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ABSTRACT The human brain is an incredible and wonderful organ that governs all body actions. Due
to its great importance, any defect in the shape of its regions should be reported quickly to reduce the
death rate. The abnormal region segmentation helps to plan and monitor the treatment. The most critical
procedure is isolating normal and abnormal tissues from each other. So far, remarkable imaging modalities
are being used to diagnose abnormalities at their early stages, and magnetic resonance imaging (MRI) is
renowned and noninvasive among those modalities. This paper investigates the current landscape of brain
tumor segmentation (BTS) by exploring emerging deep learning (DL) methods for brain MRI analysis. The
findings offer a comprehensive comparison of recent DL approaches, emphasizing their effectiveness in
handling diverse tumor types while addressing limitations associated with data scarcity and robust validation.
DL has shown a vital improvement for BTS, so our primary focus is to include significant DL robust models
to analyze the brain MRI. However, DL outperforms traditional methods; still, there are several limitations,
especially related to the diverse tumor types, lack of datasets, andweak validations. The future perspectives of
DL-based BTS present significant potential for revolutionizing the diagnosis and treatment of brain tumors.

INDEX TERMS Brain tumor segmentation, deep learning, medical imaging, MRI.

I. INTRODUCTION
Image segmentation is one of computer vision’s basic and
challenging tasks [1]. In recent decades, its research has been
increasingly innovative and the development process con-
tinues to advance with the emergence of new technologies.
Several high-level computer vision applications need posi-
tioning, recognition, detection, and segmentation functions.

The associate editor coordinating the review of this manuscript and

approving it for publication was Roberta Palmeri .

The processing ofmedical images needs to detect objects, and
we often use the way of detecting specific semantic objects
in digital images and locating them by their bounding boxes
to obtain the results. Image segmentation aims to determine
whether there are characteristic objects to be detected in the
image. If so, the coordinate pixels and area size of each object
detected can be attained [2].

With the continuous development and popularization of
medical imaging, the tumor detection rate is increasing [3],
[4]. Radiation and laser therapy greatly rely on accurate
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tumor segmentation. Otherwise, it can be harmful to several
sensitive nerves [5]. Medical treatment first requires doctors
to give diagnostic results while observing the lesions. This
process will cause a great burden on the clinical medical
system for a large number of patient groups. Moreover, the
subjective factors of finding between different doctors will
cause trouble in clinical diagnosis and treatment. Therefore,
a system that can comprehend automatic medical image seg-
mentation will have great clinical significance. Glioma is
the most frequent brain tumor in adult brain diseases [6]. It
will cause irreversible damage to the brain by infiltrating the
surrounding tissues. Accurately segmenting brain gliomas is
very time-consuming in the process of clinical diagnosis and
planning of treatment. If medical resources can be liberated
through automatic segmentation, many medical resources
will be saved for research work that needs more human inter-
vention. Such resources promote the development of medical
image processing-related technologies. Medical image pro-
cessing is a necessary and technical means for diagnosing and
planning by analyzing the lesions in the brain tumor focus
area. BTS aims to classify the pixels of the lesion area in
an image and obtain the detailed distribution of the lesion
area, which can help doctors better understand the symptoms
and diagnosis. Traditional image segmentation approaches
can be divided into graph theory segmentation methods,
watershed image segmentation algorithms, and so on [7].
These algorithms usually rely on the feature extraction of the
image itself and its color, texture and other shallow features.
Brain gliomas usually infiltrate the surrounding tissues. Their
shallow features are not as obvious as those in natural images,
which can affect the performance of traditional segmentation
methods for BTS. It can affect the segmentation accuracy, and
create other problems to prohibit the final segmented image
to put into use, resulting in the decline of the significance of
introducing image segmentation into clinical medical auxil-
iary diagnosis.

Various problems, such as environmental pollution, irregu-
lar life, and population aging, are becoming critical. Because
of these factors, the incidence rate of brain diseases such as
epilepsy, Parkinson’s disease, brain tumors, and cerebrovas-
cular diseases is increasing yearly [8]. It seriously threatens
human health. Especially brain tumors and cerebrovascular
diseases are becoming the first cause of death in China due
to their high disability rate, high mortality, and high recur-
rence rate. The medical diagnosis of the brain, especially
brain tumors and cerebrovascular diseases, often depends on
medical imaging such as computed tomography (CT) [9],
X-rays and magnetic resonance imaging (MRI) [10], [11].
In addition, these medical imaging techniques are also help-
ful for surgical planning and postoperative treatment effect
evaluation. Therefore, an accurate computer-aided system
can help doctors quickly locate lesions, assist in recogni-
tion, and improve doctors’ efficiency and accuracy. With the
development and large-scale application of machine learning,
computer-aided medical image analysis based on machine

learning has become one of the research hotspots in medical
image analysis and machine learning. Although the current
level of medical technology has made significant progress
compared with the past, there is still a lack of effective
treatment for brain tumors. Patients can only prolong their
lives through various conservative, comprehensive treatments
and operations with high-risk coefficients. If the brain tumor
can be found at the early stage of its growth then the patients
can get the first opportunity for treatment, and the survival
probability will be greatly improved. The technology based
on medical image segmentation has been applied to early
brain tumor detection, but the traditional manual segmen-
tation method requires much professional labor. It needs
doctors with rich clinical experience and much professional
knowledge to divide manually. Due to the lack of medical
resources, there is no doubt that this method cannot be popu-
larized and applied on a large scale.

The core problem of BTS based on deep learning (DL) is
to extract, fuse and classify the different levels of brain tumor
image feature information through DL technology within
acceptable consumption and to improve the final accuracy of
the model.

Most research works mainly concentrate on traditional
structures, with little creativity in creating new neural net-
work architectures that are customized for the complexities
of brain tumor segmentation (BTS). Closing this gap requires
a move toward the creation of complex models that can effi-
ciently utilize the complementing information present in mul-
timodal data. Furthermore, the evaluation and comparison
of current approaches frequently lack critical information,
which makes it difficult to establish a benchmark for assess-
ing the actual usefulness of various strategies. Many studies
using image-guided surgery use a variety of datasets that dis-
play a range of imaging modalities, including MRI, CT, and
intraoperative datasets [12]. Typically, these datasets include
annotated tumor area examples, making algorithmic training
and validation easier. This review paper tries to summarize
the available literature on image-guided surgery, focusing on
DL’s critical role in improving precision. The most recent
approaches are briefly reviewed and demonstrate advances
in recurrent architectures, attention mechanisms, and convo-
lutional neural networks (CNNs), demonstrating the ongoing
development of DL methods for precise and effective BTS
in the context of image-guided surgical interventions. This
paper mainly focuses on the recent developments and chal-
lenges for BTS. The key points for this contribution are:

(a) The paper introduces and evaluates cutting-edge DL
methods for BTS in MRI during 2016-2023, showcasing a
significant leap forward in the methodology employed for
accurate analysis.

(b) The findings offer a thorough comparison of recent
DL approaches, emphasizing their effectiveness in handling
diverse tumor types. The paper addresses data scarcity and
validation robustness limitations, providing valuable insights
for researchers.
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(c) The open challenges for BTS based on DL and tradi-
tional approaches have been highlighted. The advanced DL
impacts on BTS and future recommendations are comprehen-
sively described.

This paper consists of seven sections. Section II describes
the background of the study. Section III illustrates the basic
theory of BTS. Sections IV and V present the traditional and
DL-based BTS methods, respectively. Section VI comprises
important types of image-guided surgery for brain tumors.
Section VII covers discussion and future recommendations.
Finally, section VIII concludes this review paper.

II. BACKGROUND
The research fields of computer vision include remote sens-
ing applications, vehicle and pedestrian monitoring, medical
image segmentation and recognition, map satellite naviga-
tion, tire defect detection, object positioning and recognition
[13], scene classification and segmentation [14], [15], etc. It
has also been widely used in various fields of daily life, such
as military territorial air defense, medical disease analysis,
intelligent video monitoring [16], and remarkable success in
specific objects such as intelligent home machine control,
surveillance video recognition, and medical surgery object
positioning. Many object detection achievements proposed
by scientific researchers for a long time have gradually
increased, mainly including traditional and DL-based object
detection methods [17], [18].
DL is a new technology that has been rising recently, and

it is a new branch under the machine learning sub-directory
[19], [20]. Its concept comes from scientists’ deeper research
on artificial neural networks (ANNs) [21], such as multilayer
perceptron (MLP) from the perspective of structure [22],
which is a simple DL structure. The network contains hidden
layers, which is a typical feature of the DL structure. The
DL model mainly uses a mathematical means (convolution)
to extract the deep hidden feature representation in the input
data. Based on the extracted feature representation, the net-
work model can fit the input data well without manual preset
rules like other methods, which is the unique learning-fitting
ability of the DL network. In recent years, the best DLmethod
in medical image processing originated from LeCun, known
as CNN [23]. Later generations have made many simple and
effective improvements from different angles, further enhanc-
ing CNN’s data representation ability. The CNN training is
more stable and simpler, which is suitable for various task
scenarios. Although CNN was proposed long ago, it is still
promising for semantic segmentation and object detection.
The models with extraordinary performance are basically
improved based on CNN variations. The number of pub-
lished papers during 2016-2023 are extracted from PubMed
with the included expressions of ‘‘Brain Tumor’’, ‘‘Deep
Learning’’, ‘‘Artificial Intelligence’’, ‘‘CNN’’ and excluded
expressions ‘‘case study’’, ‘‘overall surgery’’, ‘‘Model train-
ing for information learning’’ and ‘‘Not accessible’’ as shown
in Figure 1. This analysis shows that numerous articles have

been published on BTS during 2016-2023 which reveals the
importance of this research.

FIGURE 1. PRISMA diagram of systematic review of BTS
from 2016 to 2023.

At present, partial resection of brain tumors through
surgery is the best treatment method. Accurate BTS images
can help doctors quickly view the lesions and implement
treatment to reduce patients’ pain. However, this segmenta-
tion task for brain tumors is not easy, not only because the
size, shape and location of gliomas are quite different among
patients, but also affected by many factors, which will lead to
inaccurate segmentation, which greatly limits the availability
of glioma segmentation information [24]. Big data analysis
and preprocessing techniques such as cleansing, profiling,
enrichment, and transformation play critical roles in early
BTS [25].

In addition, the tumor mass effect will change the arrange-
ment of surrounding normal tissues. All medical imaging
modalities have some shortcomings and planar X-ray can
be used to visualize the skull but has no diagnostic value
for brain pathologies. For example, intensity heterogene-
ity or different intensity ranges between acquisition scan-
ners [26]. The diversity of MRI acquisition parameters and
sequences leads to great differences, increasing glioma vari-
ability between different patients. Therefore, it is very impor-
tant to help patients find tumors as soon as possible and carry
out relevant diagnosis and treatment [27]. At present, the
tumor area is manually marked and segmented by radiolo-
gists. However, due to the changes caused by the appearance
and shape of the glioma, the process is very time-consuming,
and the consistency between evaluators is low. Therefore,
automatic segmentation is attractive because it can describe
relevant tumor parameters faster, more objectively, and accu-
rately. However, due to the irregular nature of tumors, devel-
oping algorithms that can segment tumors efficiently and
accurately is still challenging [28]. This inherent heterogene-
ity of glioma is also reflected in its imaging phenotype. Its
sub-region is generated by multimodal MRI, which reflects
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TABLE 1. Comparison of our review with existing reviews.

different biological characteristics of tumors according to
different intensity distributions [29].

FIGURE 2. BTS and detection using MRI.

The object detection algorithm is also applied to the field
of medical images. Tumor detection using MRI has been
attained by implementing preprocessing approaches such
as image filtering, thresholding, morphological operations,
eroding, and subtraction, as shown in Figure 2. We have per-
ceptibly described the contribution of this review com-pared
to existing reviews in Table 1. Early tumor detection tasks
are usually based on some traditional image algorithms [30].
Karkanis et al. proposed a method of tumor detection assisted
by color wavelet features [31]. This method is based on a
novel color feature extraction to depict different regions in the
sequence and on the covariance of the second-order texture
measure. A feature selection algorithm is proposed to deter-
mine the image regions along the video frame using linear
discriminant analysis. Bercoff et al. proposed a tumor detec-
tion method using transient elastic imaging [32]. This method
detects tumors by tracking the propagation of extremely
low-frequency shear waves generated by the vibration system
on the body surface in soft tissue. It has been developed
to detect and quantify soft tissue and hard lesions. Wu
et al. proposed a color-based tumor detection method using

K-means clustering technology to observe tumor objects in
MRI [33]. Its core idea is to convert a given gray MR image
into a color space image and then use K-means cluster-
ing. Iftekharuddin et al. proposed a fractal-based multimodal
MRI tumor detection method, which integrates two novel
texture features and intensity in multimodal MRI images
[34]. The texture features involve the segmented triangular
prism surface area (TPSA) technique for fractal features.
Meanwhile, the other texture feature uses the Brownian
motion method, which integrates wavelet and fractal analysis
for fractal feature extraction. Mustaqeem et al. proposed a
method for tumor detection based on watershed and thresh-
old segmentation [35]. By improving the quality of scanned
images, morphological operators are used to detect tumors
in scanned images. For the traditional tumor detection meth-
ods, on the one hand, due to the variety of tumor shape,
size and appearance, accurate measurement is challenging.
The tumor can grow suddenly, leading to the defects of
adjacent tissues, providing an overall abnormal structure for
healthy tissues. On the other hand, applying a tumor detection
algorithm is complicated due to the particularity of medical
images.

III. THEORY OF BRAIN TUMOR SEGMENTATION
In themiddle of the last century,WarrenMcCulloch et al. pro-
posed the mathematical model of ANN, which laid the theo-
retical foundation of neural network structure in future gen-
erations [39]. Frank proposed a machine to simulate human
perception and named it perceptron [40]. The structure of the
perceptron is relatively simple. It is a single-layer network
composed of threshold and linear units. Although single-
layer perceptron can only classify linear tasks, its emergence
represents the prototype of modern CNN structure. The brain
tumor illustration has been presented in Figure 3, which
describes the importance of different modalities. The recent
developments and basic theory have been de-scribed in the
following sections.
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A. ARTIFICIAL NEURAL NETWORK (ANN)
At the beginning of ANN, the computing power of the first
generation of computers could not match it, which limited
the role of neural networks, so it did not enter the stage of
rapid development. The current computer can give full play
to the characteristics of neural networks and promote the
rapid development of artificial intelligence. In essence, ANN
uses mathematical methods to imitate the complete process
of biological visual perception [41]. In this bionic process,
the data input into ANN can be regarded as the electrical
stimulation signal obtained by visual cells. The network’s
data processing corresponds to the stimulation signal’s trans-
mission process in the biological visual perception system.
Finally, the network simulates the performance of organisms
for different stimuli and outputs different results. Artificial
neurons play an absolute core role in the components of ANN.
Multiple neurons can be stacked and connected in a certain
way to form ANN.

The neurons in the same layer of ANN are not connected.
The neurons between adjacent layers are connected through
the weight matrix. The connection mode can be customized.
Any neuron in the hidden layer is connected with all neurons
in the adjacent layer. The network adopts the forward calcu-
lation method: the output of the previous layer is the input of
the next layer, which is calculated layer by layer, and finally,
the output is obtained. To learn the parameters in the network,
Rumelhart et al. proposed an error backpropagation algorithm
(BP) [42]. The algorithm first calculates the error between the
network output and the true value, then backpropagates the
error from back to front, adjusts the parameters of the network
according to the error, and finally iterates continuously to
make the network model converge to the global optimization
or local optimization. From this intuitive process, we can
understand the whole operation process of neurons. If a
huge number of neurons are connected somehow, the ANN
can disclose complex nonlinear tasks. Multilayer Perceptron
(MLP) is a typical complex network that combines multiple
neurons in a predetermined way. MLP is composed of layers
of neurons and nodes. The layer closest to the input data is
often called the input layer neuron, whose main function is
to read the data into the shallow layer of the network model.
The next series of neurons are called hidden layer neurons. In
these layers, the network is mainly used to extract the multi-
level features of input data, which is an important part of the
network. The number of hidden layers is generally unlimited,
and the appropriate number can be selected according to the
task objectives. Developers need to make a trade-off between
efficiency and accuracy. The last layer of neurons is called
the output layer. After passing through the output layer, the
network will provide the analyzed results of specific tasks.
From this process, we can see that there is mutual propagation
between multiple neurons. Based on this relationship, the
characteristics of the input data move forward layer by layer
in the neural network and finally form the output result of the
network.

FIGURE 3. Example of a brain tumor showing the importance of the
diverse modalities (T1 with contrast and T2) [43].

B. CONVOLUTIONAL NEURAL NETWORK (CNN)
The most significant change brought by CNN to deep neural
networks is the introduction of convolutional structures in the
process of network construction. Applying this structure in
deep neural networks can effectively reduce the memory and
parameters occupied by the deep network calculation process
in the training process, accelerate the training process, and
make the network easier to converge. Compared with the
traditional ANN, CNN reduces the training complexity of the
network model by setting local connections in the model and
sharing the weight value of each neuron in the calculation
process. The number of parameters in the network is effec-
tively reduced, and the possible overfitting phenomenon is
alleviated. Another special feature of CNN is that it is very
suitable for processing two-dimensional images. The convo-
lution structure can effectively extract various features of the
image (such as approximate shape, texture detail information,
color information, etc.) in the network. These features help
the network model understand the internal information in
the image and improve the ability of the network to process
image data. Because the CNN network has good translation
invariance, it can still accurately extract and understand the
image’s content even if the image’s shape changes. Because
of these characteristics of CNN, there are more and more new
ideas and methods in computer vision.

LeCun et al. [44] proposed CNN in handwritten character
recognition and achieved great success. With the great suc-
cess of AlexNet [45] in classifying ImageNet dataset, CNN
has been widely used in image processing. The traditional
ANN often adopts the way of full connection, and the net-
work parameters increase exponentially with the increase of
layers, which makes the network difficult to train. Even the
shallow network is easy to overfit. In order to alleviate this
problem, CNN introduced strategies such as local receptive
field and weight sharing [46], which not only reduced the
network parameters but also the weight sharing strategy can
automatically extract image features from the layers.With the
development of CNN, various excellent basic CNN models
have emerged, such as VGG [47], GoogleNet [48], ResNet
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[49], DenseNet [50], etc., but all networks are built on a series
of functional layers.

IV. BRAIN TUMOR SEGMENTATION METHODS
Among the advanced technological developments, two main
factors are limiting BTS; one is medical imaging technology,
and the other is segmentation methods. MRI has become
a key technology suitable for brain imaging with the con-
tinuous development of medical imaging technology. MRI
completes the imaging process of complex brain structures
based on the magnetic field and radio waves. MRI is a
promising imaging method that does not damage the human
body and can generate multimodal data. The tissue char-
acteristics presented by different modal data are different,
and the multimodal data complement each other to ame-
liorate the accuracy of tumor segmentation. After solving
the imaging problem, the key point of developing BTS
is the research of segmentation methods. In recent years,
the development of deep neural networks has led to the
segmentation accuracy of segmentation methods based on
DL has far exceeded the traditional segmentation methods.
The significant segmentation methods based on supervised
learning are random forest, decision tree, particle swarm
optimization (PSO), dynamic sparse field (DSF); and based
on unsupervised methods are K-means, C-means, mean shift,
self-organizing map (SOM), markov random field (MRF),
gray-level cooccurrencematrix (GLCM),multi-context fuzzy
clustering (MCFC), and extreme learning machine (ELM).
Some BTS methods based on traditional and DL approaches
are divided into groups, as shown in Figure 4.
In BTS, the region to be segmented is not an independent

region but multiple overlapping regions, such as the com-
plete tumor region, core tumor region, and enhanced tumor
region. The complete tumor region includes all tumors, and
the enhanced tumor will be included in the core tumor region.
Due to this characteristic, some scholars proposed that the
BTS task can be divided into multiple subtasks for training to
reduce the complexity of directly segmenting all the regions.
At the same time, optimizing the single-segmented region
is easier, and improving the overall segmentation accuracy
through the fusion of the final segmentation results. Based
on this idea of sub-task segmentation, Wang et al. proposed
a model including three cascaded segmentation networks for
BTS [51]. The three segmentation networks segment different
tumor regions, respectively. The overall segmentation process
is divided into three steps, and each step is re-segmented
based on the previous step. Zhou and others proposed a
one-step multi-task segmentation model for learning shared
features, which divides the brain tumor into different segmen-
tation tasks, integrates these tasks into onemodel, strengthens
the interaction between tasks through shared parameters in
the training process, and can complete multi-task prediction
in one step directly in the prediction stage [52]. Shen et al.
proposed a multi-task segmentation network, which distin-
guishes the regions through the up-sampling operation of
different paths, then uses the designed loss function for binary

classification, and finally fuses the different segmentation
results to form a complete region segmentation [53].

FIGURE 4. Classification of BTS methods.

A. REGION-BASED SEGMENTATION
The process of grouping pixels into larger regions is known
as region growing which has been utilized in region-based
image segmentation algorithms [54]. Initially, scan the adja-
cent pixels and evaluate the merging of adjacent pixels into
the region. Each pixel in the same attribute set will be used
to allocate pixels for the growth process of the region. The
shape of the region grows according to the intensity to com-
plete the morphological edge detection of the input image
and reconstruct the input image based on expansion and
corrosion to enhance the image. The center point selects the
pixels within a certain gray range and the pixels are evenly
placed in the divided area. The receiving area starts from the
accurate position of the first pixel, and then the seed point
grows according to the set rules. An example of region-based
segmentation is shown in Figure 5.

FIGURE 5. Results on MR brain image. (a, c) Original image (b) the result
using the region growing model (d) threshold-based segmentation for
brain MRI [55], [56].

B. THRESHOLD-BASED SEGMENTATION
Threshold-based segmentation is one of the simplest image
segmentation methods because it consumes less computation
and has high efficiency, so it plays an effective and significant
role in image segmentation. The gray image is converted into
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a binary image output corresponding to its region using a
threshold. This method traverses all image pixels. If the pixel
value of the image is higher than the determined threshold,
the pixel is set to the maximum value of the proportion
used; otherwise, it is the minimum value. Threshold selection
techniques can be divided into two categories: two-level and
multilevel. In the former case, only one threshold is needed to
separate two objects of the image: one represents the object,
and the other represents the background. When different
objects are depicted in a given scene,multiple thresholdsmust
be selected for correct segmentation, usually calledmultilevel
threshold processing [57]. As seen in Figure 5, thresholding
is used to process the brain MRI. Automatic image seg-
mentation is proposed using cranium removal, morphological
reconstruction, thresholding, and subtraction to get a binary
mask for segmentation [58]. The segmentation results using
active contour and graph cut theory have been shown in
Figure 6.

FIGURE 6. Examples of segmentation using graph cut, active contour, and
flood fill algorithms.

C. WATERSHED SEGMENTATION
A watershed algorithm is a mathematical morphology seg-
mentation algorithm based on topology theory. It was intro-
duced and improved by Lantuéjoul and Beucher [61], [62].
Subsequently, in terms of definition and implementation,
several algorithms of watershed transformation with different
variants are developed to reduce the computational complex-
ity [63], [64]. The watershed algorithm realizes segmenta-
tion by constructing regions. The image to be segmented
is regarded as a topographic map in geography. The gray
value of pixels is used to represent the height of the terrain
[65]. Mountains and valleys correspond to the gray value,
respectively. When we inject a drop of water into the valley,
the water will eventually converge to the local lowest point
due to the action of gravity. There may be a minimum plane
in which all points are minimum points. Pierce the valley, the
bottom begins to fill with water, and the water level rises at
a constant rate. As the water level rises, the water becomes
more and more, and finally covers the whole surface. The

FIGURE 7. Result of watershed segmentation for brain MRI from top to
bottom (a) artifacts removal (b) watershed transform and (c) edge
smoothing [59].

watershed segmentation and accuracy assessments of con-
ventional methods for BTS are shown in Figure 7 and 8
respectively.

FIGURE 8. Accuracy assessment of the traditional segmentation
methods [60].

D. CLUSTERING-BASED SEGMENTATION
The collection of similar data into clusters depends on homo-
geneity, known as clustering. Among clustering algorithms,
K-means clustering [66] is the base for image segmenta-
tion. The similar components in the dataset belong to the
same cluster in this algorithm. On the other hand, fuzzy
C-means (FCM) clustering resolves the multi-grouping issue
by assigning each pixel to a separate class. It means one
pixel could associate with more clusters, although each pixel
reveals a distinct similarity value for every cluster. The
optimization function of the C-means algorithm affects the
accuracy of results. Among clustering algorithms, K-means
improved K-means [67], and C-means [68] are most com-
monly used in segmentation [69]. There are several improved
methods based on the FCM fundamental approach, such as
kernelized fuzzy C-means (KFCM) [70], generalized fuzzy
C-means (GFCM) [71], fast generalized FCM algorithm
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(FGFCM) [72], enhanced FCM (EnFCM) (..) [73] and so
on. Similarly, the K-means algorithm has been widely used
for image segmentation [74], [75], [76], [77], [78]. The brain
image segmentation using K-means clustering at different K
levels is shown in Figure 9.

FIGURE 9. Brain image segmentation using K-means clustering algorithm
at different K values.

V. NEURAL NETWORK-BASED BRAIN TUMOR
SEGMENTATION
In the basic theory of BTS, we will introduce the related basis
of neural networks. Firstly, the related principle of ANN, the
structure and application of common and advanced CNNs are
introduced. Then several common segmentation frameworks
based on CNN will be discussed in the following sections.
Image segmentation is one of the widely used directions of
the CNN model. According to the input and output, image
segmentation methods based on CNN can be divided into two
categories: image block-based segmentation and end-to-end
segmentation.

FIGURE 10. BTS using region extraction and CNN.

A. IMAGE REGION-BASED SEGMENTATION METHODS
The success of AlexNet in image classification promotes the
application of CNN in image segmentation. The traditional

CNN model includes three functional layers: convolutional
layer, pooling layer, and fully connected layer. It can automat-
ically extract the features of the image and classify the image
by using the image features. Therefore, the segmentation
method based on image block maps a fixed-size image block
in the image to the category using CNN’s powerful fitting
ability. Figure 10 shows the segmentation method framework
based on regions. Firstly, the regions are extracted. Since
the center points of the regions are classified, it is necessary
to use the sliding window method to obtain the fixed-size
blocks in the image. Then, CNN is used to extract features and
classify the center points of regions. Finally, the classification
of all pixels is the segmentation result of the whole image.

Because the image segmentation task is transformed into
the classification of region center points, the commonly used
CNN classification models, such as AlexNet, GoogleNet,
ResNet, etc., can be used for image segmentation. However,
unlike image classification, the size of regions often greatly
impacts the network’s results. Another point is that different
types of regions can be selected through certain strategies in
network training. Havaei et al. developed a CNN-based tumor
segmentation method by exploiting global and local features
simultaneously, exhibiting promising results [79].

B. END-TO-END SEGMENTATION METHODS
The resolution of the feature image extracted by the tradi-
tional CNN model decreases with the increase of the number
of network layers, so the classification center point is used
to evaluate image segmentation. However, with the upsam-
pling and deconvolution layers, the low-resolution feature
map can be generated into a high-resolution feature map to
analyze the end-to-end segmentation method. Common end-
to-end segmentation frameworks include FCN [80], SegNet
[81], U-Net [82], DeepLab [83], [84], [85], PSPNET [86],
etc. the following will introduce three classic segmentation
networks: FCN, U-Net, and DeepLab, of which FCN and
U-Net are commonly used in medical image segmentation.
Nevertheless, the overall review of end-to-end tumor segmen-
tation methods describes the tumor tissues, which include
necrosis, active tumor, and peritumoral edema [26]. It also
clearly discloses brain anatomy, end-to-end method scheme,
classifications and comparisons.

1) GENERATIVE ADVERSARIAL NETWORKS (GANS)
The GANmodel is a generalized basic unsupervised learning
model, and G and D are used as generative and discrim-
inative models. The success of the GAN model in unsu-
pervised image generation has driven the application of the
model in other image processing fields, including unsuper-
vised image domain conversion [87], [88], text to image
[89], image fusion [90], etc. In addition, the GAN model
is also widely used in medical image processing, such as
image super-resolution reconstruction [91], region of inter-
est location [92], image segmentation [93], etc. To obtain
image features, DCGAN uses a deconvolution network as
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the generation network and a convolution network as the
discrimination network, which enhances the expression abil-
ity of the network and can obtain high-quality generated
images [94]. Similarly, LapGAN generates a series of images
with different resolutions by sampling images and then uses
multiple DCGANs to generate high-quality images from
low resolution to high resolution [95]. However, LapGAN
needs too many networks and is difficult to train. ProGAN
generates low-resolution images to high-resolution images
by iteratively increasing the network depth [96]. Compared
with LapGAN, it generates high-quality images with many
parameters reduced.

The proposed direct PET image reconstruction network
by wasserstein GAN (WGAN) model increases the image
quality. Experiments were performed on mouse and patient
data using a different method, and the results show that DPIR-
NET enhances the reconstructed PET image quality more
than DeepPET [97]. Generally, the image quality decreases
due to a decrease in the radiotracer dose of positron emission
tomography (PET) imaging. To enable the GAN model to
generate images according to the given category, the condi-
tional GAN (cGAN) model adds category conditions to the
network when generating the network and determining the
network input [98], [99]. To enable the discriminant network
to learn the category features better, the proposed auxiliary
classifier GAN (ACGAN) removed the conditions in the input
of the discriminant network and added an output in the image
category [100]. InfoGAN uses information entropy to com-
prehend unsupervised feature extraction of different types of
images [101]. KL divergence is often used in GAN to mea-
sure the distance between the real data distribution and the
generated data distribution, which leads to the discontinuity
of the loss function at some points and the problem of mode
collapse. To alleviate this problem, Arjovsky et al. proposed
WGAN, which uses the Earth Mover distance instead of KL
divergence to measure the difference between the two distri-
butions [102]. Gulrajani et al. adopted a gradient penalty term
instead of weight clipping to achieve Lipschitz restriction
to solve the problem of parameter centralization caused by
weight clipping of WGAN [103]. In addition, Mao et al.
adopted the least square loss function, and WGAN can be
considered a special case [104]. Lim et al. used hinge loss
(HL) tomeasure the distance between two distributions [105].
HL is an extension of EM distance, which can make the GAN
model training more stable.

2) FULLY CONVOLUTION NEURAL NETWORK (FCN)
In recent years, there have been more and more excellent
models in the field of image segmentation. Long et al. pro-
posed a fully convolution neural network (FCN), which is
undoubtedly a classic network [80]. Unlike the traditional
CNN, which uses the full connection layer to obtain the prob-
ability of a one-dimensional vector corresponding to many
categories, FCN replaces the full connection layer with the
convolution layer, outputs an image, and realizes end-to-end

training. Moreover, FCN can input images of any size, and
the size of input and output images is consistent through the
upsampling operation. Using a jump connection structure,
the low-level and high-level feature information is added and
fused point by point to ensure that more features can be
learned.

FIGURE 11. FCN framework for pixel-wise prediction and semantic
segmentation.

Based on the upsampling technology and multi-scale
fusion method, the middle layer can be divided into FCN-
32s, FCN-16s, and FCN-8s. FCN-32s directly outputs an
image with the same size as the original image through the
upsampling operation with a step size of 32, but loses a lot
of detail information; FCN-16s performs two upsampling
operations. First, the last layer is upsampled, and then a con-
volution operation of 1 × 1 is added to the fourth pool layer.
Then, the convolution results are fused with the upsampling
results, and an upsampling operation is performed to restore
the original image size. The network retains more detailed
features; FCN-8s also samples up the output of the last layer,
then samples up the fourth pool layer, and then integrates the
results of the two upsampling with the third pool layer before
upsampling, to obtain better results. However, FCN still has
poor extraction of image detail information, and the process-
ing of pixels is independent and lacks spatial consistency
[106]. The authors have proposed a feature extraction and
concatenation method, which would help the early detection
of BT [107]. DensNet201 and Inception-v3 models are used
to evaluate brain tumor detection and classification, resulting
in 99.34% and 99.51% accuracies and achieving the highest
performance in brain tumor detection. Figure 11 is the struc-
tural diagram of FCN.

3) SEGNET
SegNet is an improved model based on FCN, including
encoding and decoding structures [81]. Compared with the
pooling layer in other network structures, the advantage of
SegNet is that the pooling layer has an index function, which
is utilized to record the position of the max pooling result
associated with the pooling core. The pool index connects
the pooled layer output to the corresponding upper sampling
layer. Since the network exploits the symmetrical structure,
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the first pooling layer links to the last upsampling. In the
encoding phase, each pooling operation will save the relative
position of the weight selected by maximizing the 2×2 filter.
Then, in the decoding phase, the pooling operation is used to
process these stored indexes and their corresponding feature
maps. The decoding process uses zero filling volume, mainly
used to fill the feature map information sampled on the sam-
pling without generating parameters to be learned; it saves
memory space and generates a sparse feature map. These
feature maps are then convoluted to produce dense feature
maps. Finally, the classifier outputs the maximum values
of different categories through softmax to obtain the final
segmentation graph. Salma et al. proposed FCNN SegNet to
automatically segment brain tumors and parts of tumors by
applying four different imaging modalities of MRI (i.e., T1,
T1ce, T2, and Flair) [108]. The basic architecture of SegNet
is shown in Figure 12.

FIGURE 12. SegNet architecture for pixelwise segmentation [81].

4) U-NET
Unlike natural images, for medical images such as brain
tumor imaging, even small marginal segmentation errors will
significantly reduce the experience of DL automatic segmen-
tation. The main reason for limiting the model to accurately
segment this part of the difficult areas such as irregular
contour, discontinuous organization, and fine-grained organi-
zation of the target is the ability of the model to make full use
of shallow information and capture more details. To solve this
problem, 3DU-net introduced a dual channel attention mech-
anism and applied it to the channel dimension and spatial
dimension of the feature map through the channel attention
and spatial attention branch, respectively, and embedded it
into the layer hopping connection to alleviate the semantic
gap caused by the direct integration of low-level features and
high-level features, also to utilize the efficiency of low-level
features.

The U-Net model adopts the encoding-decoding method,
as shown in Figure 13 [82]. The encoding method is to
continuously obtain the characteristics of the input image
through the convolution layer and the lower sampling layer.
With the increase in the number of layers, the image features
extracted by the coding layer are more and more abstract, and
the feature resolution is decreasing. Unlike FCN, which uses
these features for prediction results, U-Net uses decoding

to generate high-resolution (fine-grained) features from low-
resolution (coarse-grained) features. Finally, U-Net classifies
high-resolution features to obtain segmentation results with
the same input resolution. As shown in Figure 13, U-Net
adopts a multilayer downsampling layer during encoding.
However, the downsampling layer will lose image informa-
tion, which leads to the lack of image information for the
features after upsampling during decoding. In order to resolve
this problem, u-net uses a horizontal connection to connect
the encoded features with the decoded features. In U-Net,
the upper sampling layer is used to upgrade the dimension of
features. It can be seen that the deconvolution layer also has
the same ability and is more flexible than the upper sampling
layer. Therefore, the deconvolution layer can replace the
upper sampling layer.

FIGURE 13. U-Net architecture [82].

FIGURE 14. DeepLab architecture for image segmentation.

5) DEEPLAB MODELS
The DeepLab model is also an encoding-decoding method.
Its coding method also adopts convolutional down sampling.
DeepLab also adds a residual layer to better extract fea-
tures and build a deeper network. In the network, too many
downsampling layers will lead to image information loss.
However, the downsampling layer can increase the receptive
field of the network and can obtain global features. In order
to ensure that the network has a larger receptive field without
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reducing the feature resolution, DeepLab cancels the last two
lower sampling layers and uses the Atrous Spatial Pyramid
Pooling (ASPP) module to segment targets at different scales.
The ASPP module uses cavity convolution to obtain larger
receptive fields. At the same time, it uses cavity convolution
with different expansion rates to obtain receptive fields of
different sizes and then combines these features to obtain
pyramid features. The decoding method of the DeepLab
model also adopts the upsampling plus convolution method
and introduces the horizontal connection.

However, unlike the U-Net method, DeepLab finds that
the 4-fold upsampling is better [109]. Later on, the authors
proposed DeepLab v1, which introduced the variation in
pooling stride and padding size, and this model was based on
the VGG network [83]. In DeepLab v1, conditional random
fields (CRFs) are introduced to enhance the segmentation
accuracy [110]. Consequently, DeepLab v2 was proposed to
resolve the segmentation problem caused by the same object
scale variations in the same image [109]. DeepLab v3 utilized
ResNet-101 with a cascaded Atrous module to get promising
image segmentation at multi-scales [84]. The authors have
utilized the cascaded network of two DeepLab v3+ [85] with
ResNet-50 to get improved segmentation results [111]. The
DeepLab architecture for image segmentation is shown in
Figure 14.

VI. IMAGE GUIDED SURGERY FOR BRAIN TUMORS
A. STEREOTACTIC SURGERY
In the form of image-guided surgery (IGS), stereotactic
surgery uses several imaging modalities, including CT and
MRI, to produce a precise map of the brain [142], [143]. The
surgeon then used this map to precisely direct a surgical tool,
such as a drill or biopsy needle, to the tumor’s position. This
method seeks to precisely target the tumor while causing the
least amount of harm possible to nearby healthy brain tissue.
In order to keep the patient’s head motionless throughout the
treatment, the patient is first placed in a unique head-holding
equipment [144], [145]. Next, a CT or MRI scan of the
patient’s head can be performed to get precise images of the
patient’s brain. A 3-dimensional map of the brain can bemade
usingMRI scans which helps the surgery. A frameless stereo-
tactic device used by the surgeon throughout the process,
confers to the head-holding device and guides the surgical
tools to the exact position of the tumor. The surgeon can sam-
ple or remove the tumor using the instruments. Diverse types
of brain tumors, including benign and malignant tumors, can
be treated with IGS. It is particularly beneficial for brain
tumors that are located in hard-to-reach regions, like deep-
seated.

B. FLUORESCENCE-GUIDED SURGERY
A specific dye can be placed into the patient’s blood circu-
lation during fluorescence-guided surgery (FGS), which uses
IGS to target the tumor only [28], [146]. The fluorescence can
be detected by specific cameras, which enable the surgeon to

see the tumor and surrounding structures during the surgery.
The risk of harming the surrounding healthy brain tissue can
be reduced using this method though increasing the precision
and accuracy of brain tumor surgery. The process initiates
with controlling a specific dye to the patient. Tumor cells
favorably absorb this dye, which causes them to glow when
struck by light. An exclusive camera detects the fluorescence
scans and develops detailed brain images. The surgical pro-
cedure can be planned using these images. The specialist
uses the fluorescence images to lead the surgical instruments
to the precise spot of the tumor. This aids in reducing the
chance of destruction of healthy brain tissue by extending the
specialist’s capability.

Gliomas, a form of brain tumor known to invade surround-
ing brain tissue, have been found to respond particularly well
to FGS [147]. These tumors can be challenging to remove
with conventional surgical methods. The probability of leav-
ing any tumor cells behind after surgery can be reduced by
FGS. It has been discovered that the method is efficient and
safe, with a high degree of precision.

C. INTRAOPERATIVE MRI (IMRI)
Intraoperative MRI (iMRI) is a type of IGS that uses an MRI
machine in the operating room to give the physician real-time
brain imaging while executing surgery [148]. This technique
intends to improve the accuracy and safety of brain tumor
surgery by giving the physician instant access to the location
and size of the tumor. Using MRI, detailed brain scans can be
taken prior to the treatment. These images guide the surgical
tools according to the procedure. The physician can confirm
the surgery’s position and extent using real-time images.

Cancers located in difficult-to-reach parts of the brain, such
as deep-seated tumors or tumors close to critical functioning
areas, have been found to benefit particularly from iMRI
[149]. This systematic procedure has proven to be quite accu-
rate and rarely problematic. It also enables the physician to
confirm that the tumor has been completely removed. The
primary benefit of iMRI is that it provides the physician
with real-time imaging during the procedure, to enhance the
accuracy and safety. iMRI is not yet widely used because it is
comparatively a new technique.

D. IMAGE-GUIDED RADIATION THERAPY (IGRT)
Using imaging tools like CT or MRI, image-guided radiation
treatment correctly targets and carries radiation to the brain
tumor while limiting exposure to the surrounding tissues
[150], [151]. Thismethod intents to enhance the precision and
efficacy of radiation therapy for brain malignancies. Initially,
the patient undergoes imaging, such as CT orMRI scan, to get
accurate brain images. During therapy, the patient is posi-
tioned on the treatment table, and the position of their body
is tracked by specialized imaging tools. A linear accelerator
generates high-energy x-rays or particles and can be utilized
to guide the radiation beams at the tumor. Imaging equipment
can be employed to improve the accuracy.
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TABLE 2. Comparison of DL methods for BTS.

It has been discovered that IGRT is particularly helpful for
brain cancers which are located in hard-to-reach regions of
the brain. This method is highly accurate and it enables the
tumor to get a larger radiation dose while reducing exposure
to the surrounding healthy regions. The benefit of IGRT is
that it enables the radiation oncologist to have an eye on the
tumor’s location and change the radiation beams as necessary
to ensure that the tumor receives the right amount of radiation
while minimizing exposure to the surrounding tissues [152].
Radiation oncologists, technologists, and radiologists have
been trained in the tools and image interpretations are needed
as part of a specialized team.

E. AUGMENTED REALITY-BASED SURGERY
Augmented reality (AR) is being employed more and more
in the field of neurosurgery to remove brain tumors [153],
[154]. Real-time, 3-dimensional (3D) scans of a patient’s
anatomy can be sent to the physician using AR. As the brain
is a fragile, complex organ that can be exciting to explore,
AR can be exclusively helpful. The physician’s ability to
view the tumor and surrounding anatomy in 3D can increase
surgical precision and accuracy. Since it can be difficult for
the physician to see the tumor and surrounding tissues with
normal 2D imaging techniques.

AR can be used to aid surgical planning and reduce human
errors. For instance, the physician can utilize AR to construct
a virtual map of a patient’s brain [155]. It may be beneficial to

reduce the risk of destruction and improve surgical accuracy.
AR can help to lessen the need for numerous surgical passes,
which can shorten the surgery’s duration. There are already
a variety of systems available for AR-based brain tumor
surgery, each with exceptional high-tech capabilities [156].
AR is progressively being used in neurosurgery, and the
advantages of employing AR in brain tumor surgery include
increased precision and accuracy, better surgical planning,
and a shorter anesthetic stay. AR will play a bigger role in
the treatment of brain tumors and other neurological diseases
as technology advances.

F. ULTRASOUND-GUIDED SURGERY
Brain tumors can be found and removed with the help
of ultrasound-guided surgery (UGS) [157]. High-frequency
sound waves are used in this procedure. They are sent to the
tumor and then returned to a computer screen. The physician
can use this information to lead the surgical tools precisely to
the tumor’s location. Real-time brain imaging is the primary
benefit of UGS. Previously, physicians were forced to rely
on preoperative imaging in a standard tumor surgery, such as
MRI or CT scans, which could be less accurate and could
fail to pinpoint the tumor’s specific location. The benefit of
UGS being less intrusive than conventional brain surgery.
UGS is more precise and with less harm to the surrounding
tissues. This phenomenon may result in fewer difficulties
and quicker recovery times. Transcranial ultrasonography,
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or TCUS, is the ultrasound technology used in this procedure
[158]. With the use of this technology, deep-seated lesions
like brain tumors can be seen in real-time. A computer ana-
lyzes and compiles the echoes formed by the tumor.

UGS is continuously being studied as a relatively new
procedure [159]. However, early research proposes it may
help treat brain malignancies. In one study, researchers dis-
covered that when compared to conventional brain surgery,
UGS resulted in a very high rate of total tumor removal [160].
Patients who underwent surgery with UGS also experienced a
shorter hospital stay. Moreover, there are several restrictions
with UGS. For larger tumors or cancers found in specific
regions of the brain, for instance, it might not be suitable.

VII. DISCUSSION
The multimodal MRI brain tumor image segmentation is to
segment the whole tumor region, core tumor region, and
enhanced tumor region from normal brain tissue, using the
image data of different imaging modalities. Accurate seg-
mentation of multimodal MRI brain tumor images with AI
has great significance in clinical diagnosis. It can reduce
much time for doctors to manually divide brain tumor areas,
make doctors pay more attention to treating patients and
saving people, and improve doctors’ medical intellectual
level. Therefore, it has always been an important topic in
medical image processing. With the continuous development
of modern medical imaging, the traditional manually labeled
MRI image segmentation is gradually replaced by computer-
aided diagnosis. Accurate and rapid diagnosis not only helps
doctors make judgments in a short time but also reduces the
error of manual markings. As a common malignant tumor,
early non-invasive diagnosis is very helpful for treating
patients. However, due to the differences in the appearance
and shape of brain tumors among different patients, eval-
uating tumor areas is very time-consuming. Therefore, the
automatic segmentation based on DL is very attractive in this
case because it can describe the relevant tumor parameters
more objectively and accurately. Databases with complete
details provide easy and quick access to specific and signifi-
cant studies [29], [36]. Similarly, the pros and cons of overall
categorized methods into thresholding, traditional machine
learning, region-based, DL variants, and hybrid approaches
can be found in [37], [161], [162], and [163]. Suppose the
multi-scale information helps the network segment some eas-
ily confused areas at the edge of brain tumors. In that case,
two branches are added to the original single-scale confronta-
tion network to form a parallel multi-scale segmentation
network. Stacked residual blocks and attention mechanisms
are introduced to improve the segmentation accuracy of the
model. The residual module can alleviate the problems of
gradient dispersion and network failure in the process of
deepening the network depth, accelerate the convergence
process of the network, and allow the network to extract the
characteristic information of data at different scales simul-
taneously in combination with the multi-path structure. The
feature information is used by multi-scale fusion. It focuses

limited attention on the details of the lesion area, which
helps to improve the sensitivity of the model and improve the
accuracy of fine segmentation of brain tumor areas.

The progress of semantic segmentation—from traditional
approaches to sophisticated DL techniques—is highlighted,
with a particular emphasis on pixel-level classification [164].
The authors cover both supervised and unsupervised learn-
ing algorithms, emphasizing the vital significance of DL in
tackling important issues. It also offers an extensive exam-
ination of surveys devoted to semantic segmentation in the
context of DL. BTS has made rapid developments with the
development of DL. The major advantage of CNN is that its
hidden layer automatically learns image features and iterates
features through the connection between layers. However,
CNN has the problem of learning blindness. The design of
network depth and structure is very important for the speed
and accuracy of feature extraction. Several DL methods have
been discussed, which are the most significant and outper-
formers compared to all earlier models, as shown in Table 2.
The dice scores are calculated in the literature based on
three categories: tumor core, whole tumor, and enhancing
tumor, and we have quoted the mean values of the whole
tumor from test data. A couple of articles have provided
accuracy (i.e., given in %) instead of dice scores, which can
be observed in Table 2. Their associated dice scores cannot
predict the performance of the given methods because these
values vary with respect to test and training data, and it is
recommended that the complete article is read for a better
understanding.

A. LIMITATIONS AND FUTURE PERSPECTIVES
For BTS, DL methods have been frequently used for the
last decade, which involve multiple layers and many steps in
the computer vision algorithms to comprehend the intensity
and symmetry-related information. All these properties are
combinedly and used for the classification of different regions
of tumors such as necrosis, oedemic, gliomas, enhancing or
non-enhancing tumors, etc. Frequent use of AI still needs
many validations, specifically clinical and biological vali-
dations [165]. Firstly, there are some limitations to getting
such validations in which the data is a key limitation. In
several computer vision scenarios, we are improving the
application outcomes by utilizing our models and with the
help of non-related datasets. Therefore, various techniques
have been developed to overcome this limitation, such as
data augmentation, transfer learning, etc. Logically, data aug-
mentation techniques should be avoided for sensitive and
deadly scenarios. As we know, several types of tumors are
different in shape, location, and size. Boundaries of tumors
are irregular, discontinuous, and unclear, so it is better to
develop a cumbersome dataset exclusively for one specific
disease, which can better assist computer vision approaches.
Nevertheless, BraTS development has lessened this limitation
dramatically by introducing multiple imaging for BTS [166].
Secondly, biological validation reveals that images cannot
interpret the biological structures because tumor lesions can
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TABLE 3. Description of DL models with their dice scores and training data.
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TABLE 3. (Continued.) Description of DL models with their dice scores and training data.
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TABLE 3. (Continued.) Description of DL models with their dice scores and training data.

grow differently after removing them, and tumor invasions
cannot be observed by AI or imaging techniques. Some lim-
itations in the field of BTS are listed below:

• Lack of training datasets for DL methods
• Sophisticated segmentation techniques are mandatory
when applying for annotations or changing structured
labels

• 3D segmentation models have been implemented using
2D segmentation [200].

• The training of the DL system on BraTS dataset needs
consideration to handle uncertainty and noise.

• The small receptive field for a large dataset, then deep
models are not worthwhile. Training a network has var-
ious constraints, such as limited memory, GPU, and
bandwidth.

• Fixed-size for a kernel for image slicing may damage
some valuable information.

• Data augmentation (i.e., scaling and rotation) and nor-
malization approaches have been used to develop new
lesions of brain tumors, which may generate class
imbalance [161].

In medical image segmentation, especially the end-to-end
image segmentation algorithm, there is a critical problem
of data imbalance. Although scholars have proposed many
methods to alleviate the data imbalance problem, such as
using data enhancement, reducing image size, changing the
loss function of network training, etc., these methods can-
not solve the problem. In the future, we need to explore
effective methods to make it easier for the network to learn
the characteristics of a small number of samples in brain
medical image segmentation and improve the segmentation
accuracy of the network. Currently, the main algorithm of
medical image segmentation is still supervised. Still, the
supervised algorithm has high requirements for input data,
and the acquisition of label data requires a lot of human
resources, which leads to high-cost requirements for this
algorithm and makes it unsuitable for the current situation in

the medical field. Using weakly supervised or unsupervised
algorithms to realize medical image analysis is an important
direction in the future. The commonly used brain medical
image segmentation algorithms based on neural networks are
derived from natural image processing algorithms. However,
brain medical images differ from natural images, and there
is a large number of prior knowledge of medical anatomy in
brain medical images. This prior knowledge helps to enhance
the segmentation performance of the network, but the exist-
ing brain medical image segmentation based on the neural
network often ignores this point. Therefore, in the future, it is
necessary to combine neural networks with medical anatomy
knowledge to enhance the segmentation performance of the
network.

VIII. CONCLUSION
This paper delineates the significant contributions of recent
studies for BTS. The key role of this article is to provide
an understanding of selecting robust methods for competent
segmentation and future studies, which will help doctors
get concrete disease identification. However, we have also
grouped the BTS methods with respect to their characteris-
tics. Several limitations related to datasets, algorithms, state
of the arts, etc., have been discussed briefly to fascinate
researchers for deep studies. Furthermore, we have presented
various optimal methods with their dice scores, training data,
and published time with references. Neurologists persist in
discussing that the datasets are limited for several diseases
individually, which can be helpful for computer-based diag-
nosis systems, and that can be overcome by centralizing
the systems of hospitals. Several hospitals around the globe
might have limited datasets individually, but we can devise
and assist in benchmarking the datasets in the medical field,
which can be a good prospect. DL approaches outperform
conventional methods due to their limitations. The recent
models can be further improved with ensemble and data
augmentation procedures.
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