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ABSTRACT Electric vehicles (EVs) have become a prominent alternative to fossil fuel vehicles in the
modern transportation industry due to their competitive benefits of carbon neutrality and environment
friendliness. The tremendous adoption of EVs leads to a significant increase in demand for charging
infrastructure. But, the scarcity of charging stations (CSs) concerns efficient and reliable EV charging.
Existing studies discussed EV energy consumption prediction schemes at the CS without analyzing the
affecting parameters such as energy demand, weather, day, etc. In this regard, we have proposed an energy
consumption and distribution framework for EVs in a smart grid environment for efficient EV charging
after analyzing the affecting parameters such as location, weekday, weekend, and user. Moreover, we have
considered EV dataset to perform a detailed and deep analysis of energy consumption patterns based on the
aforementioned parameters such as CS (Station ID) within the location (Location ID), weekday, weekend,
and user (UserID). The main aim is to understand the smart grid-based electricity distribution to the CS
by analyzing energy consumption patterns for reliable EV charging. We have done different analysis on
different parameters and present their graphical representations.

INDEX TERMS Smart grid, electric vehicle, charging station, energy consumption, energy distribution,
dataset analysis.

I. INTRODUCTION
In emerging nations, electricity as an energy carrier can be
utilized to fulfil the people’s increasing travelling demand
globally. Authentic and dependable electrical power transfer
is the foundation of a country’s economic growth. According
to the Annual Energy Outlook, the United States (US) is
going to witness 31% growth in electricity demand by 2035.
Towards this goal, people are incorporating electric vehicles
(EVs) into their modernized transportation systems across
the globe [1]. Moreover, universal CS charges vehicles from
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many manufacturers with various batteries and charging
capacities, boosting demand for EVs and ensuring depend-
ability for charging. This trend towards universal charging
stations (CSs) is also being supported by governments and
private companies investing in the infrastructure necessary to
make electric vehicles a viable option for more people. As a
result, we can expect to witness even more drastic growth in
the EV market in the coming years [2], [3], [4].

EVs are growing in popularity to reduce carbon emissions,
achieve carbon neutrality, reduce operating expenses, have
minimal maintenance costs, and financial and tax advantages.
Promotion and usage of new energy vehicles, such as electric
cars, are becoming more popular due to pressure from carbon
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emission reduction and neutrality. An equivalent gasoline or
diesel vehicle has substantially higher operating costs than an
EV. Moreover, EVs have low maintenance costs since they
do not have as many moving parts as internal combustion
vehicles [5]. Additionally, EVs produce zero emissions,
making them a more environmentally friendly option than
traditional vehicles [6]. They also have the potential to reduce
dependence on foreign oil, increase energy security, and
improve air quality in urban areas [7], [8], [9].

Despite the surge of EVs in the energy market, it becomes
crucial for CS to handle the simultaneous arrival of EVs
and their energy demand for charging. Therefore, a smart
grid needs to be introduced to tackle the colossal energy
demand of EVs at the CS, and they can provide energy to
the CS in case of the simultaneous arrival of the EVs [10].
The smart grid acts as an intermediary energy supplier to
deliver the energy generated at the power substation to the
consumers such as homes, buildings, hospitals, etc. Further,
it can be considered a sophisticated version of a traditional
power infrastructure that offers a more dependable and steady
electricity supply [11], [12]. The conventional power grid
also referred to as the traditional power grid, is made up of
several interconnected electrical power system components,
including transformers, alternators, transmission lines, and
various electrical loads designed to transmit electricity from
a source of production to the consumers, which can be
quite complex procedure while providing electricity for the
consumption purpose. Thus, with the help of its innovative
technologies, the smart grid optimizes energy usage by
improving the overall efficiency of the power system through
the usage of advanced sensors, meters, and analytic software
that provides detailed information on EV energy consumption
patterns [13], [14].

Thus, the smart grid can handle EVs arriving with huge
energy demand at the CS. But, the energy consumption
pattern of EVs varies based on various aspects such as
dynamic energy demand, travelling destination, weather
conditions, etc. In this regard, EV charging at the CS can
be accomplished with the help of two methods, i.e., test-
set-based and analysis-based. Trial-and-error, hit-and-miss,
prototype, and physical equipment-based methodologies can
be used in test-set-based research to predict EV energy
consumption patterns using various Machine Learning (ML)
and Deep Learning (DL) models. In contrast, an analysis-
based method can analyze the Evs’ energy consumption
based on various aspects (i.e., energy demand, travelling
destination, etc.). Many researchers have proposed cognizant
solutions for performing the EVs energy prediction for
effective and regulated charging at the CS [15], [16], [17],
[18], [19]. For instance, Fukushima et al. [20] proposed
a machine learning-based energy consumption prediction
for EV models. In this work, the authors discussed energy
consumption prediction using data-driven models that are
highly accurate, and the strategy adopted in this study reduces
error from the traditional method by 30%. The authors of [21]
presented a new machine learning strategy to improve the

range prediction accuracy and lessen the EV range anxiety.
This prediction was made using a combination of short-term
memory (LSTM) and deep neural networks (DNN), both
capable of making long-range predictions while considering
various map and traffic data. In order to anticipate the
energy of EVs using artificial intelligence (AI), the authors
of [22] conducted a research under secure and improved
federated learning environment. The authors provided a
federated learning system for CSs with security-enhanced
mutual authentication. The training outcome demonstrated
that their proposed model can produce a more precise energy
demand forecast than the differential privacy-based model
at the same runtime. Later, Shahriar et al. [23] considered a
machine learning algorithm to predict the charging behavior
of EVs. They have combined past charging data, weather,
traffic, and event data to anticipate the length of an electric car
session and energy consumption using well-known machine
learning algorithms, producing results that are superior to
those of conventional methods.

The above-mentioned prominent EV charging solutions
focused on the prototype-based prediction methods to predict
the energy consumption of the EVs, but they did not
analyze the Evs’ energy consumption pattern based on the
various aspects such as weekday, weekend, CS location,
travelling destination, energy demand, day, etc. This helps
the smart grid to fulfil the energy demands of EVs
through CS based on varying energy consumptions. So,
we proposed a three-layered architecture highlighting the
energy distribution to CS through the smart grid with the
help of energy consumption analysis performed based on the
various parameters. Thus, we have studied the EV energy
consumption pattern analysis considering the dataset based
on the various parameters such as day, weekday, weekend,
and CS location to discover numerous energy consumption
patterns of arriving EVs so that the smart grid can analyze
and provide energy to the CSs accordingly.

A. RESEARCH CONTRIBUTIONS
Following are the research contributions of the proposed EV
energy consumption and distribution analysis framework:

• We proposed an EV energy consumption and distri-
bution framework highlighting that a smart grid can
optimize its energy and transfer it to the CS through
energy consumption analysis.

• The EV energy consumption analysis helps the smart
grid to perform the energy distribution efficiently and
reliably to the CS.

• Finally, we have performed a detailed analysis of the
EV energy consumption pattern based on the various
parameters of the considered dataset, such as weekday,
weekend, CSs (Station ID) within the location (Location
ID), and user.

B. ORGANIZATION OF THE PAPER
The rest of the paper is organized as follows. Section
II describes the related work of the proposed analysis
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TABLE 1. Comparative analysis of the EV energy consumption prediction schemes with the proposed analysis.

framework. Section III discusses the proposed framework.
Section IV elaborates on the dataset description in detail
and the association with the attributes. Section V presents
the detailed dataset analysis based on the CS (Station ID)
within the location (Location ID), weekday, weekend, and
user (UserID), and finally, section VI exhibits the concluding
remarks.

II. RELATED WORK
Many researchers have discussed the prominent solutions
for EV energy consumption prediction so that EVs can be

charged at a CS reliably [13], [31], [32], [33]. The relevance
of energy consumption forecasting in demand management
for a dependable grid is highlighted by Talwariya et al. [24].
They have estimated demand using a long short-termmemory
approach and assess predicting errors. The CS energy
distribution can be even more effective by integrating the
above-mentioned forecasting model with the game theory
for energy bidding. Then, the authors of [25] highlighted
the management of hybrid energy storage systems for EVs.
They have focused on integrating renewable energy sources
and improving interactions between vehicles and the grid.
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The utilized machine learning model and TD optimal policy
algorithm facilitate the best vehicle movement triggering and
battery level monitoring. Now, the aforementioned authors
did not consider the security aspect while monitoring the
state-of-charge (SoC) for EVs charging at the CS.

Towards this goal, Lazaroiu [26] proposed a novel strategy
for the smart community grid by combining blockchain
technology with intelligent EV charging infrastructure. They
have discussed the two-way energy flow and EV owners’
involvement in energy trading. The burden on the grid can be
decreased using smart charging systems, and the trustworthi-
ness and traceability of the energy transactions are ensured
through blockchain during EV charging. Furthermore, the
authors in [27] proposed an effective algorithm for NILM
(Non-Intrusive LoadMonitoring) of EV energy consumption,
allowing for precise disaggregation and analysis of power
demand. Incorporating NILM approaches in the CS energy
distribution framework offer valuable insights into demand
patterns and aid in optimizing energy allocation. However,
the authors lack the energy consumption-based analysis that
can be performed on the real-time dataset. Later, Jahromi [28]
focused on implementing the random forest algorithm to
predict the EV annual accessibility to the chargers. They
have simulated the proposed model so that drivers and EV
aggregators, so that charging accessibility can improve the
ancillary operations.

Scott et al. [30] investigated a machine learning-based
Vehicle-to-Grid (V2G) approach to enhance public buildings’
energy efficiency. The V2G strategy implementation within
the CS energy distribution framework can promote more
environment-friendly energy management by reducing the
need for polluting peak power plants. The aforementioned
EV energy-efficient solutions for charging at the CS mainly
considered the EV energy consumption prediction using
machine learning techniques. But, as per the literature,
there is no discussion on analyzing the energy consumption
of the EVs considering various effecting aspects such as
day, energy demand, available energy, destination, etc. So,
we have proposed an EV energy consumption framework
in the smart grid environment. Further, we have considered
the EV dataset to perform the energy consumption analysis
based on the various attributes such as CS location, day,
weekday, weekend, and users. Table 1 compares the EV
energy consumption prediction schemes with the proposed
energy consumption analysis framework.

A. STATISTICAL-ML FRAMEWORK
Statistics is the scientific discipline that enables us to gather,
examine, interpret, display, and arrange data. Statistical
inference stands as a fundamental pillar underlying various
technological advancements, especially in the field of ML.
Data serves as the basis for the multitude of captivating
emerging technologies around us. Utilizing statistical meth-
ods allows us to uncover meaningful patterns, relationships,
and insights from complex datasets, enhancing the efficiency

of any ML tasks [34]. Statistical ML case study enhances
the computational capability with statistical inferences and
modeling mechanism for any energy consumption and
distribution analysis. Our proposed approach focuses on inte-
grating Statistical Learning Theory (SLT) [35], which serves
as a fundamental framework for ML and draws inspiration
from the fields of statistics and functional analysis. In our
proposed energy consumption and distribution framework
analysis for EVs and CSs in a Smart Grid Environment,
we adopt a statistical approach to transform a conventional
smart grid into an intelligent one. Unlike conventional
machine learning techniques, our methodology is rooted in
SLT [36], [37]. Let X be the vector space of all possible inputs
and Y be the vector space of all possible outputs.

SLT [38] views the problem in the context of an unknown
probability distribution over the product space Z = X × Y ,
denoted as p(z) = p(xi, y). The training set D consists of
n samples from this distribution, where each sample zi =

(xi, yi). The goal is to find a function f : X → Y such that
f (x) ≈ y. Let S be the hypothesis space, representing the
space of functions the algorithm explores. The loss function
V (f (x), y) measures the difference between the predicted
value f (x) and the actual value y. The expected risk, denoted
as R(f ), is defined as the integral over X × Y of the loss
function weighted by the probability distribution:

R(f ) =

∫
X×Y

V (f (xi), y) p(xi, y) dx dy (1)

As the true probability distribution p(x, y) is unknown,
we rely on the training set for a proxy measure. The empirical
risk, denoted as R̂(f ), is the average loss over the training
samples:

R̂(f ) =
1
n

n∑
i=1

V (f (xi), yi) (2)

The empirical risk minimization process, where the
learning algorithm selects fs to minimize R̂(f ), underlines
our commitment to optimizing energy distribution. This
statistical analysis, grounded in SLT, forms the basis for our
case study involvingCharging Stations, Electric Vehicles, and
EV owners. It ensures the smart grid efficiently allocates
energy resources to CS based on diverse consumption
patterns, facilitating effective energy utilization by EVs.

fs = argmin
f ∈S

R̂(f ) (3)

III. THE PROPOSED FRAMEWORK
FIGURE 1 depicts the proposed framework encompasses of
a 3-layered architecture classified into Smart Grid Layer,
Energy Consumption Layer, and Distribution Layer. Thus,
smart grid can provide energy to the CS based on the analysis
performed considering the EV dataset so that EVs can be
charged efficiently.
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FIGURE 1. The proposed framework.

A. SMART GRID LAYER
The smart grid layer represents energy transmission and
distribution, which is the beginning point of the smart grid’s
energy distribution process. Power-producing facilities create
energy transferred through the smart grid as part of the
transmission system to various commercial and residential
locations such as offices, homes, hospitals, malls, etc. The
smart grid as a transmission system is responsible for
supplying electricity to numerous areas with the help of
various renewable sources such as nuclear power plants,
thermal plants, and solar energy, and it can fluctuate based on
various circumstances, including environmental conditions,
industrial activity, population density, and the number of
people using EVs. To prevent power outages and system
failures, the transmission system must also guarantee that
the energy is supplied at a constant voltage and frequency.
Therefore, it is crucial for energy providers to constantly
monitor and adjust their systems to meet the changing
demands of their customers and have a flexible and adaptable
infrastructure that can respond to changing demands in
the real-time. Thus, energy distribution through the smart
grid should be analysed considering various parameters so
that regulated energy can be provided to the CS to avail
efficient charging for EVs. The smart grid, enriched with
advanced features, employs a statistical-ML methodology to
revolutionize energy management. It incorporates predictive
energy consumption modeling, enabling precise forecasts for
EVs and CSs. Dynamic load balancing optimizes energy
distribution, minimizing wastage or shortages. Anomaly
detection and adaptive management ensure resilience by
responding to unexpected energy consumption patterns.
User behavior analysis tailors strategies based on individual
preferences. Grid optimization through data integration
harnesses diverse data for efficient operation. Real-time
decision support, informed by ML, aids grid operators in
suggesting optimal energy distribution strategies, considering

both current conditions and historical data patterns. This
comprehensive approach transforms the smart grid into
an adaptive, data-driven ecosystem for enhanced energy
efficiency.

B. ENERGY CONSUMPTION ANALYSIS LAYER
The energy consumption analysis layer is considered an
intermediary between the smart grid and the distribution
layer. The energy distribution and transmission performed
through the smart grid is analyzed with the help of the
EV dataset, which yields energy consumption patterns
considering various dataset attributes. We have closely
studied the dataset and its effecting parameters to determine
the association between attributes and analyze the Evs’
energy consumption pattern information that can be further
transferred to the distribution layer. We have considered
various dataset features, such as day, weekday, weekend,
location, and user. The analysis also considers the energy
usage of various CSs with different locations. The main
objective is to ensure that energy is distributed effectively
and efficiently per the energy requirement of EVs. This
data-driven approach helps optimize resource allocation and
ensure EVs can be charged efficiently and reliably, even
during peak demand periods. Then, the analyzed energy
consumption information based on the EVs dataset is
transferred to the distribution layer so that the smart grid can
provide energy to the CS reliably for EV charging. Moreover,
it can prevent energy wastage so that another CS can utilize
the energy from the smart grid due to the energy consumption
analysis based on the various parameters.

C. DISTRIBUTION LAYER
The distribution of energy to the CS is discussed in the final
distribution layer. The EV energy consumption information
analyzed in the aforementioned layer is transferred to the
CS so that adequate energy distribution can be accomplished
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without overloading the system and resulting in power short-
ages. The distribution of energy must also account energy
demand of various CSs, which can change based on the day,
weekday, weekend, and location. Thus, energy consumption
analysis helps to allocate the energy efficiently to the CS
based on their requirement, and it is also advantageous for CS
at another location. Thus, EVs arriving at the CS can charge
their vehicle reliably without overburdening the charging
infrastructure, and the smart grid can optimize the energy
distribution for another CS. Thus, the 3-layered architecture
of the proposed framework ensures the efficient and reliable
energy distribution of the smart grid to the CS by analyzing
Ev’s energy consumption pattern so that EVs can fulfil their
energy demand without delay. So in this manner, tradition to
smart grid transformation facilitates adaptive measures such
as the introduction of new charging stations, ensuring optimal
energy utilization. Notably, it addresses potential issues of
power waste or shortages at specific charging stations or
entire locations by leveraging the power of statistical-ML
strategies.

IV. DATASET DESCRIPTION
We have considered and analyzed the EV dataset, which
has 24 attributes and 3395 high resolution EV charging
sessions, to analyze energy consumption. The data [39]
comprises session records from 85 EV drivers who fre-
quented 105 charging stations distributed across 25 location
sites participating in a workplace charging program. These
workplace locations includes diverse facilities, including
research and innovation centers, manufacturing units, testing
facilities, and the office headquarters of a firm engaged in
the U.S. Department of Energy (DOE) workplace charging
challenge. Table 2 shows the name, count, and data type
of the attributes required for the dataset analysis. In order
to get valuable insights from the dataset, we have mainly
focused on determining the association or relation between
attributes, which helps in analyzing the dataset for EV energy
consumption acquired at the CS. Data about CSs, locations,
users, energy consumption, and cost are considered in the data
collection.

Before analyzing the dataset considering the energy
consumption of the EVs, we performed the data filtration
to handle the empty cells in the dataset and modified the
datatype to suit our analytical goals. The above-mentioned
data filtration is essential for ensuring the precision and
thoroughness of the considered dataset analysis. Moreover,
we have removed potential biases or inaccuracies from the
dataset by tackling the missing numbers and changing the
data type accordingly. As a result, we have focused on
deriving more insightful conclusions and making data-driven
decisions about the dataset considering the association
between attributes of the dataset. Thus, we can deeply
understand the patterns and trends possible between dataset
attributes in the aforementioned data collection step. In this
regard, Table 3 shows the updated values of the count and
datatype after filtering the dataset.

TABLE 2. Description of dataset.

TABLE 3. Updated count and datatypes.

TABLE 4. List of dropped attributes.

We have also dropped some of the attributes based on
their irrelevancy or changed datatypes to perform the analysis
of the dataset. TABLE 4 shows the dropped attributes (i.e.,
created, ended, weekday, and platform) considered for the
dataset.

Further, we have represented a succinct description of
all the attributes of the dataset, which contain numerical
values, categorical data, or textual information, as well as
any other pertinent attributes that describe the data points
and can be used to model the dataset for EVs energy
consumption analysis. To fully comprehend the association,
pattern, and trend between the data, it is imperative to get
insights into the properties of the attributes, which offer
a comprehensive perspective of the data in the dataset.
EV energy consumption analysis is performed considering
all the attributes of the dataset, which improves the overall
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interpretation and association of the data. Thus, we have
explained the attributes of the dataset to understand and
analyze it elaborately.

• SessionID: It is defined as a unique identification
number corresponding to the charging sessions. It can be
used to differentiate between several charging sessions
that occurred at the same station or by the same user. The
dataset contains 105 distinct session IDs.

• kWhTotal: The attribute represents the overall EVs
energy consumption (in kWh) during a particular
charging session. It represents the power the user’s
vehicle consumes during the charging session. This is
a crucial indicator for assessing the user’s power costs
and the effectiveness of CS energy efficiency.

• Dollars: The attribute displays the charging session’s
overall cost (in dollars). The cost per kilowatt-hour of
power and the total energy utilized are considered to
compute it. By examining this section, we may learn
more about the pricing policies of various charging
providers and the overall expense of EV ownership for
customers.

• Created: This attribute represents the date and time the
charging session was created. It can be used to track
when the user or EV driver initiated the charging session
for charging at the CS.

• Ended: This attribute represents the date and time the
charging session ended. It can be used to track how long
the user’s vehicle was charging at a particular CS.

• StartTime: This attribute represents the date and time
the user’s vehicle started charging. It is equivalent to the
created attribute.

• EndTime: This attribute represents the date and time
when the user’s vehicle stopped charging. It is equivalent
to the ended attribute.

• ChargeTimeHrs: Attribute ChargeTimeHrs in the
dataset indicates the time it takes for a charging session
to complete, measured in hours. It is determined by
calculating the difference between the start and end time
of the session. The duration of a charging session is
influenced by a number of factors, such as the cost of
electricity and any additional fees or taxes charged by the
CS or platform. This information is useful for analyzing
the pricing structures of different charging providers and
assessing the overall cost of owning an EV.

• Weekday: It represents the day of the week when the
charging session occurred (e.g., Monday, Tuesday, etc.).
It can be used to identify patterns in charging behaviour
across different days of the week.

• Platform: It indicates the charging platform or service
provider that can be used for the number of charging
sessions at the different CS. Further, it can be utilized
to track usage across other platforms or to compare the
performance of the different providers.

• Distance: The distance attribute represents the distance
(in miles) that the user’s vehicle travelled during the

charging session. It can be used to track how far users
are driving on a single charge.

• UserId: This attribute is a unique identifier for the user
who initiated the charging session. It can be used to track
usage patterns for individual users.

• StationId: This attribute represents a unique identifier
for the CS where the charging session occurred. It can
be used to track energy usage patterns for the CSs.

• LocationId: The attribute provides the location’s distinc-
tive identity corresponding to the CSs involved in the
various charging sessions. It is further utilized tomonitor
EV energy consumption trends across several locations
or regions. The dataset contains 24 distinct station IDs.

• ManagerVehicle: This attribute represents the type of
vehicle charging during the session. It can be used to
track EVs energy consumption patterns for different
types of vehicles.

• FacilityType: It defines the type of facility which EVs
can avail at the CS (e.g., parking garage, retail store,
etc.). It can be used to track energy usage patterns across
different types of locations.

• Day: The day attribute, i.e., Mon, Tues, Wed, Thurs,
Fri, Sat, and Sun, represents binary indicators (0 or 1)
for each day of the week. They can be used to identify
patterns in charging behaviour across different days of
the week.

• ReportedZip: This attribute represents the zip code of the
location where the charging station is located. It can be
used to track usage patterns across different geographic
areas.

Researchers can get insights into the EV energy consumption
pattern at the CS with the help of detailed dataset analysis,
which can also help them to design an infrastructure
to fulfil Evs’ energy demand. The dollar and kWhTotal
attributes are closely related since the cost of the charging
session depends on how much energy the EV consumes for
charging. Then, the attributes created, terminated, startTime,
and endTime offer timestamps for various charging session
occurrences. The startTime and endTime are used to create the
chargeTimeHrs attribute, which shows how long the charging
session lasted. The day on which the user utilizes the CS for
energy fulfilment is shown by the weekday. The reportedZip
offers further details on the location of the CS, and attribute,
i.e., Mon-Sun highlights the binary representation of the
day of the week on which the session occurred. Further,
other attributes such as distance, user ID, Station ID, and
Location ID pertain to the CS and the user who started
the charging session. In contrast, the platform indicates the
charging platform that was utilized for the session. The
managerVehicle and facilityType includes details associated
with the type of EV arriving for the charging and the type of
facility drivers can avail from it.

Now, after getting insights into the attributes and their
association with each other by considering the EVs dataset
for analyzing the energy consumption based on the various
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TABLE 5. Labeling of weekdays along with how many times they
occurred.

TABLE 6. Average consumption for Station ID 369001.

attributes of the dataset. Further, we need to discuss other
aspects of the dataset’s attributes, such as weekday count
and average energy consumption considering Station ID
and Location ID. Table 5 shows the weekday occurrence
indicated by its label in the dataset, and it describes how
frequently each day of the week appears in the dataset for
the charging sessions. The term label’’ refers to the name
of the day of the week for each record in a dataset that
includes day information, i.e., Monday, Tuesday,Wednesday,
Thursday, Friday, Saturday, or Sunday. The rationale behind
this unordered labeling stems from the nature of energy con-
sumption patterns observed in various real-world scenarios.
In many contexts, energy usage exhibits distinct patterns
during weekdays, with variations on Fridays and Mondays
often being more prominent. This choice has enabled us to
highlight nuances and trends that might have been obscured
with a more conventional labeling approach.

Next, Table 6 displays the average energy consumption
per CS for a week, represented in kWh. In the following
instances, 0 denotes Friday, 1 signifies Monday, 2 signifies
Saturday, 3 signifies Sunday, 4 signifies Thursday, 5 signifies
Tuesday, and 6 signifies Wednesday. Further, we have
used Station ID 369001 as an example to highlight the
average EVs energy consumption in Table 6. On average,
the considered CS corresponding to the particular Station
ID utilized 5.6157 kWh of energy on Friday, 5.6131 kWh
on Monday, etc. Overall, the above-mentioned information
indicates that the CS uses energy differently throughout the
week, with higher usage during the weekdays and reduced
usage during the weekends.

Then, we analyzed the average energy consumption corre-
sponding to the Location ID based on the weekday. Table 7
shows the average EVs energy usage determined for Location
ID 493904 considering the weekdays, i.e., 5.098132 kWh
on Friday, 5.499186 kWh on Monday, 4.999318 kWh on

TABLE 7. Average consumption for Location ID 493904.

TABLE 8. Total average consumption based on weekday.

Saturday, 4.269231 kWh on Sunday, 5.718817 kWh on
Thursday, 5.325521 kWh on Tuesday, and 5.449802 kWh
on Wednesday. According to the statistics, for this specific
location identified using Location ID, power usage is greater
on Thursday andMonday and lower on Sunday and Saturday,
as shown in Table 8.

Table 9 represents the larger portion of the aforementioned
table (which shows average energy consumption for Station
ID and Location ID) that details the number of the distinct
station IDs present at each location and the requirement of
the average energy expressed in kWh by each Station ID
based on the day of the week. Moreover, Table 9 also shows
the number of stations along with their Station ID within the
particular location, which is represented by the Location ID.
The information about the number of CSs within a specific
location. Now, after discussing the dataset’s attributes and
their association. Next, we can discuss the analysis of the
considered dataset considering the attributes based on the
Location ID, Station ID, and user ID.

V. DATASET ANALYSIS
The detailed analysis of the considered EV represents a
significant contribution to the field, as it unveils intricate
patterns in energy consumption. It covers various attributes,
such as CS identified by Station ID, Location ID, weekday
and weekend designations, and User ID. This comprehensive
approach allows us to discern nuanced energy consumption
patterns, providing valuable insights for the smart grid’s effi-
cient energy distribution to/from CS. Our findings contribute
to the field in three key dimensions: Location ID, Station
ID, and User ID. By categorizing the energy consumption
analysis into these sections, we present a multifaceted
exploration that goes beyond traditional analyses. This
categorization enables a more targeted and strategic approach
to energy distribution, fostering a deeper understanding of
how different factors influence and interact within the broader
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TABLE 9. Location - station relation.

FIGURE 2. Number of sessions by Location ID.

smart grid framework. Thus, our proposed work not only
contributes valuable empirical data using statistical ML
framework but also introduces a novel analytical framework
that can inform future research and advancements in the field
of smart grid energy management.

A. ENERGY CONSUMPTION ANALYSIS BASED ON
LOCATION ID
In this section, we have performed the EVs energy con-
sumption analysis considering the Location ID attribute.
There are a number of CSs represented by the Station ID
within a CS location denoted by Location ID. FIGURE 2
visualizes the summary of the number of charging sessions
initiated by the user and utilized by the CS at that specific
Location ID. Further, the graph displays the charging sessions
broken down by Location ID. It can be observed from the
figure that 524 charging sessions have been recorded for
Location ID 493904, which seems to be the highest number
of sessions from which EVs are utilizing energy based on
the CS location. With 401 sessions, Location ID 976902 has

the second-highest number of sessions, while Location ID
10085 has the lowest number of sessions at 1. The recorded
and analyzed charging sessions for Location ID indicates the
EVs energy demand for each CS location.

1) STATISTICS OF EACH LOCATION ID
In this section, we have provided details about the total
and average EVs energy consumption for every CS location
(denoted by Location ID) as mentioned in the dataset.
FIGURE 3a illustrates the analysis of the total energy
consumption (in kWh) pattern for each of the Location
ID. It can be perceived from the graph that the CS
location with the highest energy usage is Location ID
493904 at which EV’s energy fulfillment results into energy
utilization of 2805.85999 kWh. On other hand, Location ID
310085 reflects lowest energy usage by the EVs based on the
analysis performed on the dataset.

FIGURE 3b shows the location’s average kWh analysis
of EVs energy consumption corresponding to the various
Location IDs at which various CSs are located within
that particular region. Location ID 878393 reflects the
highest energy utilization by the EVs, i.e., approximately
15.6905 kWh, while Location ID 572514 shows the lowest
energy consumption of 2.6719 kWh, which represents that
EVs are not opting for the particular location more often to
fulfil their energy demand. Thus, energy usage corresponding
to the specific Location ID helps to get insights into the
requirement of the energy distribution based on the user’s
energy demand and considering cost parameters to make the
charging energy efficient.

2) TOTAL AND AVERAGE ENERGY CONSUMPTION BY
LOCATION ID BASED ON WEEKDAY
This section analyzes the overall weekly energy consumption
(in kWh) for a specific Location ID. In this context, FIGURE
4a and FIGURE 4b show the visualization of total energy
consumption for all the Location IDs based on the weekday.
For that, we have considered two types of visualizations, i.e.,
heatmap and stacked chart. FIGURE 4a depicts the energy
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FIGURE 3. Total and average energy consumption analysis based on Location ID.

FIGURE 4. Total energy consumption for Location ID based on the weekday.

consumption analysis in kWh in the form of a heatmap
based on the days of the week. With the help of a heatmap,
it seems easy to determine which location users may find
busiest due to the high energy demand on the working days.
Further, another visualization chart, i.e., FIGURE 4b, shows
the stacked chart that displays the total energy usage of the
particular location (with multiple CSs) denoted by Location
ID for the weekdays. After examining the graph, we have
identified that Thursday(denoted by label 4) has the highest
energy consumption, and Sunday(denoted by label 3) has the
lowest energy consumption.

We have conducted an analysis of the average daily kWh
consumption for each location and present our findings with
the two visualization charts, i.e., FIGURE 5a and FIGURE

5b. Foremost, we can focus on FIGURE 5b, which depicts
the detailed breakdown of the typical daily average kWh
usage for each location by day of the week. The x-axis
shows the weekdays, from Monday through Sunday, and the
y-axis shows the mean daily kWh consumption. This number
enables us to spot any patterns or outliers in each location’s
daily energy consumption patterns. For instance, we might
see that some places use more energy throughout the week
than they do on the weekends, while other places display
a more regular energy usage pattern. We pay particular
attention to location 747048 in FIGURE 5a. The graph
shows the typical daily kWh usage for the aforementioned
location based on the weekday. The big departure from
the mean line indicates a significant difference in energy
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FIGURE 5. Average energy consumption analysis for Location ID based on the weekday.

FIGURE 6. Total kWh consumption by time of day for each location.

FIGURE 7. Station ID occurrence and total energy consumption analysis based on the Station ID.

use between Saturday (2) and Sunday (3) than the other
weekdays. Most weekdays have the same average energy
consumption, ranging from 5.5 to 6 kWh. This finding hints

that some operational processes use more energy on week-
ends, or it might be a chance to optimize energy usage over
the weekend.
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FIGURE 8. Total and average energy consumption analysis based on the Station ID.

FIGURE 9. Energy utilized at each CS on weekday for Station ID.

Overall, FIGURE 5a and 5b provide useful insights into the
daily average energy usage patterns of each location, which
can be used to design customized and successful energy
management plans. Industries may optimize their energy
usage and reduce costs while reducing their environmental
footprint by analyzing consumer trends and abnormalities at
each site.

3) AVERAGE OF TOTAL ENERGY CONSUMPTION ANALYSIS
BY LOCATION ID BASED ON WEEKDAY
FIGURE 6a depicts the total daily kWh consumption for
all locations considering the weekdays. Analyzing the total
energy consumption data at each location provides the
average kWh consumption statistic for each day of the week.
The graph’s bar chart displays the number of days of the week
on the x-axis and the total number of kWh consumed on the
y-axis. The height of each bar represents the total daily kWh
use for that weekday across all locations.

Figure 6 shows the proportion of the total kWh used
for each location on every day of the week, from Monday
to Sunday. As we analyze the stack bar graph, we have
determined that the specific location, 493904, has the

highest total consumption over each day of the week,
and locations 310085, 454147, 572514, and 700367 have
significantly lower total energy consumption. This graph
can give us insight into how we have to distribute the
energy to each location based on their previous weekday-wise
analysis. By identifying the location with the highest energy
consumption, we can allocate more resources to meet their
needs and ensure they do not experience any power outages.
Additionally, we can investigate why the other locations
have lower energy consumption and see if there are any
opportunities to optimize their energy usage.

In the next section, we can observe the Station IDs,
which are quite important in our data collection and analysis
performed for the energy consumption. Understanding the
relevance of Station IDs can be incredibly beneficial when
working with large amounts of data.

B. ENERGY CONSUMPTION ANALYSIS BASED ON
STATION ID
In this section, we have observed the frequency of occurrence
of each of the 105 Station IDs as shown in Figure 7a, which
gives us useful information about themost commonly utilized
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and power-consuming CSs according to the considered
dataset. This knowledge can be used to predict and analyze
data sets. For example, identifying stations with fewer
occurrences allows us to remove them from the dataset,
making it more manageable and focused. To make the data
more understandable, the Station IDs are sorted by frequency
of occurrence, and the resulting graph is displayed. The
x-axis shows the Station IDs, while the y-axis indicates
the frequency of occurrence. This sorting enables us to
discover the most commonly occurring Station IDs rapidly.
By analyzing the frequency of station IDs, we can identify the
most power-consuming stations and investigate the reasons
behind their high energy consumption.

1) STATISTICS OF EACH STATION ID
This section highlights how each CS behaves for their total
and average energy consumption for charging the EVs.
FIGURE 7b shows the total energy consumption by each
station which is represented in kWh. We have focused on
determining which CS consumes more energy than others,
and it is clear that a station’s frequency affects how much
energy is utilized overall. The station’s overall energy usage
rises when its frequency increases. It gave us an estimate of
how much energy we had overall supplied to a particular
station over the analysis period. FIGURE 8a displays an
assortment of the EV CS’s average kWh (kilowatt hours)
usage for the Station IDs. The x-axis shows the unique
identity of each charging station, while the y-axis shows the
usual kWh utilized by each station. On the scatter plot, a dot
represents each station, and the dot colour is a random value
used to distinguish across stations. A green bar in the graph
shows each station’s typical kWh. The red line, which also
shows the normal pattern of kWh consumption across all
stations, indicates the trend of the data points. Average energy
consumption is calculated by dividing the total consumption
by the total number of instances in the dataset.

FIGURE 8b visualizes the daily average kWh consumption
frequency distribution for all stations. The daily average kWh
consumption is shown on the x-axis, and the frequency of that
consumption level is shown on the y-axis. The width of each
of the 30 bins in the histogram, which has 30 of them, is 0.4.Â
The graph shows how the daily average kWh consumption
for each station in the data set is distributed overall.
Here, the minimum energy consumption is approximately
2 and is provided by four stations, while the maximum
consumption is around 15 and is provided by just one
station. Almost all stations need an average usage of between
3 and 8 kWh.

2) STATISTICS REGARDING PARTICULAR STATION IDS
In this subsection, we have focused on the expanded version
of section I, which discusses the overall station IDs’ average
and total energy consumption with the help of dataset
analysis. In contrast, we have covered particular Station
IDs characteristics in this section. FIGURE 9a depicts the
total energy consumption (in kWh) analysis performed for

Station ID 582873 based on the weekdays. CS corresponding
to Station ID 582873 reflects energy usage of 4.745 kWh
on Monday, 7.780 kWh on Tuesday, and 3.598 kWh on
Wednesday, among other days. FIGURE 9b shows the
summary of the number of kWh utilized at each charging
station on each day of the week. The box plots make it
easy to compare the mean and range of the consumption
distribution for each charging station by day of the week.
FIGURE 9b demonstrates how the distribution of kWh usage
at each charging station changes dramatically depending on
the day of the week. The box plots show that although
certain stations’ weekly consumption patterns are quite
stable, those of other stations are more variable. In order to
assure optimal energy utilization, outlier identification and
control measures are required. Outliers are obvious in the
box plot.

Each day of the week’s average consumption is shown
by the bar at station 955429 in FIGURE 10a. The average
daily consumption of Station ID 955429 is 5.2632 kWh
on Monday, 5.1562 kWh on Tuesday, 5.0945 kWh on
Wednesday, 5.2248 kWh on Thursday, 4.2303 kWh on
Friday, 4.9677 kWh on Saturday, and 3.3737 kWh on Sunday.
The energy consumption on Monday(1) is higher than on
any other day of the week; on Sunday(3), it is significantly
lower. 10b shows the visualization of average kWh usage for
each day of the week in the form of pie charts for each CS
with Station ID 369001. The data shows that certain CSs use
the most energy on weekdays, while others use the most on
weekends.

3) AVERAGE AND TOTAL ENERGY CONSUMPTION BASED
ON WEEKDAY FOR STATION ID
This section is an extended version of subsection II,
which discusses the total and average consumption for a
particular station. We calculated the total energy consumed
by stations on certain weekdays by adding the average energy
consumption of each station.

FIGURE 10c depicts the overall kWh usage considering
the weekday. This statistic is the result of processing data
from all stations, and it represents the average kWh usage
for each day of the week. The graph is a bar chart with the
y-axis indicating total kWh usage and the x-axis displaying
the days of the week. The bars are black-bordered and
purple in tone. Each bar’s height shows the total kWh
usage for that weekday across all sites. This graph depicts
the overall energy consumption trends for each day of the
week across all stations. We crosschecked the graph using
Location ID information from FIGURE 6b and Table 9 to
corroborate further the insights provided by FIGURE 10c.
We discovered that all stations utilized a total of 452.99 kWh
on Monday, 534.032 kWh on Tuesday, 530.387 kWh on
Wednesday, 521.662 kWh on Thursday, 489.073 kWh on
Friday, 49.94 kWh on Saturday, and 45.702 kWh on
Sunday, according to the data shown in Figure 6b and
TABLE 9. These results are consistent with the overall trends
shown in 10c.
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FIGURE 10. Average and Total energy consumption analysis based on the weekday considering Station ID and all stations.

FIGURE 11. Percentage of total energy consumption analysis of top 15 Station IDs for a particular day.

4) PERCENTAGE-BASED ENERGY CONSUMPTION FOR
STATION IDS
Here, the top 15 out of 105 station IDs are discussed
according to the percentage of total and average energy
consumption while analyzing the dataset. FIGURE 11a
indicates the top 15 stations’ percentage of overall energy
usage on Monday as a horizontal bar. The dataset’s largest
proportion of total consumption is represented by Station
ID 369001 and is around 8.9 %. The percentage of overall
consumption decreases somewhat as we move up the
horizontal bar. Because Monday is regarded as a weekday,
there is significantly more consumption than Sunday and
Saturday. The top 15 stations’ percentage of overall energy
usage on Friday is shown in Figure 11b as a horizontal
bar. The dataset’s largest proportion of total consumption is
represented by Station ID 369001 and is around 8.1 %. As we

can see, aside from the top three stations, every station shifts
its place as the day changes.

FIGURE 12a and FIGURE 12b displays the average
weekly percentage of kWh consumed for the top 12 stations
along with their Station IDs for a particular day. The data
has been normalized to percentages after being sorted by
weekday and Station ID. The horizontal bar graphs show the
percentage of the average kWh usage for each station. The
stations are listed in descending order, with the top station
at the top of the chart. The graph can reveal which stations
use the most energy each day of the week, which may assist
in pinpointing regions in need of energy-saving measures.
Because average consumption is equal to total consumption
divided by the frequency of that particular Station ID, we can
see a significant variation in Station IDs. It is also practical
that consumption at a specific Station ID is higher in just
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FIGURE 12. Top 15 stations by the percentage of average kWh consumption for a particular day.

FIGURE 13. Users ID frequency and total energy consumption for each User ID.

one day and that Station ID does not occur elsewhere, which
would give us a high average consumption by that Station ID.

C. ENERGY CONSUMPTION ANALYSIS BASED ON USER ID
This section discusses the energy consumption pattern by
considering the aspect of users. The energy consumption
analysis based on User ID information helps identify
which stations and locations consume the most energy by
considering their users’ behaviour.

1) STATISTICS OF EACH USER ID
FIGURE 13a shows how frequently each of the 84 UserID
sessions occurred, giving us a visual representation of which
User IDs utilize the most power and are used the most often.
FIGURE 13a on the x-axis represents 84 distinct UserIDs,

and the y-axis shows the frequency with which that session
occurred. This will help us determine which UserID is using
the energy from the system most. Users with an incidence of
less than 10 can be removed for the sake of data set analysis.

2) TOTAL AND AVERAGE ENERGY CONSUMPTION BY USER
ID BASED ON WEEKDAY
The average and overall energy use by users is briefly
summarized in this section.

FIGURE 13b is a scatter plot with each point denoting the
total consumption data for each UserID. A bar graph and
a line graph are also layered on top of the scatter plot in
addition to it. Each vertical bar in the bar graph is centered
on the associated UserID and displays the identical total
consumption figures for each UserID. The bars are green
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FIGURE 14. Average energy consumption analysis for User IDs.

FIGURE 15. Average Energy consumption of a specific UserID on weekday.

in color. The scatter plot’s continuous line joining the data
points displays the same total consumption figures as the line
graph. Overall, utilizing a combination of scatter, line, and
bar, the graph seems to adequately convey the overall total
consumption (Kwh) data for each UserID.

Based on the user IDs, FIGURE 14a displays the average
energy usage of various users. User IDs are shown on the
x-axis, while average energy use is shown on the y-axis.
There are three different plot kinds in the graph: scatter plots,
bar charts, and line graphs. The average energy consumption
of each user is shown by a bar, with the height of the bar
corresponding to the average energy consumption amount.
Overall, this graph gives a visual depiction of how much
energy is used on average by various users. The daily average
kWh consumption frequency distribution for all users are
displayed in figure 14b, there in total 84 userIDs. The
daily average kWh consumption is shown on the x-axis,
and the frequency of that consumption level is shown on

the y-axis. The histogram is with width 0.4 and bin size
of 30 for visual presentation. The graph shows how the
daily average kWh consumption for each user in the data
set is distributed overall. Here, as can be seen, the minimum
average energy consumption is approximately between 0 to
1 and is provided by 1 user, while the maximum average
consumption is approximately 15 and is provided by just
1 user. Almost all stations need an average usage of between
4 and 7 kWh. These findings suggest that there is a significant
variation in energy consumption among users and that most
stations require a moderate amount of energy to operate
efficiently.

3) STATISTICS REGARDING PARTICULAR USER IDS
This section represents the average energy usage as a
percentage for a certain User ID. Here, two user IDs have
been considered for visual presentation out of all users.
In Figure 15a, we have focused on User ID 81375624 into
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account and given a graphical analysis of that specific user
based on which day of the week they consume a percentage
of how much electricity over a week. By finding patterns in
the user’s energy consumption behaviour, this analysis may
help the user optimize their energy consumption. Comparing
this user’s consumption to others in the same region or
demographic might be done through further analysis. The
average daily kWh usage for user 98345808 is displayed on
treemap charts in Figure 15b. The information shows that
this specific user consumes the most energy on weekdays.
On Friday, the highest day in the chart, the user used 16.1%
of the total average energy.

VI. CONCLUSION AND FUTURE SCOPE
In this paper, we presented an extensive energy consumption
and distribution analysis framework for EVs with the help
of a smart grid environment. Furthermore, we focused on
smart grid-based distribution framework which transfers
the energy to the CS reliably and efficiently based on
the analyzed EVs energy consumption pattern. For that,
we have considered an EV dataset to analyze the energy
consumption pattern based on the various attributes such
as weekday, weekend, and CS within the location (Station
ID, Location ID) and user (User ID). Moreover, we have
focused on getting insights into the association between
attributes and deeply performing the energy consumption
analysis based on the various parameters. The deep analysis
of the energy consumption helps the smart grid to optimize
its energy to the CS efficiently and reliably. It contain
various real-world implementation in industrial and electric
automotive domain. It offers practical insights into optimiz-
ing energy distribution within smart grids. Findings from
CS and location based insights has practical implications
for EV charging station planning. Stakeholders involved in
the establishment and expansion of charging infrastructure
can use our insights to strategically position CS based on
anticipated energy demand patterns. Our research contributes
to the formulation of informed government policies related to
smart grid development and sustainable energy usage. The
identification of energy consumption patterns at both the
location and station levels provides a basis for predictive
maintenance strategies. This has practical implications for
enhancing the reliability of EV charging infrastructure,
reducing downtime, and ensuring a seamless experience
for users.

In the future, we will explore deep learning and reinforce-
ment learning techniques to optimize the energy consumption
for EVs arriving at the CS. Also, explore the development
of dynamic pricing models that take into account real-time
demand, energy availability, and grid conditions. Extend the
optimization framework to cater to fleets of EVs, such as
those used in ride-sharing services or commercial operations.
Investigate cybersecurity measures to ensure the resilience
and security of the smart grid infrastructure. Investigate the
feasibility and benefits of decentralized energy management
systems. It will encourage collaboration between researchers,

industry stakeholders, and policymakers to address inter-
disciplinary challenges in the adoption of smart grid
technologies.
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