficient
techniques to highlight essential data and suppress irrelevant
information, recent research [40], [41], [42] has witnessed
increasing interest in the integration of attention networks
into CNNs. These endeavors have led to noticeable per-
formance enhancements by focusing on specific regions or
objects within images. For instance, in tasks like image-
caption generation, the introduction of visual attention, which
assigns weight to crucial image regions, has significantly
improved accuracy and semantic consistency. Furthermore,
the fusion of CNNs with attention networks is gaining
momentum in tasks such as object detection and image
classification [43], [44], [45].

The recently proposed Multi-Task Attention Network
(MTAN) [46] enables simultaneous multi-task training and
the sharing of common features. Each task is equipped with
a soft-attention module, which takes the shared features of
the network as input and is trained to emphasize task-specific
features. This emphasis on features allows the benefits of
shared network features while also enabling individualized
training for each task. MTAN has proven to be an effective
approach, delivering significant results in multi-task training.
Moreover, it is user friendly and amenable to end-to-end
training.

C. EFFICIENT TEMPORAL INFORMATION ANALYSIS
In the realm of video-data processing, 3D-CNNs have proven
to be efficient in incorporating temporal modeling, leading to
substantial improvements in performance and accuracy [23],
[47], [48], [49]. However, it is worth noting that a network that
uses temporal information, like 3D-CNN, tends to come with
increased computational complexity and more parameters
compared to using a combination of 2D-CNN and recurrent
neural networks (RNN) [49]. To match the performance
of efficient temporal modeling achieved by 3D-CNN, the
inclusion of temporal informationwithin each frame becomes
imperative. TSM [50] enables the seamless exchange of

temporal information across multiple frames by shifting
the tensor along the temporal dimension. This facilitates
the exchange of information between frames, resulting in
outstanding performance improvements, both in terms of
reduced latency and increased accuracy. TSM has proven
particularly effective when applied to real-time video object
detection.

D. EXTRACTION OF REGION OF INTEREST (ROI) USING
FACE DETECTOR
Most of the current rPPG research focuses on acquiring
vital signs through subtle changes in micro-blood perfusion
in the face [20], [21]. Studies in this domain can be
categorized into those that extract facial landmarks to analyze
specific Regions of Interest (ROIs) such as the cheeks or
forehead’s blood flow variations and those that analyze
overall blood flow characteristics across the entire face.
Therefore, in analyzing vital signs from images captured by
RGB cameras, the Region of Interest (ROI) for vital sign
analysis is predominantly defined as the face, with other
areas outside the face considered irrelevant to the analysis.
Hence, the use of a face detector to define the ROI is
crucial. However, when extracting N frames using a face
detector, there is no guarantee that facial data will be detected
in all N frames. Even when employing high-performing
CNN algorithms, achieving 100% accuracy is not guaranteed.
If non-facial data infiltrates among regular data due to the
CNN model’s performance, it introduces noise, subsequently
leading to a decline in prediction accuracy during signal
analysis.

III. VITAL SIGNS ACQUISITION PROCESS
Figure 1 illustrates the proposed vital-sign acquisition
process proposed in this study. It leverages an RGB camera
to selectively crop the facial region from a recorded video,
which serves as the input data. This focused cropping ensures
that the location of the face within the video does not affect
the results. Moreover, by isolating the face image from
the surrounding background, noise is minimized, resulting
in improved accuracy. The face image is preprocessed,
normalized, and then fed into an object vital signs acquisition
network (OVSA-Net)—the model introduced in this study.
The integration of TSM [50] enhances the ability of themodel
to discern temporal differences within 2D data. Additionally,
the multi-attention network further boosts the emphasis on
the region of interest (ROI). The outcomes generated by the
model are then processed to derive values for PR, BR, and SI
through signal processing.

A. PREPROCESSING

Imgi =
Imgi − Imgi−1

Imgi + Imgi−1
, Imgi =

Imgi
std(Img)

(1)

Imgi = Imgi − mean(Img), Imgi =
Imgi

std(Img)
(2)
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FIGURE 1. The process of acquiring vital signs (PR, BR, SI) from video measured by an unconstrained sensor.

FIGURE 2. Comparison of the original image and the preprocessed image.

Figure 2 illustrates the raw, main branch, and attention
branch inputs, respectively. Subfigures (b) and (c) depict the
normalized images, which are crucial in enhancing training
and inference accuracy. Formulas 1 and 2 represent the
normalization equations for input to the main and attention
branches, respectively. Imgi means frame i, and Imgi − 1
means frame i-1. Since the methods for measuring rPPG
involve capturing the PPG signal from the face, it is essential
to monitor the RGB values of the skin. The proposed model
predicts vital signs by analyzing the variations in RGB values
of the face corresponding to photoplethysmographic changes.
In the main branch, a normalization process is applied to
calculate the RGB differences between frames comprising
time-series data. As shown in Formula 1, this involves
computing the differences across all frames in the image,
followed by normalization to the standard deviation. In the
attention branch, the input image is used to emphasize the
weight of ROIwithin the frame. To enhance the importance of
ROI, the input image is normalized based on the mean value
of the entire input frame. As demonstrated in Formula 2, this
process entails calculating the difference from the average
across all frames in each image, followed by normalization
to the standard deviation.

B. PROPOSED CNN MODEL
Figure 3 illustrates the architecture of the proposed CNN-
based OVSA-Net in this study. The model was designed
based on the VGG16 Network [51]. VGG16 possesses a
deep and concise structure composed of 3 × 3 convolution
filters and pooling layers, making it relatively simple and
easy to implement and understand. Despite its simplicity,

VGG16 has demonstrated high performance on large-scale
datasets like ImageNet and proved to be effective in various
types of image classification tasks. Accordingly, in this paper,
the model was constructed by mimicking the structure of
VGG16. Efforts were made to reduce the Computation Cost
by resizing the input images to 36 × 36. Consequently,
the model was configured with only eight layers, including
Fully Connected Layers, achieving excellent performance.
The structure involved repeating a combination of two
convolutional layers with 3×3 filters followed by an Average
Pooling layer twice. Subsequently, it was constructed with
two passes through Fully Connected Layers. Our focus
in designing the model for acquiring biosignals was on
accuracy, convergence speed, and reducing noise within the
videos. We aimed to ensure real-time applicability for use
in applications or web-based research by implementing a
low-cost model, avoiding high expenses. To achieve this, our
design was tailored to encompass specific functionalities:
1) The ability to effectively perceive RGB changes within
the face over time, and to effectively learn by emphasizing
the importance of the facial region, which is the source of
vital signs acquisition. 2) The ability to quickly process 3D
data captured by video data without much computational
cost, while effectively perceiving the temporal relationship
information between frames. 3) The ability to maintain the
accuracy of the model even if noise signals are mixed in
the input video data. 4) The ability to achieve high accuracy
with a small amount of training, with a fast convergence
speed. To achieve the four abilities, this architecture uses
the following three elements: TSM 2D convolution, multi-
attention network, and skip connection.

1) TSM 2D CONVOLUTION
When comparing the existing 2D-CNN and 3D-CNNmodels,
2D-CNN stands out for its relatively efficient computational
cost and its ability to effectively leverage dimensional
information [52]. However, it has a drawback: the inability
to seamlessly incorporate temporal information. In contrast,
3D-CNN excels in exploiting temporal information, but
it comes at the cost of significantly higher computa-
tional demands, roughly quadratic compared to 2D-CNN.
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FIGURE 3. Object vital signs acquisition network(OVSA-Net) architecture.

We adopted a 2D-CNN approach using TSM proposed by
Ji Lin [50] to strike a balance between fast computational
speed and temporal information utilization. TSM offers
the advantage of capturing efficient temporal information
by exchanging information among channels of 2D images,
thereby blending information along the time axis [50].
Leveraging this advantage, the integration of 2D-CNN with
TSM enabled us to create a model with faster computation
than 3D-CNN, while also achieving improved accuracy
through the inclusion of temporal information.

X−1
i = Xi−1, X0

i = Xi, X
+1
i = Xi+1 (3)

Yi = w1Xi−1 + w2Xi + w3Xi+1 (4)

Formula 3 and 4 are the expressions used in the
TSM_Conv2D operation. Where X−1

i , X0
i , and X

+1
i represent

the -1, 0, and 1 channels of the current frame Xi, respectively.
And w is the weight. Yi denotes the convolution operator.
The structure of the 2D-CNN incorporating TSM is as
follows: Initially, a shift operation is performed for each
channel without any additional computation, as described
in Formula 3. Formula 4 demonstrates a process similar to
multiply-accumulate, seamlessly integrating it with a 2D
convolution, effectively eliminating the need for additional
computations found in traditional 2D-CNN models.

2) MULTI-ATTENTION NETWORK
The main branch undergoes a preprocessing step that uses
the difference in RGB values between frames and standard
deviation within the input image, with the value depicted in
Figure 2-(b) serving as input. Internally, various temporal
information is integrated by shifting to the time axis of
specific channels using TSM. However, this temporal shifting
and integration process has its drawbacks - during the
extraction of facial data through the face extraction model,
the introduction of noise, which comprises data other than
the face, can occur. This noise can pose difficulties in the
connection of pixel information between frames, potentially
leading to the loss of feature information. Consequently, this

becomes a contributing factor to the decrease in prediction
accuracy [55]. To address this, we incorporate a multi-
attention network [23]. Within the multi-attention network,
we use the value from Figure 2-(c) as input. This value is
normalized using the standard deviation of the subtracted
values as the mean value. The attention branch shares the
same structure as the main branch, and the attention mask
is transmitted to the main branch after every two convolution
layers.

Fmul(A,B) = A⊚ B (5)

Formula 5 represents the connection formula between the
Main branch and the attention mask. A denotes the output of
TSM_Conv2D, while B represents the values of the attention
mask. The operation involves an element-wise multiplication
between A and B. By boosting the weight of the facial
region within the main branch, this approach enables clear
identification of differences in RGB values related to the PPG
of the face.

3) SKIP CONNECTION
In the process of designing a deep-learning model, prac-
titioners often grapple with issues related to accuracy,
generalization, and the resolution of gradient vanishing
problems [53]. In the OVSA-Net model, after the multiply
operation within the attention mask component, we explored
various patterns to connect spatial features to reduce the
number of parameters of the model and the number of tasks
the model is required to perform. Among these strategies, this
model achieved improvements in training convergence rates
while introducing spatial features and complexity through
short skip connections [54].

Fsum(X ,M ) = X +M (6)

This represents the formula for the skip connection used
in this paper. X signifies the value to be retrieved from
the previous layer through the skip connection, while M
represents the output value denoted as Fmul in Formula 5.
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The operation involves an element-wise summation between
X and M.

C. VITAL SIGNS ANALYSIS METHOD
Figure 4-(a) shows the PR and BR values, which are the
outputs of the model obtained through signal processing,
involving techniques such as Detrend and Butterworth
filtering. In contrast, Figure 4-(b) presents a histogram used
to calculate SI based on the PR values. Formulas 7 and 8
outline the calculations for the average PR and BR per
minute, respectively. In a pulse graph, the interval between
peaks is commonly referred to as peak to peak. In this context,
we can compute PRi, representing the predicted PR per
minute, by dividing peak to peak by 60. If there are N peak-
to-peak intervals, taking their sum and dividing by N yields
PR, the average PR per minute. Similarly, in the context of
respiration, the interval between breaths is known as the RR
interval. For BR estimation, we calculate BRi, the predicted
BR per minute, by dividing the RR interval by 60. Summing
N RR intervals and dividing by N provides BR, the average
breath rate per minute. Figure 4-(b) involves converting the
pulse values from Figure 4-(a) into a histogram to facilitate
the calculation of SI. To compute SI, we referred to Baevsky’s
SI methodology, and the resulting value was obtained as

FIGURE 4. Experimental results of vital signs(PR, BR, SI). (a) Experimental
results of PR and BR, (b) Experimental results of SI.

the output.

PRi =
60

Peak to Peak interval
,PR =

1
N

N∑
i=1

PRi (7)

BRi =
60

RR interval
,BR =

1
N

N∑
i=1

BRi (8)

Figure 5 illustrates Amo, Mo, and MxDMn as depicted in
the histogram used to compute SI. Formula 9 is employed
for calculating SI. In this context, Amo represents the mode
amplitude expressed as a percentage, Mo denotes the most
frequent PR interval, and MxDMn signifies the difference
between the longest and shortest PR intervals. Amo, the
mode amplitude, refers to the normalized height of peaks in
the pulse rate histogram, typically around 50 ms. MxDMn
represents the disparity between the longest and shortest
peak-to-peak pulse rate intervals.

Stress Index(SI ) =

√
(Amo)100

2(Mo)(MxDMn)
(9)

FIGURE 5. Computation of geometric measures of Baevsky’s stress index.

TABLE 1. Stress states based on SI ranges.

The graph for all generated PR from Figure 4-(a) is
depicted in Figure 4-(b) and transformed into a histogram
similar to Figure 5. From this histogram, Amo, Mo, and
MxDMn are computed, followed by employing formula 9.
This process leads to the derivation of the SI. Table 1
provides an overview of stress states classified based on
SI. It’s important to note that since SI utilizes the peak-to-
peak pulse rate intervals, variations in PR values can lead to
corresponding changes in SI values.
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IV. EXPERIMENTAL ENVIRONMENT
A. DATASET
For our experiment, we developed a custom dataset consisting
of East Asian participants. A total of 30 healthy adults, aged
between 20 and 30, took part in the study. This dataset
comprises video recordings of the subjects and concurrent
PR and BR data collection. All participants involved in the
development of the dataset were obtainedwith proper consent
before proceeding.

FIGURE 6. Dataset measurement method.

TABLE 2. Dataset measurement setup information.

Figure 6 and Table 2 provide an overview of the measure-
ment environment for each dataset. During the experiments,
the participants were seated in chairs. The camera used was
ELP-USB4K03-MFV, PR values were recorded using a
PhysioLab’s PPG sensor, PSL-IPPG2C Module, and PSL-
DAQ Module. Simultaneously, BR was measured using
Verniner’s Go Direct Respiration Belt, a constrained sensor.
We employed a self-designed Python-based program for data
construction, enabling simultaneous recording of video and
sensor data. The video data was recorded at 30 frames per
second (fps), while the sensor data was recorded at a rate

of 30Hz per second. The program was configured to record
two sensor data inputs within a single frame, enhancing the
precision of dataset construction. Following the recording,
a separate process cropped the facial region from the captured
video for input into the deep learning model. In our study,
we watched visual materials of various genres to obtain a
wide range of Pulse Rate (PR) and Breath Rate (BR) data.
Additionally, illumination adjustments were made to create a
dataset robust to changes in lighting conditions. Each session
consisted of two filming periods, resulting in a total duration
of 2 minute, from which we collected a total of 60 samples of
video data.

B. TRAINING DETAIL
In this experiment, we applied a stochastic gradient descent
optimizer with a maximum of 30 epochs and adaptive
learning rate, initialized at 0.001. A mean squared error
(MSELoss) function was employed as the loss function. The
network components were implemented using the PyTorch
library, and the Nvidia RTX 3090 graphics processing unit
was used. Activation functions were based on the hyperbolic
tangent (tanh). Dropout was applied at a rate of 0.5 for
the fully connected layer and 0.25 after employing average
pooling. Since the proposed process relies on cropped data
of only the facial area as input, a separate detection model
was used. Cropped facial data were resized to a size of
36 × 36x3 and used as input to the model. The batch size
(N) was set to 16, as it provided the most stable results based
on experimental findings. TSM was applied using an offline
method. The set of 60 images from the dataset constructed
in this study was divided into training, testing, and validation
sets at an 80%, 10%, and 10% ratio, respectively, ensuring a
comprehensive representation of PR and BR.

C. EVALUATION METHOD

MSE =

∑N
i=1(Vpreductedi − Vgti )

2

N
(10)

Formula 10 represents theMean Squared Error (MSE), which
computes the average of the squared differences between
predicted values, denoted as VPredicted , and actual values,
denoted as Vgt . N signifies the number of samples. A smaller
value indicates that the model’s predictions are closer to the
actual values, serving as a metric for evaluating the model’s
performance.

RMSE =

√∑N
i=1(Vpreductedi − Vgti )2

N
(11)

Formula 11 represents the Root Mean Squared Error
(RMSE), which calculates the square root of the mean of
the squared differences between predicted values and actual
values. A smaller RMSE value indicates that the model’s
predictions are more accurate and is used as a metric for
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evaluating the model’s performance.

ρ =

∑n
i=1(Vgti − Vgt )(Vpredictedi − Vpredicted )√∑n

i=1(Vgti − Vgt )2
√∑n

i=1(Vpredictedi − Vpredicted )2

(12)

Formula 12 represents the Pearson Correlation Coefficient,
which is an indicator of the linear relationship between two
variables. Vpredicted and Vgt represent the predicted and actual
values, respectively. It yields values between -1 and 1. A value
closer to 1 indicates a positive correlation, while a value
closer to -1 indicates a negative correlation between the
variables. This coefficient helps in assessing the association
between two variables.

MAPE =
1
n

n∑
i=1

∣∣∣∣Vgti − Vpredictedi
Vgti

∣∣∣∣ (13)

Formula 13 represents the Mean Absolute Percentage Error
(MAPE), which indicates the average of the percentage errors
between predicted values and actual values. It calculates the
percentage error to intuitively assess the model’s prediction
accuracy, making it useful for relative performance evalua-
tion.

MAE =
1
n

n∑
i=1

|Vgti − Vpredictedi | (14)

Formula 14 represents the Mean Absolute Error (MAE),
which signifies the average of the absolute value of errors
between predicted values and actual values. Since it uses
absolute values, it evaluates prediction accuracy based solely
on the magnitude of errors, exhibiting a characteristic of
being less sensitive to outliers.

Mean =
1
n

n∑
i=1

Vali (15)

Formula 15 represents ametric used to calculate themean of a
dataset. The variable Val can interchangeably represent either
VPredicted or Vgt . It is employed to understand the central
tendency of the data and compute representative values,
showcasing where the overall data is centered.

std =

√∑N
i=1(Vali − Val)2

N
(16)

Formula 16 represents the standard deviation (std), which
indicates how far the data is spread out from themean.Val can
interchangeably represent either Vpredicted or Vgt . It helps in
understanding the dispersion of data, showing how consistent
predictions are or how widely distributed the data is from the
average.

Min = Min(Val) (17)

Formula 17 represents ametric used to calculate theminimum
value within a dataset. By determining the minimum value,
it allows for an understanding of the overall range of the data.

It is effective for identifying outliers and assessing whether
data points fall outside the typical range.

Max = Max(Val) (18)

Formula 18 represents a metric used to calculate the
maximum value within a dataset. Determining the maximum
value helps understand the overall range of the data. It is
effective for identifying outliers and assessing whether data
points fall outside the typical range.

Error Rate =
|Vgt − Vpredicted |

Vgt
(19)

Formula 19 represents an evaluation metric indicating how
much the model’s predictions deviate from the actual results.
A low error rate signifies the accuracy of the model, while a
high error rate indicates its inaccuracy. This metric provides
an intuitive understanding of the model’s prediction accuracy
and allows for easy comparison of model performance using
relative values.

V. EXPERIMENTAL RESULTS
A. MODELS TRAINING RESULTS
Figure 7 compares the convergence speeds by evaluating
the loss using Formula 10, which utilizes Mean Squared
Error (MSE) as the objective function, across 30 epochs

FIGURE 7. Comparing train loss of pulse and breath for each of the our
models.
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TABLE 3. Comparison of PR Values among PPG sensor measured ground truth, proposed method (Ours), models without skip connection, and models
without MTAN.

for Our (OVSA-Net), Our (non-skip connection), and Our
(non-MTAN) models. These comparisons were made using
the dataset constructed within this paper for training. Since
all three models output two metrics (pulse, breath), the
loss values for each metric were compared. Upon observing
both Figure 7-(a) and (b), models without skip connections
exhibit slower convergence rates compared to those with skip
connections. This observation confirms that skip connections
enhance convergence speed. Additionally, Our OVSA-Net,
which incorporates both skip connections and MTAN, starts
with lower loss values and demonstrates rapid convergence.
This indicates that using skip connections in conjunction with
MTAN leads to higher convergence rates compared to using
them individually.

B. RESULTS OF OUR MODEL’S ABLATION EXPERIMENT
Table 3 compares the ground truth values measured by
PPG sensors with the predicted values of three deep
learning models—our proposed model, the model without
skip connections, and the model without MTAN—using a
random selection of six videos from the validation data
constructed within this paper. Mean PR represents the
average of the ground truth and predicted PR values, serving
as the final model output. The standard deviation (std)
measures the consistency of predictions across the model’s
data and shows how widely distributed the data is. The
min and max values demonstrate the potential range of
predicted PR values, indicating the overall spectrum of the
data. This is beneficial for identifying outliers and assessing
whether values fall outside the typical range. Error Rate
is a crucial evaluation metric used to gauge the model’s
performance. It calculates the percentage difference between

the ground truth values measured by PPG sensors and the
Mean PR values predicted by the deep learning models.
Lower Error Rate indicates higher prediction accuracy of
the deep learning model. While the models using only skip
connections or only MTAN exhibit an average Error Rate
of approximately 10%, the OVSA-Net employing both skip
connections and MTAN demonstrates an average Error Rate
of 4%. This observation confirms that OVSA-Net, employing
all modules, outperforms individual module usages in terms
of outstanding performance.

Table 4 compares the ground truth values measured by
the Breathing sensor with the predicted values of three deep
learning models—our proposed model, the model without
skip connections, and the model without MTAN—using a
random selection of six videos from the validation data
constructed in this paper. Mean BR represents the average
of the ground truth and predicted BR values, serving as
the final model output. Standard deviation (std) measures
the consistency of predictions across the model’s data and
shows how widely distributed the data is. The min and
max values demonstrate the potential range of predicted BR
values, indicating the overall spectrum of the data. This
aids in identifying outliers and assessing whether values fall
outside the typical range. Error Rate is a critical evaluation
metric used to assess the model’s performance. It calculates
the percentage difference between the ground truth values
measured by the Breathing sensor and the Mean BR values
predicted by the deep learning models. Lower Error Rate
indicates higher prediction accuracy of the deep learning
model. While the models using only skip connections or only
MTAN exhibit an average Error Rate of around 20-30%,
the OVSA-Net employing both skip connections and MTAN
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TABLE 4. Comparison of BR values among breathing sensor measured ground truth, proposed method (Ours), models without skip connection, and
models without MTAN.

demonstrates an average Error Rate of 4.5%. This observation
confirms that OVSA-Net, employing all modules, exhibits
outstanding performance compared to individual module
usages.

TABLE 5. Experimental results for PR and BR on the Our dataset.

Table 5 presents the comparison results for four parameters
of our proposed model, OVSA-Net, the model without skip
connections, and the model without MTAN. For comparison,
we utilized a dataset consisting of video data from East Asian
participants, which we created ourselves. The models were
trained using a set of 50 videos, each containing diverse
PR and BR values necessary for learning. Subsequently, the
models were evaluated on 10 test data samples. Our pro-
posed model exhibited outstanding performance in RMSE,
MAE, Pearson’s correlation, and MAPE compared to the
other models considered in the comparison. These results
indicate that combining skip connections and MTAN in our
proposed model delivers better performance than using them
separately.

Figure 8 shows the comparison among the ground truth
values measured by the PPG sensor and the predictions of
three different deep learning models: our proposed model,
the model without skip connections, and the model without
MTAN, using a randomly selected video from the validation

FIGURE 8. Comparison of PR graph among breathing sensor measured
ground truth, proposed method (Ours), models without skip connection,
and models without MTAN.

dataset constructed in this paper. Comparing the ground
truth values with the predictions of the three models, it is
noticeable that they all exhibit relatively similar graph shapes.
However, when observing the x-axis peak positions, the
proposed OVSA-Net utilizing both skip connection and
MTAN demonstrates peak positions closer to the x-axis peaks
of the ground truth compared to the other models. This
indicates the higher predictive accuracy of our proposed
model.

Figure 9 shows a graph comparing the ground truth values
measured by the Breathing sensor with predictions made by
three different deep learning models: our proposed model,
the model without skip connections, and the model without
MTAN, using a randomly selected video from the validation
dataset constructed in this paper.When comparing the ground
truth values with the threemodels, it is evident that themodels
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FIGURE 9. Comparison of BR values among breathing sensor measured
ground truth, proposed method (Ours), models without skip connection,
and models without MTAN.

solely utilizing skip connection or MTAN demonstrate
unsatisfactory results. There is a noticeable discrepancy in
the x-axis positions of the peaks when compared to the
ground truth. Additionally, the gentle slopes of the peaks
might hinder peak detection, potentially impacting accuracy.
In contrast, the OVSA-Net, which employs both skip
connection and MTAN, shows peak positions on the x-axis
similar to the ground truth, and exhibits more pronounced
peaks. This suggests that our proposed OVSA-Net model
resembles the ground truth in graph shape and demonstrates
higher predictive accuracy.

C. RESULTS OF COMPARATIVE EXPERIMENTS WITH
OTHER MODELS
Table 6 shows a comparison of four parameters among five
vital signs acquisition models, including our proposed model,
OVSA-Net. The comparison was conducted using a dataset
comprising videos of East Asian participants, specifically
collected for this study. The models were trained using
50 videos containing various PR and BR values necessary
for learning. Following the training phase, the models were
evaluated using 10 test data samples. Our proposed model,
OVSA-Net, exhibited outstanding performance in terms of
RMSE, MAE, Pearson’s correlation, and MAPE compared
to the other models examined in this comparison.

TABLE 6. Experimental results for PR and BR on the Our dataset.

D. RELATIONSHIP BETWEEN PR AND SI
Table 7 represents the predicted PR and SI values for six
randomly selected videos from the validation dataset. The
predicted PR values for each video can be displayed as
histograms similar to Figure 4-(b), enabling the calculation
of Bavesky’s Stress Index (SI) using formula 9. Through this
table, it is observable that as PR increases, SI also increases,
while a decrease in PR leads to a decrease in SI. This implies
that SI is influenced by PR values.

TABLE 7. Stress index(SI) measured based on the PR value.

VI. DISCUSSION
A. THE PERFORMANCE OF THE PROPOSED PROCESS
In this paper, a performance comparison was conducted
regarding the preprocessing and CNN model proposed in
the process. Table 3 and 4 clearly shows the difference
between employing skip connection and MTAN separately
and using both through ablation experiments on our proposed
model. The error rates for PR and BR range from 3.4%
to 4.9% and 3.9% to 5.7%, respectively, when both skip
connection and MTAN are applied in OVSA-Net. These
error rates signify a significant enhancement in prediction
accuracy. Figure 8 visually depicts the model’s performance
as part of the ablation experiments. Although they possess
similar waveforms, OVSA-Net exhibits fewer errors in peak
locations (x-axis) compared to other models concerning
the ground truth. Figure 9 clearly shows the superiority
of OVSA-Net’s performance. The peak locations (x-axis)
and the shape of the graph closely resemble the ground
truth, showcasing the robustness and high accuracy achieved
by using skip connection and MTAN together, particularly
in mitigating noise introduced when using TSM. However,
we acknowledge that while the peak locations (y-axis) of
PR and BR resemble the ground truth, they do not achieve
a notably high level of accuracy. Additionally, intermittent
abnormal peaks are observed, emphasizing the need for a
more sophisticated preprocessing stage and stronger weights
in the training process. This indicates a necessity for further
research in the future. Table 6 compares our proposed
OVSA-Net with similar vital signs acquisition models using
the dataset developed in this paper. Through this comparison,
it becomes evident that our proposed OVSA-Net exhibits
outstanding performance when compared with other models
in terms of the four parameters (RMSE, MAE, Pearson’s
correlation, and MAPE).
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B. COMPARISON WITH PRIOR STUDY
Previous studies have pursued vital-sign acquisition by
either integrating spatiotemporal information or handling
temporal and spatial information separately. In the context
of spatial information, researchers have primarily focused
on designating ROI on the cheek and forehead, areas
where PPG signals can be effectively measured [60]. While
spatial information can be beneficial, it often fails to fully
exploit temporal information, resulting in relatively high
error rates. Furthermore, addressing noise-related challenges
when using temporal information has been an ongoing
concern. When spatiotemporal information is used, it may
enhance accuracy; however, this approach often comes at
the cost of increased computational speed and computational
load compared to separately handling time and space. The
rPPG-based vital-sign acquisition process adopted in our
study, which employs the CNN-based OVSA-Net, follows
a distinct path. It crops only the face portion of the image
and uses it as input, eliminating the need for separate
ROI classification. Furthermore, it exclusively uses temporal
information and achieves a low MAPE without introducing
additional computational overhead typical in conventional
2D-CNN models. This underscores the ability to achieve
high accuracy through the combined use of the attention
mask and skip connection while focusing solely on temporal
information.

C. CONSTRUCTING THE DATASET
Research findings have demonstrated that skin histograms
exhibit variations among different racial groups [56]. This
phenomenon implies that a model trained using data from
a specific racial group may experience increased error rates
when applied to a different racial group. Notably, many of the
existing vital-sign datasets predominantly feature data from
individuals ofWestern descent [57], [58], [59]. Consequently,
training models on datasets specifically tailored to the East
Asian population has proven to be a pivotal step in achieving
high accuracy. OVSA-Net is structured to accommodate the
training of raw data obtained from measurement equipment,
simplifying the training process by eliminating the need for
additional preprocessing steps.

VII. CONCLUSION
We present a novel process designed to estimate three
vital signs: PR, BR, and SI using input video data. Our
proposed process, which encompasses the preprocessing
of the input video data and the subsequent generation of
prediction values for the three vital signs, plays a crucial
role in enhancing the convergence rate of model training
and accuracy. A key component of our model is TSM,
which efficiently incorporates temporal data into 2D-CNN
without the need for additional computational resources.
This feature paves the way for the development of programs
and applications that can leverage real-time performance in
the future. Moreover, the attention branch within the model

enables the model to focus on the face region, preventing
accuracy degradation caused by the spread of noise data
from outside the face through TSM. The inclusion of a
skip connection further improves the convergence rate by
reintroducing spatial information after applying an attention
mask. The combined use of the attention mask and skip
connection enhances accuracy, even in the presence of noise.
Additionally, the dataset we constructed in this study has the
advantage of primarily targeting the East Asian population.
The performance of the proposed model was significantly
enhanced through training with this dataset, ultimately
increasing accuracy for the East Asian demographic.
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