
Received 15 January 2024, accepted 7 February 2024, date of publication 9 February 2024, date of current version 16 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3365053

AC-Side Impedance-Based Stability Assessment
in Grid-Forming Modular Multilevel Converters
MEHRDAD NAHALPARVARI , (Graduate Student Member, IEEE),
MOHSEN ASOODAR , (Graduate Student Member, IEEE),
STAFFAN NORRGA , (Member, IEEE), AND HANS-PETER NEE , (Fellow, IEEE)
School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden

Corresponding author: Mehrdad Nahalparvari (mnah@kth.se)

This work was supported in part by Energimyndigheten (the Swedish Energy Agency), in part by Svenska kraftnät (SvK), and in part by
Réseau de Transport d’Électricité (RTE) France.

ABSTRACT Grid-forming converters can emulate the behavior of a synchronous generator through
frequency droop control. The stability of grid-forming modular multilevel converters can be studied via
the impedance-based stability criterion. This paper presents an ac-side impedance model of a grid-forming
modular multilevel converter which includes a complete grid-forming control structure. The impact of
different control schemes and parameters on the closed-loop output impedance of the converter is thoroughly
analyzed and the learnings have been used in mitigating undesired control interactions with the grid.
The results are verified through simulations in time- and frequency-domains along with experiments on
a down-scaled laboratory prototype.

INDEX TERMS Control interaction, frequency-domain analysis, grid-forming control, harmonic
linearization, impedance modeling, modular multilevel converter (MMC), stability.

I. INTRODUCTION
Voltage source converter (VSC)-based high voltage direct
current (HVDC) transmission systems enable large-scale
integration of renewable energy sources and efficient transfer
of bulk power over long distances [1], [2]. The modular mul-
tilevel converter (MMC) is the preferred topology in HVDC
transmission systems due to its modularity, scalability, and
low distortions [3].

VSCs are conventionally controlled as current sources and
in a grid-following manner where the synchronization is
realized by a phase-locked loop (PLL). This makes them
prone to stability issues, especially in weak grid conditions
due to the inadequacy of PLLs in tracking disturbed voltage
angles [4]. Considering a shift toward a cleaner energy
matrix, the grid stiffness may substantially decrease in the
future as synchronous generators are replaced by inverter-
based resources. Grid-forming control schemes primarily
control the ac-side voltage and operate the converter as a
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voltage source. By using a power-frequency droop function,
they also emulate the behavior of a synchronous generator
and add virtual inertia to the power system, essentially
enabling operation in weak grid conditions [5], [6].

VSC-based HVDC transmission systems are prone to
system instabilities that need to be predicted, analyzed,
and mitigated [7], [8], [9], [10]. The stability of power
electronics-based systems, including VSC-HVDC systems,
can be evaluated using several methods such as passivity-
based analysis, eigenvalue-based analysis, the net-damping
criterion, and the impedance-based stability criterion [11].
In the latter, the grid-connected converter system can be
partitioned into a source and load subsystem where the
converter is modeled as an impedance behind a voltage
source (Thévenin equivalent) or an admittance in parallel
to a current source (Norton equivalent). The small-signal
stability of the system is then assessed via the ratio of
the source and load impedance, known as the minor-loop
gain. Accurate stability assessment requires either precise
measurement of the converter’s impedance at its terminals
or a well-constructed model of the same. Nonetheless, owing

23514

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-1136-581X
https://orcid.org/0000-0001-5919-2308
https://orcid.org/0000-0002-8565-4753
https://orcid.org/0000-0002-1755-1365
https://orcid.org/0000-0002-5358-1705


M. Nahalparvari et al.: AC-Side Impedance-Based Stability Assessment in Grid-Forming MCCs

to the nonlinearities introduced by the converter dynamics,
impedance modeling of MMCs is challenging and intricate.

Research on impedance modeling of grid-following VSC-
basedHVDC systems andMMCs is abundant [12], [13], [14],
[15], [16], [17], [18], [19], [20]. Several new studies ana-
lyze converter-driven stability with regards to grid-forming
converters. For instance, stability assessment of grid-forming
control applied to a two-level VSC is studied in [21].
An ac-side impedance model in the αβ-domain is developed,
based on which a subsynchronous control interaction with
a strong grid is identified. The study includes experimental
time-domain verification of the control interaction. However,
it lacks experimental frequency-domain verification of the
developed impedance model. Later in [22], the authors
complement the prior study by a control decomposition
methodology based on tuning of the controllers to improve
the stability margin. It has been shown both in [21] and [23]
that the root cause of impedance interaction and instability
is the non-passivity of the converter around the fundamental
frequency introduced by the resonant/integral action of the
voltage control loop.

A few studies have also analyzed the impact of
grid-forming control on the closed-loop output impedance of
MMCs. For instance, Reference [24] has presented an ac-side
impedance model of a voltage-controlled MMC regulated
via single-loop and dual-loop structures. Nevertheless, the
power droop functions emulating a synchronous machine
have been neglected. Moreover, the regulators have been
limited to proportional-resonant types used in the abc or αβ

stationary reference frame. Reference [25] has analyzed the
stability of a voltage-controlled MMC connected to a wind
farm. The droop functions and dual-loop voltage control are
however not included. The authors of [26] have analyzed the
ac- and dc-side impedances of an MMC with grid-forming
control. In this study, the inner-loop voltage and current
control loops have been ignored and the analysis has been
limited to outer-loop droop functions. Harmonic instabilities
have been identified and virtual impedances have been
proposed to damp the unstable oscillations. Reference [27]
has conducted an impedance based small-signal stability
analysis for MMCs with power synchronization control
and proposed a virtual impedance loop on the computed
insertion indices that handles the negative resistance below
the fundamental frequency. In [25], [26], and [27], the cause
of instability has also been determined as the non-passivity
of the converter in sub-synchronous frequencies, similar to
that present in generic two-level converters. High frequency
unstable oscillations may also happen in grid-formingMMCs
connected to wind farms [28]. As described above, the
investigation into the influence of grid-forming control on
the small-signal stability of VSCs represents an ongoing area
of research. None of the studies introduced above, however,
have included an experimental verification of the developed
impedance models, time-domain verification of instability
scenarios, and the workings of their proposed stabilizing
loops.

This paper presents an accurate impedance model of a
grid-forming MMC which takes into account the entire
grid-forming control structure not excluding the inner voltage
and current control loops, or the outer droop functions.
The effect of using both single-loop voltage control and
dual-loop voltage control on the ac-side impedance of the
converter has been investigated and the small-signal stability
of the system is analyzed. It has been shown that instabilities
can occur under certain control and system parameters due
to the interaction of the grid impedance and the negative
resistance behavior of the converter’s output impedance that
is introduced by the voltage control loop. The instability and
the frequency of the unstable oscillations can be predicted by
impedance analysis.

Compared to the state-of-the-art in the literature, the
contributions of this work are the proposal of three novel
instability mitigation strategies based on 1) cross-coupled
virtual resistance on ac-side currents, 2) low-pass filters
on the ac-side currents, and 3) lead compensators on
the PCC voltage that improve the stability margin of the
system. Moreover, not only the developed frequency-domain
impedance models are verified on a down-scaled laboratory
prototype, but also the prediction of the instability and the
efficacy of the mitigation strategies have been verified on
power electronics hardware.

The paper is organized as follows: Section II describes
the converter dynamics and discusses the considered control
solutions for grid-forming MMCs. Section III describes the
derivation procedure of the ac-side impedance for all control
solutions. Section IV presents and discusses the results of the
study, analyzes the effect of different control schemes and
parameters on converter’s impedance, assesses small-signal
system stability, and proposes methods to improve stability
margin. Finally, Section V draws conclusions based on the
results.

II. SYSTEM MODEL
The MMC for ac/dc conversion comprises three phase-legs
with two arms within each leg. The converter arms consist
of a number of cascaded submodules (SMs) and an arm
inductor designed to reduce the harmonic distortion in arm
currents and prevent high transient currents. Fig. 1 shows the
single-line diagram of a grid-connected MMC in which L
and Lg denote the arm and grid inductances, respectively, and
R and Rg denote the arm and grid resistances, respectively.
A phase-domain impedance model is derived based on
dynamics of the converter and the considered control scheme.
For the sake of brevity, throughout the text, a per-phase
modeling approach is taken where the subscript indicating
specific phases is dropped.

A. CONVERTER DYNAMICS
A dynamic model of the MMC is adopted in which the
switching operations are neglected and balanced submodule
capacitor voltages are assumed within an arm [29]. The
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FIGURE 1. Single-line diagram of a modular multilevel converter (MMC).
A half-bridge submodule configuration is shown as an example.

dynamics governing the MMC can then be obtained as

L
diu
dt

= −Riu + vdu − vu − e , (1)

L
dil
dt

= −Ril + vdl − vl + e , (2)

vu,l = nu,lv6Cu,l , (3)

v6Cu,l =
N
CSM

∫
nu,l iu,l dt + v6C0 , (4)

where iu (il) is the upper (lower) arm current, vdu (vdl) is
the upper (lower) dc-side voltage, and e is the voltage of the
point of common coupling (PCC). Arm voltages are denoted
by vu,l , and v6Cu,l are the sum-capacitor voltages. CSM is
the submodule capacitance, N is the number of submodules
and v6C0 is the initial sum capacitor voltage. Moreover, the
(upper and lower arm) insertion indices, indicated by nu,l , are
the outputs of the control system computed in a closed-loop
fashion.

B. CONVERTER CONTROL
VSC control is often implemented in a cascaded manner,
with outer control loops setting the reference for the inner
loops [1]. The grid-forming control scheme for MMCs
is shown in Fig. 2. In grid-forming control, the primary
control objectives are controlling the converter output voltage
while transferring active and reactive power. The powers
are controlled via droop functions which set the reference
for the faster inner-loop voltage control. Voltage control can
be realized either with a single-loop, or can also nest a
current control loop whose primary objective is to control

transient currents, referred to commonly in the literature as
dual-loop control [23]. The outputs of the control system
is then modulated (by e.g., phase-shifted carrier pulse-
width modulation) to generate the switching commands
which are applied to the submodules of the converter.
In addition, a circulating current control loop, suppresses
the second-order harmonic currents that appear in the arm
currents.

Assuming vdu = vdl = vdc/2, adding and subtracting
upper/lower arm current equations yields

L
2
dis
dt

+
R
2
is = vs−e with vs =

−vu + vl
2

(5a)

L
dic
dt

+ Ric =
vdc
2

− vc with vc =
vu + vl

2
, (5b)

where vs is the voltage driving the ac-side current is and vc is
the voltage driving the circulating current ic.

The reference voltages v⋆s and v
⋆
c can be used to compute

the insertion indices of the arms. Assuming a direct voltage
control scheme (also known as direct modulation), we define

nu =
v⋆c − v⋆s
vdc

and nl =
v⋆c + v⋆s
vdc

, (6)

which provides an asymptotically stable system [30].
Ideal insertion indices can also be considered where the

arm reference voltages are normalized by the measured sum
capacitor voltages. Referred to as closed-loop voltage control
(or compensated modulation), the insertion indices in this
case can then be calculated by

nu =
v⋆c − v⋆s
v6Cu

and nl =
v⋆c + v⋆s
v6Cl

. (7)

With closed-loop voltage control, the internal dynamics
of the MMC are only marginally stable and arm-balancing
control is required to stabilize the system [31]. In this work,
a direct voltage control scheme is considered. This choice
is motivated by the fact that the studied stability problem is
related to the non-passivity of the converter introduced by the
control structure shown in Fig. 2, which is present irrespective
of the choice of the modulation scheme.

In a three-phase system, the powers are calculated in the
dq-frame as

P =
3
2
(ed isd + eqisq) (8)

Q =
3
2
(eqisd − ed isq) , (9)

where edq is the PCC voltage in the synchronous (dq)
reference frame and is,dq is the output current in the dq-frame.

III. AC-SIDE IMPEDANCE CALCULATION
To calculate the ac-side impedance, a fixed-frequency
perturbation is superimposed on the terminal voltage or
current. Then, the response of converter and control variables
is calculated for the applied perturbation under frequency
sweeps of the perturbation source [32].

23516 VOLUME 12, 2024



M. Nahalparvari et al.: AC-Side Impedance-Based Stability Assessment in Grid-Forming MCCs

FIGURE 2. Droop-controlled dual-loop grid-forming control structure for an MMC.

In this work, a three-phase balanced small-signal perturba-
tion voltage is superimposed on the grid voltage, i.e.,
vga = vg,1 cos(ω1t + φ1) + vp cos(ωpt + φp)

vgb = vg,1 cos(ω1t −
2π
3

+ φ1) + vp cos(ωpt −
2π
3

+ φp)

vgc = vg,1 cos(ω1t +
2π
3

+ φ1) + vp cos(ωpt +
2π
3

+ φp) ,

(10)

such that |Vg(jωp)| ≪ |Vg(jω1)|, i.e., the perturbation is
small-signal. In (10), Vg denotes the Fourier coefficient
of vg, ωp is the angular perturbation frequency, ω1 is the
fundamental frequency, and φ1 is the initial phase angle of
the grid voltage. φp is the initial angle of the perturbation
signal.

The harmonic responses of the converter and the control
variables to the perturbation are calculated in the frequency-
domain. Multiplication of the converter variables in the
time-domain in (3)–(4) leads to a convolution of their
spectra in the frequency-domain [18]. The most significant
of these harmonic responses appear at a combination
of the perturbation frequency fp and integer multiples
of the fundamental frequency f1, i.e., f = {fp ±

nf1}, n ∈ Z. To keep the complexity of the resulting
impedance model at bay, n ≤ 3 is assumed in this
work.

In the following, the harmonic responses of the converter
and control variables to the applied perturbation are evaluated
and calculated. The capitalized letters indicate the Fourier
coefficient of the variables. Due to the symmetry of the three-
phase topology, frequency-domain analysis of a single-arm—
in this case upper-arm of phase a—suffices.

A. RESPONSE OF THE CONVERTER VARIABLES
The harmonic responses of the converter variables, iu, vu, and
v6Cu, to the applied perturbation are calculated at jωp. The
rest of the expressions for other frequencies (including the
steady-state frequencies) are derived in a similar fashion and
are given in [19].

1) ARM AND SUM-CAPACITOR VOLTAGES
Themultiplication in the time-domain in (3) and (4) translates
to the convolution of the elements in the frequency-domain.
From (3), the perturbation frequency component of the arm
voltage at jωp can be derived as

Vu(jωp)

= V6
Cu(jωp)Nu(0) + Nu(jωp)V6

Cu(0)

+ V6
Cu(jωp − jω1)Nu(jω1) + Nu(jωp − jω1)V6

Cu(jω1)

+ V6
Cu(jωp + jω1)Nu(jω1) + Nu(jωp + jω1)V6

Cu(jω1)

+ Nu(jωp − j2ω1)V6
Cu(j2ω1) + Nu(jωp + j2ω1)V6

Cu(j2ω1) .

(11)

In a similar fashion, the perturbation frequency component
of V6

Cu at jωp is calculated using (4) as

V6
Cu(jωp)

=
1

jωpC

[
Iu(jωp)Nu(0) + Nu(jωp)Iu(0)

+ Iu(jωp − jω1)Nu(jω1) + Nu(jωp − jω1)Iu(jω1)

+ Iu(jωp + jω1)Nu(jω1) + Nu(jωp + jω1)Iu(jω1)
]
. (12)

The rest of the perturbation frequency components and the
steady-state solution are given in [19]. The bar denotes the
complex conjugate operation.
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2) ARM CURRENTS
The response of iu to the applied perturbation can be
calculated from (1) as

Iu(jω) =
−Vu(jω) − E(jω)

jωL + R
, (13)

where ω ∈ {ωp ± nω1}, n ∈ N, n ≤ 3.

3) AC-SIDE VECTOR-CURRENTS
The dq-components of the ac-side current can be obtained by
Park transformation as

isd = isαa+ isβb isq = isβa− isαb , (14)

where

a = cos(ϑ) and b = sin(ϑ) , (15)

and isα and isβ are the ac-side currents in the αβ-reference
frame, and ϑ is obtained from the active power droop
characteristics.

After mathematical manipulation, the responses of the
ac-side current in the dq-frame to the applied perturbation can
be obtained as[

Isd (jωp − jω1)
Isq(jωp − jω1)

]
=

[
A(jω1) −jB(jω1)

−B(jω1) −jA(jω1)

]
Is(jωp) , (16)

where Is(jωp) = 2Iu(jωp). The steady-state frequency
components A(jω1) and B(jω1) are given in the Appendix.

4) CIRCULATING VECTOR-CURRENTS
The circulating currents have a dominant negative sequence
double line frequency component. We define

a′
= cos(−2ϑ) and b′

= sin(−2ϑ) , (17)

used in the Park transformation of the circulating currents.
The responses of the circulating currents in the syn-

chronous reference frame to the applied ac-side perturbation
are also calculated similarly as

Icd (jωp − jω1) = Iu(jωp + jω1)(A′(j2ω1) + jB′(j2ω1))

+ Iu(jωp − 3jω1)(A′(j2ω1) − jB′(j2ω1))

(18a)

Icq(jωp − jω1) = Iu(jωp + jω1)(−B′(j2ω1) + jA′(j2ω1))

+ Iu(jωp − 3jω1)(−B′(j2ω1) − jA′(j2ω1)) .

(18b)

5) PCC VOLTAGE
Via Kirchhoff’s voltage law applied to the circuit in Fig. 1,
the response of the PCC voltage to the applied perturbation
can be calculated as

E(jω) = (Rg + jωLg)Is(jω) + Vg(jω) , (19)

where ω ∈ {ωp, ωp − 2ω1} due to the mirror frequency
effect [33], and Vg(jω) = ep/2, with ep as the amplitude of
the perturbation.

Vector-voltage control has been applied in this work.
Therefore, the dq-components of the PCC voltage can be
obtained by the Park transformation as

ed = eαa+ eβb eq = eβa− eαb , (20)

where eα and eβ are the PCC voltages in the αβ-reference
frame.

After mathematical manipulation, the Fourier coefficients
Ed and Eq can be obtained as

Ed (jωp − jω1) = E(jωp)(A(jω1) − jB(jω1))

+ E(jωp − j2ω1)(A(jω1) + jB(jω1))

(21a)

Eq(jωp − jω1) = −E(jωp)(B(jω1) + jA(jω1))

+ E(jωp − j2ω1)(−B(jω1) + jA(jω1)) ,

(21b)

B. RESPONSE OF THE CONTROL VARIABLES
The response of the control system comprising the outer
power synchronization loop, the inner ac-side current and
PCC voltage loops, and the circulating current control loop
is analyzed in the frequency-domain.

1) ACTIVE AND REACTIVE POWER
The active and reactive power droops set the PCC voltage
amplitude and angle, respectively. Linearizing (8) and (9)
around the steady-state trajectory yields

P(jω) =
3
2
[Ed (jω)Isd (0) + Isd (jω)Ed (0)

+ Eq(jω)Isq(0) + Isq(jω)Eq(0)] , (22)

Q(jω) =
3
2
[Eq(jω)Isd (0) + Isd (jω)Eq(0)

−Ed (jω)Isq(0) + Isq(jω)Ed (0)] . (23)

where ω = ωp − ω1.

2) VOLTAGE PROFILE MANAGEMENT
The harmonic response of the desired PCC voltagemagnitude
em can be calculated by evaluating the reactive power control
loop in Fig. 2 as

Em(jω) = −Q(jω) · FLPF(jω) · nQ , (24)

where ω = ωp − ω1, due to the Park transformation. The
transfer function FLPF is a first-order low-pass filter of the
form

FLPF(s) =
ωc

s+ ωc
, (25)

and nQ is the reactive power droop gain.
The PCC voltage reference phasor is generated by

eref = emejϑ . (26)
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Similar to the actual PCC voltage, the references have
harmonic responses at ω = {ωp, ωp ± 2ω1}. The harmonic
responses of this reference voltage are calculated as[

Eref(jωp)

Eref(jωp − j2ω1)

]
=

[
B(jω1)

B(jω1)

]
Em(jωp − jω1) . (27)

Subsequently, the harmonic response of the PCC reference
voltages in the dq-frame can be obtained as

E⋆
d (jωp − jω1) = 0 (28a)

E⋆
q (jωp − jω1) = −2[Eref(jωp)

(
B(jω1) + jA(jω1)

)
+ Eref(jωp − j2ω1)

(
B(jω1) + jA(jω1)

)
] .

(28b)

3) PCC VOLTAGE CONTROL
The perturbation frequency response of i⋆s,dq can be calculated
from (28) as

I ⋆s,dq(jω) = Fv(jω)
(
E⋆
dq(ω) − Edq(ω)

)
, (29)

where ω = ωp − ω1, and Fv(s) is a proportional-integral (PI)
controller given by

Fv(s) = kp,v +
ki,v
s

. (30)

4) AC-SIDE VECTOR-CURRENT CONTROL
Similarly, the response to the applied perturbation can be
calculated as

V ⋆
sd (jω) = Fs,dq(jω)[I ⋆sd (jω) − Isd (jω)] −

ω1L
2
Isq(jω)

(31a)

V ⋆
sq(jω) = Fs,dq(jω)[I ⋆sq(jω) − Isq(jω)] +

ω1L
2
Isd (jω) ,

(31b)

where ω = ωp − ω1, and Fs,dq(s) is a PI controller given by

Fs,dq(s) = αs
L
2
(1 +

2α1

s
) . (32)

The Fourier coefficients of the converter output voltage
references in the phase-domain can be obtained through
dq/abc transformation as

V ⋆
s (jωp) = V ⋆

sd (jωp − ω1)A(jω1)

−V ⋆
sq(jωp − jω1)B(jω1) (33a)

V ⋆
s (jωp − j2ω1) = V ⋆

sd (jωp − ω1)A(jω1)

−V ⋆
sq(jωp − jω1)B(jω1) (33b)

5) CIRCULATING VECTOR-CURRENT CONTROL
The small-signal response of the voltages driving the
circulating currents can be calculated as

V ⋆
cd (jω) = −Fc,dq(jω)Icd (jω) + 2ω1LIcq(jω) (34a)

V ⋆
cq(jω) = −Fc,dq(jω)Icq(jω) − 2ω1LIcd (jω) , (34b)

where ω = ωp − ω1, and Fc,dq(s) is a PI controller given by

Fc,dq(s) = αcL(1 +
2α2

s
) . (35)

With the dq/abc transformation, the harmonic responses
of the reference voltages driving circulating currents in the
phase-domain can be obtained as

V ⋆
c (jωp + jω1) = V ⋆

cq(jωp − jω1)B′(2jω1)

− V ⋆
cd (jωp − jω1)A′(j2ω1) (36a)

V ⋆
c (jωp − j3ω1) = V ⋆

cq(jωp − jω1)B′(j2ω1)

− V ⋆
cd (jωp − jω1)A′(j2ω1) (36b)

6) INSERTION INDEX CALCULATION
The small-signal perturbation of insertion indices follows (6)
and thus obtained as

Nu(jω) =
V ⋆
c (jω) − V ⋆

s (jω)
vdc

, (37)

where ω is the available frequency components in the
insertion indices according to the chosen control solution.

C. DERIVATION OF THE AC-SIDE IMPEDANCE
Based on the expressions describing the frequency responses
of the converter and control variables to the applied
perturbation, Eqs. (11)–(37), a linear system of equations
with the unknown variables of the form

Upxp = Tp , (38)

is formulated where Up comprises the coefficients of the
linear system, Tp consists of the constant terms in the
equations, and xp contains the system variables

xp =
[
Iu(jωp − j3ω1), · · · , Iu(jωp + j3ω1),

Vu(jωp − j3ω1), · · · ,Vu(jωp + j3ω1),

V6
Cu(jωp − j3ω1), · · · ,V6

Cu(jωp + j3ω1),

Nu(jωp − j3ω1), · · · ,Nu(jωp + j3ω1),

E(jωp),E(jωp − j2ω1)
]T

. (39)

The elements of Up and Tp for Iu, Vu, and V6
Cu at f ∈

{fp ± f1, fp ± 2f1, fp ± 3f1} are given in [19], while those of
the rest of the variables are obtained in (16)–(37). Solving
the linear system of equations (39) yields the harmonic
responses of all considered converter and control variables
at the considered frequencies. It is worth mentioning that
the developed impedance model is valid for a specified
steady-state point at which the mathematical problem is
solved.

The injected perturbation frequency fp yields harmonic
responses through the grid impedance in the PCC voltage E
and the converter current Is, at fp and fp − 2f1, respectively.
The assumption of small-signal study is valid here; the
responses to the applied perturbation signal must be small
signal, i.e., they should not diverge the system from its
steady-state point. While the impact of the cross-coupling
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impedance terms are smaller than that of the direct terms,
for accurate stability assessment, a multiple-input multiple-
output (MIMO) stability problem needs to be analyzed.
Accordingly, the ac-side impedance of the converter is a 2×2
MIMO matrix of the form

Zac =

[
Z11 Z12
Z21 Z22

]
, (40)

which indicates that four distinct equations are needed to
calculate the four unknown elements of the impedance
matrix. Therefore, two independent perturbation signals need
to be injected from which the responses of the PCC voltage
and current need to be captured at fp and fp − 2f1. The
perturbations must be chosen to be linearly independent.
Thus, firstly a positive sequence perturbation signal of the
form 

vpa,1 = vp cos(ωpt + φp)

vpb,1 = vp cos(ωpt −
2π
3

+ φp) (41)

vpc,1 = vp cos(ωpt +
2π
3

+ φp) ,

is applied, followed by a negative sequence perturbation
signal of the form

vpa,2 = vp cos
[
(ωp − 2ω1)t + φp

]
vpb,2 = vp cos

[
(ωp − 2ω1)t +

2π
3

+ φp
]

(42)

vpc,2 = vp cos
[
(ωp − 2ω1)t −

2π
3

+ φp
]
.

After applying the two perturbations, the ac-side
impedance matrix is calculated based on the method
described in [34] as

Zac = −

[
E1(jωp) E2(jωp)

E1(jωp − j2ω1) E2(jωp − j2ω1)

]
×

[
Is,1(jωp) Is,2(jωp)

Is,1(jωp − j2ω1) Is,2(jωp − j2ω1)

]−1

, (43)

where subscripts 1 and 2 indicate the respective perturbation
sets. Since the considered system is linear time-invariant, the
resulting impedance is not affected by the initial phase angle
of the perturbations. Thus, φp can be assumed to be equal to
zero [15].

1) AC-SIDE IMPEDANCE WITH CLOSED-LOOP VOLTAGE
CONTROL
A closed-loop voltage control scheme can be adopted for
MMCs that computes the ideal insertion indices based on
measured sum-capacitor voltages, i.e.,

nu =
v⋆c − v⋆s
v6Cu

and nl =
v⋆c + v⋆s
v6Cl

. (44)

However, this approach yields an asymptotically unstable
system which requires additional sum/imbalance arm energy
(or alternatively voltage) control to achieve asymptotic
stability [31]. Assuming that perfect arm-balancing control

FIGURE 3. Small-signal frequency-domain representation of the
grid-connected converter by its Thévenin equivalent circuit.

is achieved, the response of v⋆c to the applied perturbation
is infinitesimal and/or can be ignored. Thus, the closed-loop
output impedance becomes independent of the internal
dynamics of the MMC and can be obtained based on the ac-
side dynamics, i.e., (5a). The response of the PCC voltage
to the applied perturbation is given in (19). Ignoring delays,
substituting

vu,l = nu,lv6Cu,l (45)

in (44) yields vs = v⋆s . Using equations (16), (21)–(29), (31),
and (33a) (which are all equations not involving internal
dynamics of the MMC), the response of E(jωp) and Is(jωp)
to the applied perturbation can be derived analytically by
evaluating (5a) and thus, the closed-loop output impedance
can be obtained. With compensated modulation, mirror
frequency effect is negligible and the output impedance is
single-input single-output (SISO), i.e., |E(jωp − j2ω1)| ≪

|E(jωp)| and |Is(jωp − j2ω1)| ≪ |Is(jωp)|. Hence, the
closed-loop output impedance can be obtained by

Zac(jωp) = −
E(jωp)
Is(jωp)

. (46)

D. STABILITY ANALYSIS: THE IMPEDANCE-BASED
CRITERION
Fig. 3 shows the small-signal representation of the system
consisting of the grid-forming converter which is modeled
by a voltage source in series with an impedance and a grid
represented by a voltage source behind the grid impedance.
Grid-forming converters are prone to instability and control
interactions in strong grid conditions or when the voltage
control bandwidth is low [6]. In this work, the interactions
arising from low bandwidth of the voltage control loop are
investigated.

The frequency response of the converter current can be
obtained as

Is =
E − Vg

Zac + Zg
. (47)

In order to assess the small-signal stability of the system,
two prerequisite conditions apply, namely that,

• E must be stable, i.e., the grid-forming converter must
be stable when unloaded;

• Zg must be stable, i.e., the grid current must be stable
when supplied by an ideal voltage-source.
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The characteristic equation of the system in (47) is a
MIMO system. The right-half-plane zeros of the characteris-
tic equation, i.e., Zac + Zg can indicate unstable closed-loop
poles. It should be noted that no cross-couplings exist in the
grid impedance as it has been modeled in the phase-domain,
not the synchronous reference frame. Thus, the determinant
of the characteristic equation can be obtained as

det
[
Zac + Zg

]
= (Z11 + Zg,11)(Z22 + Zg,22) − Z12Z21 ,

(48)

where

Zg,11 = Rg + jωpLg (49a)

Zg,22 = Rg + j
[
(ωp − j2ω1)Lg

]
. (49b)

After mathematical manipulations, the determinant can be
reformulated as

1 +

Z11 −
Z12Z21

Z22+Zg,22

Zg,11
= 1 +

Zeq,ac
Zg,11

, (50)

where Zeq,ac is the equivalent single-input single-output ac-
side impedance of the MMC taking into account its interac-
tion with the grid impedance [21]. If the two prerequisites
defined above are satisfied, the minor-loop gain defined as
Zeq,ac/Zg,11 can be used to assess the small-signal stability of
the system via the Nyquist stability criterion.

IV. RESULTS AND DISCUSSIONS
The impedance obtained via the analytical model developed
above is validated against that obtained from post-processing
the PCC voltage and current waveforms in simulations
and in a down-scaled experimental setup. The analytical
impedance model is then used to analyze and showcase the
system stability. A logarithmically spaced set of perturbation
frequencies between 1Hz and 200Hz is considered.

Fig. 4 shows the ac-side impedances of an MMC with
direct voltage control, with closed-loop voltage control, and
for comparison that of a two-level converter. For the two
level converter, a phase inductance equal to half the arm
inductances of the equivalent MMC is opted. It can be seen
that with closed-loop voltage control, the ac-side impedance
of the MMC is similar to that of the two-level converter,
implying that they exhibit the same behavior on the ac-side.
The closed-loop output impedance of the MMC with direct
voltage control, however, is different due to the influence of
the internal dynamics of the MMC on the impedance. A non-
passive frequency region (φZac < −90◦) exists around the
fundamental frequency in all caseswhich is a byproduct of the
applied grid-forming control shown in Fig. 2. For the ease of
hardware implementation, the direct voltage control scheme
is assumed in the remainder of the study to demonstrate the
workings of the proposed active damping methods.

A. SIMULATION RESULTS
A simulation model of an MMC-based HVDC system
is built in MATLAB/Simulink. The ac-side of an MMC-
based HVDC system is considered, neglecting the dc-side

FIGURE 4. Bode diagram of the ac-side impedance Zeq,ac of an MMC
with direct voltage control (blue), an MMC with closed-loop voltage
control (red), and a two-level converter (black).

TABLE 1. Simulation system parameters.

TABLE 2. Controller settings of the simulation model of the HVDC system.

dynamics, i.e., a stiff voltage source on the dc-bus is assumed.
The parameters of the simulated system are summarized
in Tables 1 and 2. Fig. 5 shows the Bode diagram of the
ac-side impedance of the HVDC converter Zac, indicating
a close match between the analytical impedance model
and the impedance measured via simulations. Fig. 6 shows
the equivalent single-input single-output closed-loop output
(ac-side) impedance of theHVDCconverter when the integral
gain of the voltage controller is reduced, and the grid
impedance. With a low integral gain, a narrower band with
negative resistance (φZac,eq < −90◦) exists below the
fundamental frequency and at the magnitude intersection
point of 46.7Hz, the phase margin of the minor-loop gain is
negative. Fig. 7 shows the Nyquist diagram of the minor-loop
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FIGURE 5. Bode diagram of the ac-side impedance of a droop-controlled
grid-forming MMC-HVDC with dual-loop voltage control. The solid lines
show the analytical impedance, and the circles demonstrate the
measured impedance in simulations.

FIGURE 6. Bode diagram of the equivalent ac-side impedance of the
converter Zeq,ac for different values of the integral gain of the voltage
controller and the grid impedance Zg,11. The asterisks indicate simulation
results. The close-up box shows the phase margin of Zeq,ac/Zg,11 for the
two cases.

gain of the system for the two cases studied in Fig. 6. It can be
observed that with a low integral gain, the contour encircles
the (−1, 0) critical point, implying the instability of the
system.

B. THE EXPERIMENTAL SETUP
Fig. 8 shows the experimental setup used in this work.
An MMC with one half-bridge submodule per arm (based
on SiC MOSFETs) is assembled. The control system is
implemented on a rapid control prototyping platform by
Imperix which utilizes fully programmable digital signal
processing (DSP) and field-programmable gate array (FPGA)
units. External current and voltage sensors placed on the back
plane of the rack measure the arm currents and the PCC

FIGURE 7. Nyquist diagram of Zeq,ac/Zg,11 for droop-controlled
grid-forming MMC with dual-loop voltage control in the simulation model
of the HVDC system.

TABLE 3. Experimental setup parameters.

TABLE 4. Controller settings of the experimental setup.

voltages that are used to control the system quantities, see
Fig. 2. A phase-shifted pulse-width modulation (PSC-PWM)
scheme has been used that ensures individual capacitor
voltage balancing provided that the carrier frequency is a
non-integer multiple of the fundamental frequency [35]. The
system and control parameters of the experimental setup are
given in Tables 3 and 4, respectively.

A Chroma regenerative grid simulator is used as the
three-phase ac grid and also as the perturbation source.
The perturbation signals are superimposed on the grid
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FIGURE 8. The experimental setup.

voltage by overlaying desired perturbation frequencies on the
reference voltage of the grid simulator. An inductive-resistive
impedance models the grid weakness.

The ac-side impedance is measured by perturbing the
grid voltage with two independent perturbation sets through
externally amplifying the voltage of the regenerative grid
simulator. The measured voltages and currents are then
post-processed to obtain the measured ac-side impedance
matrix of the converter.

C. IMPACT OF CONTROL ON CLOSED-LOOP OUTPUT
IMPEDANCE
The choice of control solutions and selected control gains
can impact the equivalent ac-side impedance. A single-
loop voltage control is the simplest form that the control
of the PCC voltage can be realized in grid-forming appli-
cations [23]. In this control scheme, there is no explicit
control of ac-side currents. The ac-side impedance of the
MMC with single-loop voltage control is shown in Fig. 9.
As seen in the figure, non-passive frequency regions exist
around the fundamental frequency in Z11. It is also evident
from the magnitude plots that the impact of the direct
term impedances are more pronounced than the cross-
coupling terms, indicating that the equivalent impedance is
impacted more by Z11 and Z22, rather than the cross-coupling
impedances.

FIGURE 9. Bode diagram of the ac-side impedance of a droop-controlled
grid-forming MMC with single-loop voltage control. The solid lines show
the analytical impedance, and the asterisks demonstrate the measured
impedance from the experimental prototype.

FIGURE 10. Bode diagram of the ac-side impedance of a droop-
controlled grid-forming MMC with dual-loop voltage control. The solid
lines show the analytical impedance, and the asterisks demonstrate the
measured impedance from the experimental prototype.

Fig. 10 shows the ac-side impedance of the MMC with
dual-loop voltage control, i.e., the default form in this work
as shown in Fig. 2. Differences exist between the impedance
with dual-loop versus the single-loop case, especially around
the fundamental frequency where the impedance of the
dual-loop control case has a more pronounced valley in mag-
nitude of Z11 and non-passive behavior in Z22. In addition,
the impedance magnitudes are greater in value with dual-loop
control at frequencies other than the fundamental frequency.

Fig. 11 shows the equivalent ac-side impedance of the
converter Zeq,ac and the grid impedance Zg,11, when the
integral gain of the voltage controller is altered. When
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FIGURE 11. Bode diagram of the equivalent ac-side impedance of the
converter Zeq,ac for different values of the integral gain of the voltage
controller and the grid impedance Zg,11. The asterisks indicate
experimental results. The close-up box shows the phase margin of
Zeq,ac/Zg,11 for the two cases.

the integral gain is high, the resonance at the fundamental
frequency has awide bandwidth as observed in the impedance
magnitude plot. In this case, there are intersection points
between the converter equivalent impedance and the grid
impedance at 43.4Hz, 57.4Hz and 71.8Hz. At all of these
points, the phase margin is positive, indicating that the
system is stable. When kiv is reduced, the bandwidth of
the resonance at the fundamental frequency gets narrower,
and the intersection points move to 47.9, 51.9 and 67.4Hz,
respectively. The phase margin of the two systems with
different integral gains of the voltage controller are shown in
the zoomed-in phase plot of the same figure. As highlighted
in the figure, at f = 47.9Hz, the phase margin of the
minor-loop gain of the case with a low integral gain of
the controller is below zero. This indicates a risk of small-
signal instability. Nevertheless, the stability has to be verified
with the Nyquist stability criterion which is a necessary and
sufficient condition for stability.

The Nyquist diagram of the single-input single-output
minor loop gain of the system, i.e., Zeq,ac/Zg,11, shown in
Fig. 12 indicates that the system does go unstable when
the integral gain of the voltage controller is decreased.
As expected, the contours intersect with the unit circle three
times corresponding to the three intersections in the Bode
diagram of the impedance magnitudes. Unstable oscillations
in the phase variables, therefore, should occur at the predicted
frequency of fosc = 47.9Hz. Due to Park transformation,
the frequency of the oscillations in direct (non-alternating)
system variables is at fosc,dq = 50 − 47.9 = 2.1Hz.

D. ACTIVE DAMPING TECHNIQUES
Filter-based active damping to handle stability issues in
grid-following systems has been established in [36] and [37].
Three active damping methods for grid-forming converters
are presented in this work that can add phase lead to the

FIGURE 12. Nyquist diagram of Zeq,ac/Zg,11 for droop-controlled
grid-forming MMC with dual-loop voltage control for the experimental
setup. The contour encircles (−1, 0) with low integral gain indicating an
unstable system. A close-up visualizing the critical point is also shown.

system around the fundamental frequency in order to stabilize
the system. In this way they indirectly modify also the ac-side
impedance at these frequencies. Fig. 13 summarizes the
presented modifications that improve the phase margin and
therefore, the small-signal stability.

A virtual resistance on the path of the ac-side cur-
rents damps the ac-side impedance around the fundamen-
tal frequency. Virtual resistances Rv can be added in a
cross-coupling fashion to the input reference of the current
controller similar to that presented in [26]. The value of the
Rv gain can be selected based on trial and error. To this
end, the Nyquist diagram of the minor loop-gain of the
closed-loop system can be drawn and a suitable value that
ensures closed-loop stability and suitable phase margin can
be selected. In the case studies of this work, a gain of
Rv = 0.2 for simulations and Rv = 0.9 in the experimental
setup is chosen. In the impedance model, the responses of
the ac-side voltage references in the dq-frame to the applied
perturbation are modified as

V ⋆
s,dq(jω) = Fs,dq(jω)[I ⋆s,dq(jω) − Is,dq(jω) ± RvIs,qd (jω)]

∓
ω1L
2
Is,qd (jω) , (51)

where ω = ωp − ω1.
Alternatively, the dq-frame currents can be filtered at a

lower frequency than the predicted oscillation. A first-order
low-pass filter of the form

GLPF(s) =
ωlpf

s+ ωlpf
, (52)

is used in this work with a cut-off frequency of 2π3 rad/s
in the HVDC system simulation and 2π1.5 rad/s in the
experimental setup. The cut-off frequencies are chosen to
be lower than the predicted oscillation frequencies which
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FIGURE 13. Proposed active damping techniques to increase system phase margin.

are 3.3Hz for the simulation case study, and 2.1Hz in the
experimental work. In this way, extra damping is provided
by diminishing the oscillations that enter the current control
loop. In the frequency-domain, the harmonic responses of the
ac-side voltage references are modified to

V ⋆
s,dq(jω) = Fs,dq(jω)[I ⋆s,dq(jω) − GLPF(jω)Is,dq(jω)]

∓
ω1L
2
Is,qd (jω) , (53)

where ω = ωp − ω1.
A third option is to cascade a lead compensator on

the path of the synchronous reference frame PCC voltage
measurements. Lead compensators add phase to the control
loop, affecting the converter impedance and improving the
stability. In this work, a first-order lead compensator of the
form

FLead(s) =
1 + T1s
1 + T2s

, (54)

has been designed that adds phase around 2Hz to the
PCC voltages in the dq-frame, and indirectly improves the
impedance phase. To this end, the time constants of the
compensator are selected as T1 = 0.1 and T2 = 0.05. Fig. 14
shows the Bode diagram of the designed lead compensator
in this case. The selected compensator is shown to be able
to sufficiently dampen the predicted oscillation both in the
simulation case study and in the experimental work. Adding
phase lead to the measured ac-side voltages translates in the
frequency domain to modifying the ac-side current references
to

I ⋆s,dq(jω) = Fv(jω)
(
E⋆
dq(ω) − FLead(jω)Edq(ω)

)
, (55)

where ω = ωp − ω1. The tuning of appropriate compensator
poles and zeros can be done by quantifying the phase and gain
margins off the Nyquist diagram of the minor loop-gain that
is obtained by using the developed ac-side impedance model.

Using each one of the three proposed active damping
methods provides enough phase lead at non-passive frequen-
cies around the fundamental frequency such that the system
stabilizes with a positive phase margin. Fig. 15 shows the
simulation results of the HVDC system. It is observed that
in t < 2 s and t > 8 s with a low integral gain the system
is unstable. When the active damping loops are enabled, the
system stabilizes, albeit with different dynamic responses.

FIGURE 14. Bode diagram of the lead compensator FLead(s).

The transient behavior is largely dependent on the design of
the filters and the choice of the gains.

Fig. 16 shows the waveforms of the converter variables
during experiments with a laboratory setup to verify the
unstable case studies and the performance of the stabilizing
active damping techniques. The integral gain of the voltage
controller is manipulated to cause system instability. The
stabilizing loops are then enabled for a short duration starting
at t = 2 s and disabled at t = 8 s. As seen in the figure,
unstable oscillations are present in the system before t = 2 s
when the stabilizing loops are bypassed. The frequency of the
oscillations is computed using a fast Fourier transform of the
signals during the instability, and corresponds to the predicted
fosc,dq = 2.1Hz for the variables in the direct reference frame,
as seen in Fig. 17. The system is stabilized upon enabling
of the damping compensators in all cases. As an example,
Fig. 18 shows the harmonic responses of the ac-side current
and the PCC voltage to the applied perturbation with and
without the virtual resistance loop for the experimental case
study. As seen in the figure, as a result of the virtual resistance
loop, the predicted oscillations at 47.9Hz in the system are
dampened and no longer appear.

Fig. 19 shows the Nyquist diagram of the minor loop
gain Zeq,ac/Zg,11 with and without the active damping com-
pensators, for the simulations of the HVDC system and the
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FIGURE 15. Time-domain verification of the instability scenarios and the impact of proposed modifications in simulations of the
HVDC system. The stabilizing loops are enabled at t = 2 s and disabled at t = 10 s.

FIGURE 16. Experimental time-domain verification of the instability scenarios and the impact of proposed modifications. The
stabilizing loops are enabled at t = 2 s and disabled at t = 10 s.

FIGURE 17. Fast Fourier transform of eq during instability based on
recording from the experiments.

down-scaled laboratory prototype. It can be concluded from
the time-domain results and frequency-domain verification
that the proposed loops successfully stabilize the system as
the contours no longer encircle the (−1, 0) point. Future
research on the topic is required to unravel the small-signal
stability conditions for grid-forming converters connected in

FIGURE 18. Fourier coefficient magnitudes of is (top) and e (bottom) to
the applied perturbation with and without the cross-coupled virtual
resistance loop.
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FIGURE 19. Nyquist diagram of Zeq,ac/Zg,11. The base unstable case’s
contour encircles (−1, 0) indicating an unstable system. For all other
cases the Nyquist diagram predicts a stable system.

parallel both in grid-connected and off-grid conditions, the
effect of modulation schemes on the ac-side impedance of
the MMCs in grid-forming control mode, and the impact
of discretization of the control system on the terminal
impedance and the system stability.

V. CONCLUSION
This paper presents an analytical ac-side impedance model
of a droop-controlled grid-forming modular multilevel con-
verter. The effect of single-loop and dual-loop voltage
grid-forming control schemes on the closed-loop output
impedance of the converter is analyzed, followed by show-
casing a possible subsynchronous control interactions of the
converter with the grid. It is shown that the parameters of the
voltage controller can impact the small-signal stability of the
grid-connected converter. Three stabilizing loops based on 1)

virtual resistance added to ac-side currents, 2) low-pass filters
in the path of ac-side currents, and 3) lead compensators
in the path of PCC voltage have been proposed in order
to omit the small-signal instability and improve stability
margins. Experimental results verified on a down-scaled
laboratory prototype validate the accuracy of the developed
analytical model and the workings of the proposed stabilizing
compensators. It is shown that the unstable oscillations
and their frequencies can be accurately predicted, and the
proposed active damping techniques can bring the system
back to stability.
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