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ABSTRACT With the advancement of technology, convenient communication fills every part of people’s
lives. However, the data may be stolen during the transmission process. Therefore, this study proposes a
method based on the Takagi-Sugeno (T-S) fuzzymodel using the Rivest Cipher 6 (RC6) algorithm inmultiple
time-delay chaotic systems. RC6 can be parameterized to support longer key lengths and encryption rounds,
and RC6 has excellent computing speed and security. Nevertheless, quantum computers are getting universal.
Studies have shown that existing encryption algorithms are unreliable in terms of security. Due to the mighty
computing power of quantum computers, various encryption algorithms including RC6 will be cracked in a
short period of time. Because chaos has the characteristics of disarray and irregularities, a systematic design
combining chaotic synchronization with RC6 is presented to conduct double encryption to prevent attacks.
In addition, we employ the improved genetic algorithm (IGA) to seek better fuzzy controller feedback gains
than those sought by the genetic algorithm approach as well as the linear matrix inequality approach, and
then to accelerate the synchronization. Subsequently, a synthesized fuzzy controller realizes exponential
synchronization and achieves the optimal H∞performance at the same time. Finally, the effectiveness of the
proposed approach is demonstrated by an example with simulations.

INDEX TERMS Chaotic masking, Rivest cipher 6 algorithm, double encryption, exponential synchroniza-
tion, optimal H∞ control, improved genetic algorithm.

I. INTRODUCTION
Convenient communication has permeated every aspect
of people’s lives as technology advances. However, with
the continuous advancement of password-cracking technol-
ogy, the security requirements of communication systems
become more stringent. Therefore, the Rivest Cipher 6 (RC6)
algorithm was used in this study to enhance security. The
RC6 algorithm [1], [2], [3], [4], [5] is a symmetric-key
algorithm derived from RC5. It was designed by Ron Rivest,
Matt Robshaw, Ray Sidney, and Yiqun Lisa Yin to meet the
Advanced Encryption Standard (AES) competition require-
ments. The RC6 algorithm was one of the five finalists [4].
Since its release, it has received attention and research from
all parties [5], and has many technical applications. Longer
key lengths and encryption rounds can be supported by
parameterizing the RC6 algorithm. It has a block size of
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128 bits and can support key sizes of 128, 192, and 256 bits
up to 2040 bits. Many respects of RC6 and RC5 are simi-
lar [1], including structure, use of data-dependent rotations,
modular addition, and XOR operations. RC6 employs an
additional multiplication operation not found in the RC5
encryption algorithm. This operation causes every rotation
to be determined by every bit in a word rather than the
least significant few bits. RC6 is interweaving two parallel
RC5 encryption processes, providing better encryption effect
than RC5.

However, as computer computing power improves, quan-
tum computers [6], [7], [8], [9] are expected to become more
prevalent in the coming years. Traditional computers process
data in bits, each switching between two states. Since two
states can only be marked as 0 and 1, the data can only be
processed in themost primitive order of 0 and 1. Nevertheless,
the ‘‘quantum computer’’ exists 0 and 1 at the same time.
This is known as ‘‘quantum superposition.’’ Input and output
data are regarded as mechanical quantities. All input and
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output can overlap, which is known as parallel processing;
this advantage can improve the operation performance [7].
Quantum computers have much faster calculation speed than
traditional computers. The quantum algorithm designed by
Yang Liu and Shengyu Zhang in 2017 [6] can effectively
improve the calculation speed and error rate compared with
traditional algorithms. The fastest traditional computer cur-
rently takes billions of years to find all the prime factors of
a 400-digit number, while a quantum computer may only
take an hour or even a few minutes. Quantum algorithms
outperform traditional algorithms in terms of calculation
speed and accuracy while using the same computing and
hardware resources [8]. When quantum computers become
widely available, the existing symmetric and asymmetric
encryption algorithms may be cracked in a very short period.
However, the chaotic system is an excellent pseudo-random
number generator that establishes foundations for subsequent
encryption steps [10]. Chaos is characterized by disarray
and irregularities. It is used to increase complexity, and
then to enhance the security of cryptosystems. This research
will introduce a double encryption technique which com-
bines the RC6 algorithm and chaotic synchronization to
reinforce prevention of security problems caused by quantum
computers.

Chaotic encryption hides information in the chaotic
masking signal’s carrier wave. Due to the carrier waves’
disarray and irregularities, a third party cannot determine
the information the encryptor intends to transmit. In recent
years, chaotic synchronization technology has provided new
methods of communication security, such as chaotic
encryption- and decryption-based communication systems,
communication systems using chaos spreading codes for
access among multiple users, and chaotic modulation-
demodulation in digital and analog. Many encryption
methods involved chaos theory. Chaotic maps have the
properties of unpredictability and sensitivity to their param-
eters and initial values. They can generate different random
sequences with different settings of parameters or initial val-
ues [11].Meanwhile, chaotic synchronization technology and
chaos security communication recently emerged as important
research topics in communication at home and abroad [12],
[13], [14], [15], [16], [17], [18], [19].
Pecora and Carroll first proposed the concept of chaotic

synchronization in 1990 [12], [13]. Chaotic synchronization
is the process of aligning the state trajectories of two chaotic
systems. They were able to perform numerical simulations
on Lorenz and Rössler systems successfully, and the results
confirmed the feasibility of chaotic synchronization. Further-
more, the two further modified the chaotic circuit proposed
byNewcomb and Sathyan [14], applied the concept of chaotic
synchronization to the actual circuit. This aroused everyone’s
interest in determining how to achieve chaotic synchroniza-
tion in communication security. In 1993, Cuomo et al. [15]
completed Pecora and Carroll’s synchronization method on
the Lorenz circuit. They conducted two experiments on

communication security. To complete the encrypted trans-
mission of the signal, the terminal first uses the chaotic
synchronization method to reproduce the masked signal and
filter it from the received signal. Then, the terminal modifies
the parameters to digitally process the synchronization result
and obtain a binary signal. These two experiments established
two of chaos’ hot topics: chaotic synchronization and chaotic
communication.

Different types of chaotic systems have different non-
linear terms, so the requirements for synchronous control
may differ. The problem of synchronization is commonly
associated when discussing chaotic communication. Many
studies have been conducted on the academic synchro-
nization control. In 2001, Lian et al. [16] successfully
designed four fuzzy-based chaotic synchronization meth-
ods, and that can be applied to chaotic communication.
In 2018, Ren et al. [11] proposed an encryption method
based on computer-generated hologram and two-dimensional
Sine Logistic modulation map, a kind of high-dimensional
chaotic map. In the same year, Liu et al. [17] used three
pseudo-random sequences, generated by three-dimensional
chaosmap, as themeasurement matrix of compressed sensing
and two random-phase masks in the asymmetric fractional
wavelet transform. In 2022, Fradkov and Andrievsky [18]
designed a discrete-time adaptive synchronization for signal
transmission for time-varying nonlinear systems. In the same
year, Mishra et al. [19] used Lyapunov’s stability theory
to design finite-time chaotic synchronization. The synchro-
nization speed affects the transmission speed when using
chaotic synchronization to transmit information. This issue
should be considered during the design process to achieve
synchronization quickly. Most research on chaotic synchro-
nization assumes that the master and the slave systems are
the same chaotic system. However, the structures and param-
eters of the master and slave chaotic systems are often not
completely consistent in the real system application, affect-
ing the synchronization results. Furthermore, time delays
caused by the transmission of information are common in
various engineering systems. Time-delay is an undesirable
phenomenon in synchronization system, and an effective
controller is expected to suppress it. Hence, related studies
have widely investigated the problem of stability analysis in
time-delay systems. Time delays have acquired increasing
attention with respect to chaotic systems since Mackey and
Glass [20] first demonstrated the chaotic phenomena in time
delay systems. Time-delay can bring about inaccurate feed-
back control behaviours, and then result in the instability and
non-synchronous phenomena of chaotic systems.

This study will use the improved genetic algorithm (IGA)
to search for better fuzzy controller parameters. The genetic
algorithm (GA) [21], [22], [23], [24], [25] was proposed by
John Holland, a professor at the University of Michigan in
1975 [21]. Its basic concept is derived from Darwin’s theory
of natural selection, while the schema theorem is based on
binary strings of specific digits being used as individuals of
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artificial chromosomes to simulate gene evolution generation.
Its primary goal is to frame the evolution of natural biological
systems and stimulate significant breakthroughs in develop-
ing natural and artificial systems.

In 2014, Bailey et al. [23] confirmed the feasibility of
using GA to generate graphical models for complex networks
automatically. In 2011 [22], there was also research on the
use of GA for synchronous optimization design. Recently,
genetic algorithm has been widely used to search for the
best solutions to various problems. The basic operators of
biological species are used to evolve between generations.
Therefore, GA is based on the biological concept of ‘‘the
winner of the inferior, the fittest.’’ The concept of sur-
vival influenced the development of optimization techniques.
GA follows a series of cyclic process similar to gene evolu-
tion, and its calculation steps include population generation,
evaluation, and GA operation. In order to obtain a better
fitness value, many improved genetic algorithms have been
proposed [26], [27], [28], [29], [30], and the biggest dif-
ference between IGA [27], [28] used in this study and GA
lies in the way of mating. GA randomly places the chro-
mosomes after mating to obtain the best local solution [25],
whereas IGA arranges the chromosomes after mating in the
central and border areas to search for the global best solu-
tion [26]. Therefore, IGA is more likely than GA to generate
excellent new individuals with a better fitness value. Many
studies have been conducted to optimize the system using
IGA [28], [29].

This study proposes a new fuzzy control method based on
an IGA that employs the Parallel Distributed Compensation
(PDC) technology to achieve the exponential synchronization
of two chaotic systems with multiple time delays. In addition,
combining the chaotic synchronization and cryptography
concepts will result in amore secured communication system.
To ensure the exponential stability of the error system, the
initial message (plaintext) is first encrypted using the RC6
algorithm and the key, and the encrypted message (cipher-
text) is re-encrypted through chaotic synchronization, and
exponential stability related to time delay is derived by using
the Lyapunov function criterion. Afterward, the exponential
stability criterion is transformed into linear matrix inequality
(LMI). A set of fuzzy controller parameters is obtained by
using the LMI Toolbox of the numerical simulation software
MATLAB. These parameters are evolved by the primitive
populations of the IGA. Given IGA’s ability to randomly
search for the best solution in the entire domain, it is possible
to find a better fuzzy controller feedback gain to acceler-
ate the error system’s convergence, allowing the master and
slave systems to achieve synchronization quickly. In the past,
feedback gains were resolved through trial-and-error and
empirical methods. Therefore, there is a desire to develop
better tools and methods to solve for suitable feedback gains.
As such, this study constructed a new algorithm using IGA to
solve the problem of feedback gains. The IGA approach seeks
better feedback gains than those sought by the LMI approach,
and speeds up the synchronization.

The remainder of this study is organized as follows.
We establish the Takagi-Sugeno fuzzy models for repre-
senting chaotic systems, and some background about RC6
algorithm is given in section II. In section III, a robust fuzzy
control scheme is proposed to accomplish the exponential
optimal H∞ synchronization. The design algorithm is shown
in section IV. In section V, the effectiveness of the proposed
approach is demonstrated by an example with simulations.
The findings and discussions for the proposed approach are
presented in Section VI. Finally, the conclusions are drawn in
section VII.

II. PROBLEM FORMULATION
This study utilized a master-slave configuration with two
multiple time-delay chaotic (MTDC) systems. The dynamics
of the master system (Nm) and the slave system (Ns) are as
follows:

Nm : Ẋ (t) = f (X (t))+

∑g

k=1
Hk (X (t − τk)) (1)

Ns :
˙̂X (t) = f̂ (X̂ (t)) +

∑g

k=1
Ĥk (X̂ (t − τk )) + D (t)

(2)

where t is the variable of time, τk (k = 1, 2, . . . , g) are
the time delays, f (·) ,Hk (·) , f̂ (·) and Ĥk (·) are the nonlinear
vector-valued functions,D(t) is the external interference, Ẋ is
the state vector of the master system, and ˙̂X is the state vector
of the slave system.

A. RIVEST CIPHER 6
RC6 is a symmetric-key algorithm derived from RC5.
Designed by Ron Rivest, Matt Robshaw, Ray Sidney, and
Yiqun Lisa Yin in 1998, RC6 can be parameterized to support
longer key lengths and encryption rounds. Figure 1 shows the
RC6 encryption/decryption process.

FIGURE 1. RC6 algorithm process.

Figure 2 illustrates the encryption procedure of RC6. The
decryption process is to invert the structure by converting the
addition operation into a subtraction operation.

This study chose to use RC6 due to its excellent calculation
speed and security. Table 1 and Figure 3 illustrate the required
execution time for RC6, Twofish, and Rijndael (AES) based
on the 16-bytes key size for different file types and sizes.
Meanwhile, Table 2 and Figure 4 show the required execution
time for RC6, Twofish, and Rijndael (AES) based on the
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FIGURE 2. RC6 block cipher.

32-bytes key size for different file types and sizes. Figure 3
and Figure 4 depict RC6’s excellent execution efficiency
under different file types, sizes, and key lengths. The execu-
tion time of RC6 is shown in orange, Twofish in grey, and
Rijndael (AES) in yellow. Finally, Table 3 summarizes the
comparison of the different design parameters such as word
size, block size, round number, and key size [02, 03].

TABLE 1. Comparison for 16-bytes key.

TABLE 2. Comparison for 32-bytes key.

B. T-S (TAKAGI-SUGENO) FUZZY MODEL
Takagi and Sugeno [31] developed a fuzzy dynamic model
three decades ago to represent locally linear input/output

FIGURE 3. Processing time for 16-bytes key.

FIGURE 4. Processing time for 32-bytes key.

TABLE 3. Comparison on the basis of parameters.

relationships of nonlinear systems. This dynamic model is
characterized by IF-THEN rules; hence, it is used in this study
to address the synchronization problem of MTDC systems.
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The following is the ith rule of the T-S fuzzy model for the
master system:

Rule i: IF x1(t) isMi1 and · · · and xδ(t) is Miδ

THEN Ẋ (t) = AiX (t) +

∑g

k=1
ĀikX (t − τk)

where i = 1, 2, · · · , φ and φ is the number of IF-THEN rules;
Ai and Āik are constant matrices with appropriate dimension;
Miη(η = 1, 2, · · · , δ) are the fuzzy sets; x1(t) ∼ xδ(t) are the
premise variables. The final state of the fuzzy dynamic model
is inferred as follows:

Ẋ (t) =

∑φ
i=1 wi(t)

[
AiX (t) +

∑g
k=1 ĀikX (t − τk)

]∑φ
i=1 wi(t)

=

∑φ

i=1
hi(t)

[
AiX (t) +

∑g

k=1
ĀikX (t − τk)

]
(3)

where wi(t) ≡
∏δ
η=1Miη

(
xη(t)

)
, and Miη

(
xη(t)

)
denote the

grade of membership of xη(t) in Miη. Meanwhile, hi(t) ≡
wi(t)∑φ
i=1 wi(t)

and
∑φ

i=1 hi(t) = 1 for all t .

Similarly, the j th rule of the T-S fuzzy model for the slave
system is proposed as follows:

Rule j : IF x̂1(t) is M̂j1 and · · · and x̂δ(t) is M̂jδ

THEN X̂ (t) = ÂjX̂ (t) +

∑g

k=1
ˆ̄Ajk X̂ (t − τk)+ D(t)

where M̂jη(η = 1, 2, · · · , δ) are the fuzzy sets, x̂1(t) ∼ x̂δ(t)

are the premise variables, Âj and ˆ̄Ajk are constant matrices
with appropriate dimensions, and j = 1, 2, · · · , σ and σ is
the number of IF-THEN rules. The final state of the fuzzy
dynamic model is inferred as:

X̂ (t) =

∑σ
j=1 ŵj(t)

[
ÂjX̂ (t) +

∑g
k=1

ˆ̄Ajk X̂ (t − τk)+ D(t)
]

∑σ
j=1 ŵj(t)

=

∑σ

j=1
ĥj(t)

[
ÂjX̂ (t) +

∑g

k=1
ˆ̄Ajk X̂ (t − τk)

]
+ D(t)

(4)

where ŵj(t) ≡
∏δ
η=1 M̂jη

(̂
xη(t)

)
, and M̂jη

(
x̂η(t)

)
denote the

grade of membership of x̂η(t) in M̂jη. Moreover, ĥj(t) ≡
ŵj(t)∑σ
j=1 ŵj(t)

and
∑σ

j=1 ĥj(t) = 1 for all t .

C. PARALLEL DISTRIBUTED COMPENSATION
The PDC scheme was used in this study to implement a
control design based on a fuzzy model. Figure 5 shows that
each control rule in the PDC scheme is designed for the
corresponding rule of the T-S fuzzy model. Since a linear
state equation describes each rule of the fuzzy model, the
fuzzy controller is designed using the linear control theory.
In general, the fuzzy blending of each individual linear con-
troller achieves the overall nonlinear fuzzy controller. The
fuzzy controller shares the same fuzzy sets as the fuzzymodel
in the premises [32].
The PDC scheme devises a model-based fuzzy con-

troller to synchronize the slave system with the mas-
ter system. The synchronization error is defined as

FIGURE 5. Parallel distributed compensation design.

E(t) ≡ X̂ (t) − X (t) = [e1(t), e2(t), · · · , eδ(t)]T , and the l
th model-based fuzzy controller is depicted as follows:

The Control Rule l:
IF e1(t) is M̄l1 and eδ(t) is M̄lδ

THEN U (t) = −KlE(t)

where M̄lη(η = 1, 2, · · · , δ) are the fuzzy sets, Kl is the
feedback gains, and l = 1, 2, · · · , σ and σ is the number
of IFTHEN rule of the fuzzy controller. The final output of
the fuzzy controller can be inferred as follows [33]:

U (t) =
−

∑σ
l=1 w̄l(t)KlE(t)∑σ
l=1 w̄l(t)

= −

∑σ

l=1
h̄l(t)KlE(t) (5)

where w̄l(t) ≡
∏δ
η=1 M̄lη

(
eη(t)

)
, and M̄lη

(
eη(t)

)
is the grade

of membership of eη(t) in Mlη. Moreover, h̄l(t) ≡
w̄l (t)∑σ
l=1 w̄l (t)

and
∑σ

l=1 h̄l(t) = 1 for all t .
From the above, the T-S fuzzy models of the master and

the slave chaotic systems are shown below:
Master:

Ẋ (t) =

∑φ

i=1
hi(t)

[
AiX (t) + ĀikX (t − τk)

]
+ m (6)

Slave:
˙̂X (t) =

∑σ

j=1
ĥj(t)

[
ÂjX̂ (t) +

∑g

k=1
ˆ̄Ajk X̂ (t − τk)

]
+ BU (t) + D(t) (7)

where m is the encrypted message and B is a real matrix. The
controller gains Kl(l = 1, 2, · · · σ ) are adjusted to synchro-
nize the slave system (7) with the master system (6) as soon
as possible.

D. IMPROVED GENETIC ALGORITHM
The GA approach seeks better feedback gains than the
LMI approach to accelerate synchronization. Moreover, the
IGA seeks better feedback gains than the GA approach and
speeds up synchronization. To improve the performance of
the GA-based control gain design, the IGA was used in this
study, as verified and proposed by Leung et al. [26]. The
key points of the IGA suggest that the chromosomes are
averagely arranged in the central and boundary regions of
the search domain after the crossover. The crossover gives
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the next generation more potential to locate global optimal
solutions. The improved crossover is stated as follows [26]
and [27]:

os1c =
[
os11 os12 · · · os1no

]
=
P1 + P2

2
(8)

os2c =
[
os21 os22 · · · os2no

]
= PMAX (1 − w) + MAX (P1,P2)w (9)

os3c =
[
os31 os32 · · · os3no

]
= Pmin(1 − w) + min (P1,P2)w (10)

os4c =
[
os41 os42 · · · os4no

]
=
(PMAX + Pmin) (1 − w) + (P1 + P2)w

2
(11)

in which

PMAX =
[
para1MAX para2MAX · · · paranovarsMAX

]
(12)

Pmin =
[
para1min para

2
min · · · paranovarsmin

]
(13)

where P1 and P2 are the two chromosomes selected from
the parent, os1c ∼ os4c are the chromosomes of the next
generation, min (P1,P2) and max (P1,P2) are the new chro-
mosomes where the genes are the minimum and maximum
genes in P1 and P2, and paraαmin, para

α
max are the lower and

upper bounds of the α th genes in the search domain. The
parameter w ∈ [0, 1] is arbitrarily selected. Eqs. (9), (10)
and Eqs. (8), (11) create two new chromosomes allotted in
the boundary area and in the central area, respectively, of the
search space.

In this study, the fitness function is defined as:

Fit(3) =
1

1 +
∑t

t=0
∑δ
η=0

∣∣eη3(t)∣∣ (14)

where Fit(3) is the fitness value of 3 th chromosome in
the population. eη∧(t) is the error of the 3 th chromosome in
the population. η represents the number of chromosomes and
3 represents the generation of chromosomes. tf denote the
calculation length of the fitness function.

Amutation can change the genes of chromosomes, thereby
modifying the inherited characteristics from parents [27].
The mutation process results in the generation of three new
offspring, which are described as follows:

nosj =
[
os1 os2 · · · osnovars

]
+

[
b11os1 b21os2 · · · bnovars1osnovars

]
,

j = 1, 2, 3 (15)

where bi, i = 1, 2, 3, . . . , novars is a value of 0 or 1 and1osi,
i = 1, 2, 3, . . . , novars are randomly generated numbers such
as paraimin ≤ osi + 1si ≤ para i

max . According to Eq. (15),
The first one (j = 1) is obtained by allowing one bi to be
one, and the others are zeros. Meanwhile, based on Eq. (15),
the second (j = 2) is obtained by having some of the bi set
to one. Eq. (15) shows that the third (j = 3) is obtained
by setting all of the bi to one. The fitness function given in
Eq. (14) evaluates the validity of these three new offspring.

As shown in the given equation, a real number is ran-
domly generated and compared with a user-defined number
ff ∈ [0, 1]. If the real number is smaller than ff , the one
with the highest fitness value among the three new offspring
will replace the chromosome with the smallest fitness fs in
the population. If the real number is greater than ff , the first
posterity nos1 will replace the chromosome with the smallest
fitness value fs in the population, if f (nos1) > fs; the second
and third offspring will do the same. ff successfully reduces
the feasibility of convergence to a local optimum by accepting
a bad posterity [27].

III. STABILITY ANALYSIS AND CHAOTIC
SYNCHRONIZATION
This section inspects the synchronization of multiple timede-
lay chaotic (MTDC) systems using the modeling errors’
influence. The exponential synchronization scheme for the
MTDC systems is depicted as follows.

A. ERROR SYSTEM
According to Eqs. (1) and (2), we define the synchronization
error as:

E(t) ≡ X̂ (t) − X (t) = [e1(t), e2(t), · · · , eδ(t)]T

The dynamics of the error system [34] with the fuzzy control
can be depicted below:

Ė(t) = 9̂ −9 + D(t)

=

∑φ

i=1

∑σ

l=1
hi(t)h̄l(t)

×

[
GilE(t) +

∑g

k=1
ĀikE (t − τk)

]
+ D(t) +8(t) (16)

in which

Gil ≡ Ai − BKl
9̂ ≡ f̂ (X̂ (t)) +

∑g

k=1
Ĥk

(
X̂ (t − τk)

)
+ U (t)

9 ≡ f (X (t)) +

∑g

k=1
Hk (X (t − τk))

with

U (t) = −

∑σ

l=1
h̄l(t)KlE(t)

8(t) ≡9̂ −9 −

{∑φ

i=1

∑σ

l=1
hi(t)hl(t) [GilE(t)

+

∑g

k=1
ĀikE (t − τk)

]}
.

There is a 8(t) between closed-loop nonlinear subsystem
and the closed-loop fuzzy model, 8(t) is the modeling error.
Suppose that exists a bounding matrix εqqil R such that:

∥8(t)∥ ≤

∑8

i=1

∑σ

l=1
hi(t)h̄l(t)ε

qq
il RE(t) (17)

in which
∥∥εqqil ∥∥ ≤ 1, for i = 1, 2, · · · , φ; l = 1, 2, · · · , σ

andR denotes the specified structured boundingmatrix. From
Eq. (17), we have:

8T (t)8(t)

≤

∑8

i=1

∑σ

l=1
hi(t)h̄l(t)

[
ε
qq
il RE(t)

]T
VOLUME 12, 2024 26313



F.-H. Hsiao, S.-W. Chang: Integrating RC6 Stream Cipher to a Chaotic Synchronization System

∑8

i=1

∑σ

l=1
hi(t)h̄l(t)ε

qq
il RE(t)

≤ [RE(t)]T [RE(t)] (18)

Specifically, 8(t) is bounded by the specified structured
bounding matrix R.
Remark 1 [35]: A small bounding matrix was first chosen

to satisfy the stability conditions. The validity of Eq. (17) is
then checked in the simulation. If Eq. (17) fails, the bounds
for all elements in εqqil R can be expanded and the design
procedure can be repeated until Eq. (17) holds.

ε
qq
il R =

 ε11il 0 0
0 ε22il 0
0 0 ε33il

  r11 r12 r13

r22 r22 r23

r33 r33 r33


where −1 ≤ ε

qq
il ≤ 1 for q = 1, 2, 3. Notice that εqqil

can be chosen by other forms as long as
∥∥εqqil ∥∥ ≤ 1. The

validity of Eq. (17) was then checked in the simulation. If it
is not satisfied, the bounds for all elements in εqqil Ril can be
expanded, and the design procedure can be repeated until
Eq. (17) holds.

B. DELAY-DEPENDENT STABILITY CRITERION FOR
EXPONENTIAL H∞ SYNCHRONIZATION
This subsection proposes a delay-dependent stability crite-
rion to ensure the exponential stability of the error system.
Some lemma and definitions are provided below before
inspecting the stability of the error system.
Lemma 1 [36]: For the real matrices A and B with appro-

priate dimension:

ATB+ BTA ≤ aATA+ a−1BTB

in which a is a positive constant.
Definition 1 [37], [38]: The slave system (2) can exponen-

tially synchronize with themaster system (1) if there exist two
positive numbers α and β so that the synchronization error
satisfies the following inequality:

∥E(t)∥ ≤ α exp (−β (t − t0)) , ∀t ≥ t0

in which the positive number β is referred to as the exponen-
tial convergence rate.
Definition 2 [39]: If the following conditions are satisfied,

the master system (1) and slave system (2) are so called in
exponential H∞ synchronization:
(i). With zero disturbance (that is to say D(t) = 0 ), the

error system with the fuzzy controller (5) is exponen-
tially stable.

(ii). Setting the initial conditions to be zero (that is to say
E(t) = 0 for t ∈ [−τmax , 0], in which τmax denotes the
maximal value of τk ) and a given constant ρ > 0, the
following condition holds:

2(E(t),D(t)) =

∫
∞

0
ET (t)E(t)dt

− ρ2
∫

∞

0
DT (t)D(t)dt ≤ 0 (19)

in which the parameter ρ is the disturbance attenuation
level. The parameter ρ is called the H∞-norm bound of this
controller. If the minimum ρ is found to meet the above con-
ditions (that is to say the error system can exclude the exterior
disturbance as strongly as possible), the fuzzy controller (5)
is an optimal H∞ synchronizer.
Theorem 1: For given the positive constants a, n, b, and

ξ , if there exist two symmetric positive definite matrices ψk
and P, so that the following inequalities hold, then the fuzzy
controller (5) ensures the exponential H∞ synchronization
with the disturbance attenuation ρ:

1il ≡

∑g

k=1
bGTilGil +

∑g

k=1
ψk + ngRTR+ I

+

∑g

k=1
τ 2k P

2
(
ξ−1

+ n−1
+ ga−1

+ b−1
)
< 0

(20a)

∇ik ≡ gaĀTik Āik − ψk < 0 (20b)

ρ >
√
ξg (20c)

where Gil ≡ Ai − BKl , for i = 1, 2, · · · , φ; l = 1, 2, · · · , σ
and τk (k = 1, 2, · · · ) are the time delays.

Proof: See the Appendix.
Corollary 1: Eq. (20a) and Eq. (20b) can be reformulated

into LMIs using the following procedure:
The new variables are introduced: Q = P−1,Gil ≡ Ai−

BKl and ψk = QψkQ. It is easy to demonstrate that the linear
matrix inequalities in Eq. (20a) and Eq. (20b) are equivalent
to the following LMIs in Eq. (21a) and Eq. (21b) based on
Schur’s complement [40]: 4 QRT (Ai − BKl)QT

RQT −(ng)−1I 0
Q (Ai − BKl)T 0 −(gb)−1I

 < 0 (21a)

[
−ψ̄k QĀTik
ĀikQ −(ga)−1I

]
< 0 (21b)

where

4 ≡

∑g

k=1
ψ̄k

+

∑g

k=1
τ 2k

(
ξ−1

+ n−1
+ ga−1

+ b−1
)
I + QIQ

Corollary 2: To accomplish exponential optimalH∞ syn-
chronization, the following constrained optimization problem
formulates the fuzzy control design:

minimize ρ >
√
ξg (22)

subject to ψk = ψT
k > 0,Q = QT .

The positive constant ξ is minimized by the mincx function
of MATLAB LMI Toolbox. Hence, we can get the minimum
disturbance attenuation level ρmin >

√
ξming

Remark 2: In order to reduce the computational burden,
this paper sets the positive constants a, n and b as unity.
Remark 3: According to Eq. (18), 8(t) is assumed to be

bounded by the specified structured bounding matrix R, and a
larger8(t) results in a largerR. Since thematrices1il must be
a negative definitematric tomeet the stability condition (20a),
a larger R will make Eq. (20) more difficult to satisfy.
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Remark 4: As inequality (20a) must be negative definite
matric to meet the stability condition, a larger delay τk will
make Theorem 1 more difficult to satisfy.

IV. ALGORITHM
In response to computers’ increasing computing capacity,
this study proposes a new encryption method that utilizes a
doubleencryption technique. The proposed method combines
the RC6 algorithm and chaotic synchronization to enhance
information security. The block diagram (Figure 6) consists
of an encrypter and a decrypter. T-S fuzzy models for the
master and slave systems of two different multiple time-delay
chaotic (MTDC) systems were developed. Using Lyapunov
functions, an exponential stability criterion was obtained, and
a fuzzy controller was designed based on this criterion to
achieve rapid synchronization, and then improve the system’s
transmission rate.

The plaintext and the key were used to obtain the ciphertext
through the encryption function of the RC6 algorithm (as
shown in Figure 6, bottom left corner). The ciphertext is
then forwarded to the master system. The ciphertext was
further loaded into the carrier wave, which was constructed
by the chaoticmasking signal for the double encryption, using
the characteristics of disarray and irregularities. In addition,
this study employed the improved genetic algorithm (IGA)
to accelerate the convergence of the error system during
master-slave system synchronization, and to seek better fuzzy
controller feedback gains to speed up the synchronization
(Figure 6, middle section). When the slave system is syn-
chronized with themaster system, the encrypted signal is then
sent to the slave system through the public channel (Figure 6,
bottom right corner). Then, the slave system filtered the
encrypted signal to obtain the ciphertext. Finally, the RC6
decryption algorithm decrypts the ciphertext using the key.

Step01. The plaintext and key are encrypted for the first
time using the RC6 encryption algorithm to obtain
the ciphertext.

Step02. The ciphertext is sent to the master system to add
the chaotic masking signal to obtain the encrypted
signal.

Step03. Takagi-Sugeno (T-S) fuzzy models of the master
system (1) and the slave system (2) are established.

Step04. The synchronization error is defined by the state
of the master system and the slave system, and the
error system (16) is established.

Step05. Use the Lyapunov function to find an exponential
stability.

Step06. A PDC fuzzy controller that can quickly achieve
synchronization is designed according to the
abovementioned exponential stability criterion.

Step07. Considering that the system will be disturbed by
noise, the fuzzy controller is improved to optimal
H∞ fuzzy controller to overcome the influence of
noise on chaos synchronization.

FIGURE 6. The chaotic synchronization cryptosystem.

Step08. Transforms the exponential stability criterion for
the error system into an LMI form.

Step09. The parameters of the fuzzy controller satisfy-
ing the above LMI are obtained by using the
LMI Toolbox of the numerical simulation software
(MATLAB).

Step10. Evolving this parameter as the original popula-
tion of the Improved Genetic Algorithm (IGA) to
search for better fuzzy controller feedback gains
to speed up the synchronization of the master and
slave systems.

Step11. After the encrypted signal is transmitted through
the public channel to filter the chaotic masking
signal from the system, the ciphertext can be
obtained.

Step12. Based on RC6 decryption function, the plaintext
recovers from the ciphertext.

V. NUMERICAL EXAMPLE
The following example demonstrates the algorithm described
in this study.
Problem: This example employed a fuzzy controller to

achieve a secure, chaotic communication system. Consider
the following modified multiple time-delay Genesio and
Rossler chaotic systems in the master-slave configuration:

ẋ1(t) = 0.3 ∗ [x2(t) − x1(t)]
ẋ2(t) = −8.5 ∗ x1(t) − 0.2 ∗ x1(t) ∗ x3(t)
ẋ3(t) = −5x3(t) + 5x21 (t) + 0.3 x1(t − 0.05)

+0.3 x2(t − 0.1) + 0.3 x3(t − 0.09)

(23)
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and 

˙̂x1(t) = −x̂2(t) − x̂3(t) + D1(t)
˙̂x2(t) = x̂1(t) + 0.2x̂2(t) + D2(t)
x̂3(t) = 0.43 + x̂1(t)x̂3(t) − 4.5x̂3(t)

+x̂1(t − 0.06) + x̂2(t − 0.13)
+x̂3(t − 0.02) + D3(t)

(24)

where [x1(t)x2(t)x3(t)]T and [x̂1(t)x̂2(t)x̂3(t)]T are the state
vectors of the master and slave systems, respectively. Let
the initial conditions of the master and slave systems
be: [x1(0) = −0.2 x2(0) = −3 x3(0) = 0.4] and [x̂1(0) =

−0.6x̂2(0) = −0.4x̂3(0) = 2], respectively, and let the exter-
nal disturbance be:

D1 = 0.2 × sin(1.3 × t)

D2 = 0.1 × cos(1.4 × t)

D3 = 0.3 × sin(0.5 × t) (25)

Figure 7 and Figure 8 show the chaotic behaviors of the
master (23) and slave (24) systems.

FIGURE 7. Chaotic behavior of the Genesio_master system (23).

Step1: Use RC6 encryption function to encrypt plaintext
and key into ciphertext.

In this paper, the plaintext is ‘‘NUTNEE’’.
Set key as ‘‘M11082015’’.
Then, RC6 algorithm can be started in ECB mode to

encrypt the plaintext.
The encrypted message is obtained:
‘‘2b58839dc013b66e5c6c1d1808ad7a6b’’
In order to combine the master system, the encrypted mes-

sage is converted into decimal as

57616395436226993457273318016337934955

(2B58839DC013B66E5C6C1D1808AD7A6B)16

=

(
2 × 1631

)
+

(
11 × 1630

)
+

(
5 × 1629

)
+

(
8 × 1628

)
+

(
8 × 1627

)
+

(
3 × 1626

)
+

(
9 × 1625

)
+

(
13 × 1624

)
+

(
12 × 1623

)
+

(
0 × 1622

)
+

(
1 × 1621

)
+

(
3 × 1620

)
+

(
11 × 1619

)

FIGURE 8. Chaotic behavior of the Rossler_slave system (24).

+

(
6 × 1618

)
+

(
6 × 1617

)
+

(
14 × 1616

)
+

(
5 × 1615

)
+

(
12 × 1614

)
+

(
6 × 1613

)
+

(
12 × 1612

)
+

(
1 × 1611

)
+

(
13 × 1610

)
+

(
1 × 169

)
+

(
8 × 165

)
+

(
0 × 167

)
+

(
8 × 166

)
+

(
10 × 165

)
+

(
13 × 164

)
+

(
7 × 163

)
+

(
10 × 162

)
+

(
6 × 161

)
+

(
11 × 169

)
= (57616395436226993457273318016337934955)10

Because the value is huge, it is multiplied by 10−38, and the
encrypted message

0.57616395436226993457273318016337934955

Step2: The encrypted messagem combines with the master
system (23).

ẋ1(t) = 0.3 ∗ [x2(t) − x1(t)] + m
ẋ2(t) = −8.5 ∗ x1(t) − 0.2 ∗ x1(t) ∗ x3(t)
ẋ3(t) = −5x3(t) + 5x21 (t) + 0.3 x1(t − 0.05)

+0.3 x2(t − 0.1) + 0.3 x3(t − 0.09)

(26)

Figure 9 shows the chaotic behaviors of the Genesio mas-
ter (26) system with the encrypted message m.
Step3: A T-S fuzzy model is constructed for the system.

In order to reduce as few rules as possible, the chaotic system
(24,26) is expressed as the following fuzzy model:

The fuzzy model of the master system :

Rule 1 :

IF x1(t) is M11,

Then Ẋ (t) = A1X (t) +

∑3

k=1
Ā1kX (t − τk)+ m (27a)

Rule 2 :

IF x1(t) is M21,

Then Ẋ (t) = A2X (t) +

∑3

k=1
Ā2kX (t − τk)+ m (27b)
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FIGURE 9. Chaotic behavior of the Genesio master system with m (26).

where [x1(t) x2(t) x3(t)]T ,

τ1 = 0.05, τ2 = 0.1, τ3 = 0.09,

A1 =

 0 1 0
0 0 1

−15.3110 −3.5 −2

 ,
A2 =

 0 1 0
0 0 1

−15.7547 −3.5 −2

 ,
A11 =

 0 0 0
0 0 0
0.5 0 0

 ,A21 =

 0 0 0
0 0 0
0.5 0 0

 ,
A12 =

 0 0 0
0 0 0
0 0.5 0

 ,A22 =

 0 0 0
0 0 0
0 0.5 0

 ,
A13 =

 0 0 0.5
0 0 0
0 0 0

 ,A23 =

 0 0 0.5
0 0 0
0 0 0

 (28)

and the membership functions for Rules 1 and 2 are:

M11 (x1(t)) =


1 x1(t) ≥ −15.311
x1(t) + 15.7547

−15.311 + 15.7547
− 15.311 > x1(t)

> −15.7547
0 x1(t) ≤ −15.7547

M21 (x1(t)) = 1 −M11 (x1(t)) (29)

The fuzzy model of the slave system :

Rule 1:

IF x1(t) is M11,

Then ˙̂x(t) = Â1X̂ (t) +

∑3

k=1
Â1k X̂ (t − τk)+ D(t)

(30a)

Rule 2:

IF x1(t) is M21,

Then ˙̂x(t) = Â1X̂ (t) +

∑3

k=1
Â1k X̂ (t − τk)+ D(t)

(30b)

where [x̂1(t)x̂2(t)x̂3(t)]T ,

τ1 = 0.06, τ2 = 0.13, τ3 = 0.02

Â1 =

 0 − 1 − 1
1 0.2 0
0 0 − 2.6012

 , Â2 =

 0 − 1 − 1
1 0.2 0
0 0 − 6.6913


Â11 =

 0 0 0
0 0 0
1 0 0

 , Â21 =

 0 0 0
0 0 0
1 0 0

 , Â12 =

 0 0 0
0 0 0
0 1 0

 ,
Â22 =

 0 0 0
0 0 0
0 1 0

 , Â13 =

 0 0 0
0 0 0
0 0 1

 , Â23 =

 0 0 0
0 0 0
0 0 1

 ,
B =

 1 0 0
0 1 0
0 0 1

 (31)

and the membership functions for Rules 1 and 2 are:

M̂11 (x̂1(t)) =


1 x̂1(t) ≥ −2.6012
x̂1(t) + 6.6913

−2.6012 + 6.6913
−2.6012 > x̂1(t) > −6.6913

0 x̂1(t) ≤ −6.6913

M̂21 (x̂1(t)) = 1 − M̂11 (x̂1(t)) (32)

Step 4: To synchronize the slave system with the master
system, a fuzzy controller is synthesized as below:

Control Rule 1:

IF e1(t) is M1,

THEN U (t) = −K1E(t)

Control Rule 2:

IF e1(t) is M2,

THEN U (t) = −K2E(t) (33)

in which M1 and M2 denote the membership functions for
each e1 (see Figure 10 ):

M1 (e1(t)) =


1, e1(t) ≥ 10

(
1

( e1(t)−3
2 )4

), e1(t) ≤ −10

0, e1(t) > −10

M2 (e1(t)) =


0, e1(t) > −10

(1 −
1

( e1(t)−3
2 )4

), 10 > e1(t) ≤ −10

1, e1(t) > −10

(34)

Based on Eq. (5), the fuzzy controller is obtained as:

U (t) =

∑2
l=1 wl(t)KlE(t)∑2

l=1 wl(t)
= −

∑2

l=1
h̄l(t)KlE(t) (35)

with wl(t) = M1 (e1(t)) , h̄l(t) ≡
wl (t)∑2
l=1 wl (t)

.
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FIGURE 10. Membership of the controller.

According to Eq. (16), the dynamics of the error system is
obtained as follows:

Ė(t) =

∑2

i=1

∑2

l=1
hi(t)h̄l(t)

×

[
GilE(t) +

∑3

k=1
ĀikE (t − τk)

]
+ D(t) +8(t) (36)

where

Gil ≡ Ai − BKl,

9̂ ≡ f̂ (X̂ (t)) +

∑3

k=1
Ĥk

(
X̂ (t − τk)

)
+ U (t),

with

U (t) = −

∑2

l=1
h̄l(t)KlE(t)

9 ≡ f (X (t)) +

∑3

k=1
Hk (X (t − τk))

8(t) ≡ 9̂ −9 −

{∑2

i=1

∑2

l=1
hi(t)hl(t) [GilE(t)

+

∑3

k=1
ĀikE (t − τk)

]}
.

Step 5: In this article, we use IGA to aid in the design of
feedback gains.

LMI
On the basis of Eqs. (27)-(36), the LMIs in Eqs. (21a)

and (21b) can be solved by the MATLAB LMI Toolbox with
a = 1, n = 1, b = 1, and the resulting feedback gains are:

K1 =

416.0950 0.0002 −0.0029
0.0002 416.0950 −0.0005

−0.0029 −0.0005 416.0942

 (37a)

K2 =

416.0948 0.0002 −0.0029
0.0002 416.0948 −0.0005

−0.0029 −0.0005 416.0940

 (37b)

IGA(LMI)
IGA has a random search ability for near-optimal solutions.

Due to its search ability, IGA can seek better fuzzy con-
troller feedback gains, thus, speeding up the synchronization.
In addition, an increased distortion appears in the filter when
the feedback gain becomes too large. The lower and upper

bounds were set in this study. According to Eqs. (37a)-(37b),
the feedback gains of the search space is set as (L1x ,L2x) ∈[
102, 104

]
and

(
L1y,L2y

)
∈ [−1, 1] for x = 1, 5, 9; y =

2, 3, 4, 6, 7, 8. Table 4 shows that the repeated experiments
determine the values of w and Pm with the best fitness values.

TABLE 4. Comparison for 32-bytes key.

For the IGA has the properties of search globalization and
convergence speed. We tried a variety of w and Pm to provide
IGA with better search efficiency. Table 5 shows that the
fitness values of IGA involve 100 generations with fixed w
and Pm.

After executing the IGA search process, the resulting feed-
back gains are obtained:

K1 = 103 ×

7.2378 2.9923 2.6014
3.8361 7.7143 3.3107
3.8155 3.2546 8.5128


K2 = 103 ×

8.6288 3.8936 4.5306
3.2325 7.8468 2.0663
3.3548 3.6364 7.1467


Evolutions of the fitness values are shown in Figure 11. The
best parameters for IGA are shown in Figure 11 and Table 5.2.
The fitness value is 0.77440984.

Step 6: According to Eqs. (27)-(37), the LMIs in Eq. (21a)
and (21b) can be solved using the MATLAB LMI Toolbox.
Following Remark 3.1, the specified structured bounding

matrices R and εil are set as R =

 5000 0 0
0 5000 0
0 0 5000

 , εil = 1 0 0
0 1 0
0 0 1

. The positive constant ξ is minimized by themincx

function of the MATLAB LMI Toolbox: ξmin = 4.2683 ∗

10−7; the minimum disturbance attenuation level ρmin =

1.1 ∗ 10−3 is thus obtained.
Step 7: The common solutionsQ,F1,F2, ψ1, ψ2 andψ3 of

the stability conditions (20a) and (20b) can be obtained with
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TABLE 5. The fitness values of IGA with various w and Pm.

FIGURE 11. Fitness values of IGA.

the best value tmin of LMI Solver (MATLAB), which is
−1.0371 ∗ 104:

Q = 10−3
×

 0.2658 −0.0839 −0.0847
−0.839 0.2599 −0.0575
−0.0847 −0.0575 0.2572



FIGURE 12. (a) State responses of both master and slave systems (t = 0
50 sec). (b) State responses of both master and slave systems (t = 0
0.02 sec).

P = Q−1
= 103 ×

5.1255 2.1342 2.1650
2.1342 4.9368 1.8060
2.1650 1.8060 5.0048


ψ̄1 = ψ̄2 = ψ̄3 =

19.4646 1.8834 0.7212
1.8834 20.4253 1.4763
0.7212 1.4763 21.6891


Figure 12 displays the state responses of both master and

slave systems. The chaotic behaviors of the master and slave
systems are shown in Figure 13. Furthermore, the assumption
of Eq. (17) is satisfied shown in Figure 14.

∥8(t)∥ ≤

∑8

i=1

∑σ

l=1
hi(t)h̄l(t)ε

qq
il RE(t) (see(17))

Step 8: When the slave system synchronizes with the mas-
ter system, the plaintext can be restored from the output error
signal and the decryption function. The encrypted messagem
is thus obtained:

0.57616395436226993457273318016337934955
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FIGURE 13. The chaotic behaviors of the master and slave systems.

FIGURE 14. Plots of ∥8(t)∥ (blue line) and
∑2

i=1
∑2

l=1 h1(t) h1(t)
ε

qq
il RE(t) (red line).

To obtain the encrypted message, it must be multiplied
by 1038:

57616395436226993457273318016337934955

The encrypted message m is then converted to Hex code:
‘‘2b58839dc013b66e5c6c1d1808ad7a6b’’

With key ‘‘M11082015’’, RC6 decryption algorithm can
be started in EBC mode to decrypt the encrypted message.

Finally, the plaintext is obtained :

‘‘NUTNEE’’.

VI. FINDINGS AND DISCUSSION
In the past, feedback gains were resolved through
trial-anderror and empirical methods. In order to speed up
the synchronization, a new algorithm using IGA to solve
the problem of feedback gains is proposed in this study.
Figures 15a−15c show the synchronization errors (e1, e2, e3)
based on the IGA approach, which exhibited better conver-
gence speed compared with the GA approach and the LMI
approach. It is confirmed that the IGA approach can seek
better feedback gains than those sought by the GA approach
and the LMI approach, because the IGA’s random search
ability enables it to find nearly optimum solutions.

In summary, given IGA’s ability to randomly search for
the best solution in the entire domain, it is possible to find
better feedback gains of the fuzzy controller to accelerate the

FIGURE 15. (a) State responses of e1. (b) State responses of e2. (c) State
responses of e3.

error system’s convergence, allowing the multiple timedelay
chaotic (MTDC) systems to achieve synchronization more
quickly. Furthermore, owing to the characteristics of chaos:
disarray and irregularities, the chaotic systems are used to
increase complexity, and then to enhance the security of
cryptosystems.
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VII. CONCLUSION
This paper uses an IGA-based fuzzy control to propose
a novel method for achieving the multiple time-delay
chaotic (MTDC) systems’ exponential optimal H∞ syn-
chronizations. This study merged the concepts of chaotic
synchronization and cryptography to achieve a more secure
communication system. Disarray and irregularities are the
features of chaos which is used to increase complexity,
and then to enhance the security of cryptosystems. How-
ever, a chaotic system can be quickly recognized in the
time domain by using one of its state variables. This paper
further improved the cryptosystem by combining chaotic syn-
chronization with the RC6 encryption technique to prevent
attacks. The suggested technique may safeguard the cipher-
text while promoting a more secure communication system.

T-S fuzzy models were used first to simulate the MTDC
systems. The influence of modeling mistakes between the
MTDC systems and T-S fuzzy models was then addressed
using the proposed robust fuzzy control scheme. Lyapunov’s
direct technique integrated a delay-dependent stability cri-
terion to ensure that the slave system can exponentially
synchronize with the master system. Then, the linear matrix
inequalities (LMIs) were used to rewrite the stability crite-
rion. A model-based fuzzy controller was created based on
LMIs to exponentially stabilize the error systems. The lower
and upper bounds of the search space were established based
on the feedback gains obtained through the LMI technique.
This allows the Improved Genetic Algorithm (IGA) to seek
better feedback gains of the fuzzy controller and speed up
the synchronization. Furthermore, a synthesized fuzzy con-
troller realizes exponential synchronization and achieves the
optimal H∞ performance by minimizing the disturbance
attenuation level. Based on the RC6 decryption function,
the plaintext recovery from the decrypted message and the
key can be achieved. Lastly, the simulation results revealed
that the exponential H∞ synchronization of the two different
MTDC systems could be achieved by the designed fuzzy
controller.

The future direction of this research could involve the
exploration of multi-model communication systems, aiming
to investigate how to integrate chaotic synchronization with
other communication technologies, such as optical commu-
nication or acoustic wave communication. This integration
aims to create more versatile communication systems that
enhance both safety and efficiency. Additionally, these results
will be applied to practical systems, including secure commu-
nication equipment and network security systems, to empiri-
cally validate the theoretical research’s real-world impact.

APPENDIX
PROOF OF THEOREM 1
We define the Lyapunov function for the error system (16) as:

V (t) =

g∑
k=1

ET (t)τkPE(t)

+

g∑
k=1

∫ τk

0
ET (t − π )ψkE(t − π )dπ (38)

where the weighting matrices P = PT > 0 and ψk = ψT
k >

0. Referring to Definition 2, the initial conditions are set to be
zero (i.e., E(t) ≡ 0 for t ∈ [−τmax, 0], in which τmax denotes
the maximal value of time delay τk). We then evaluate the
time derivative ofV (t) on the trajectories of Eq. (16) to obtain:

V̇ (t) =

∑g

k=1
τk

[
ĖT (t)PE(t) + ET (t)PĖ(t)

]
+

∑g

k=1

[
ET (t)ψkE(t)−ET (t−τk) ψkE (t−τk)

]
=

∑g

k=1
τk

{∑φ

i=1

∑σ

l=1
hi(t)hl(t) [GilE(t)

+

∑g

d=1
ĀidE (t − τd )

]
+ D(t) +8(t)

}T
PE(t)

+

∑g

k=1
τkET (t)P

{∑φ

i=1

∑σ

l=1
hi(t)hl(t)

×

[
GilE(t) +

∑g

d=1
ĀidE (t − τd )

]
+D(t) +8(t)} +

∑g

k=1

[
ET (t)ψkE(t)

−ET (t − τk) ψkE (t − τk)
]

=

∑g

k=1

∑φ

i=1

∑σ

l=1
hi(t)h̄l(t)ET (t)

[
τkGTilP

+ τkPGil + ψk ]E(t)

+

∑g

k=1

∑φ

i=1

∑g

d=1
hi(t)τk

[
ET (t

− τd ) ĀTidPE(t) + ET (t)PĀidE (t − τd )
]

+

∑g

k=1
τk

[
DT (t)PE(t) + ET (t)PD(t)

+ 8T (t)PE(t) + ET (t)P8(t)
]

−

∑g

k=1

[
ET (t − τk) ψkE (t − τk)

]
(39)

According to Lemma 1 and Eq. (39):

V̇ (t) ≤

∑g

k=1

∑φ

i=1

∑σ

l=1
hi(t)h̄l(t)ET (t)

[
bGTilGil

+ b−1τ 2k P
2
+ ψk

]
E(t)

+

∑g

k=1

∑φ

i=1

g∑
d=1

hi(t)
[
aET (t

− τd ) ĀTid ĀidE (t − τd )+ a−1ET (t)τ 2k P
2E(t)

]
+

∑g

k=1

[
ξDT (t)D(t) + ξ−1ET (t)τ 2k P

2E(t)

+ n8T (t)8(t) + n−1ET (t)τ 2k P
2E(t)

]
−

∑g

k=1

[
ET (t − τk) ψkE (t − τk)

]
(40)

≤

∑g

k=1

∑φ

i=1

∑σ

l=1
hi(t)h̄l(t)ET (t)

[
bGTilGil

+ b−1τ 2k P
2
+ ψk

]
E(t)

+

∑g

k=1

∑φ

i=1

∑g

d=1
hi(t)

[
aET (t

− τd ) ĀTid ĀidE (t − τd )+ a−1ET (t)τ 2k P
2E(t)

]
+

∑g

k=1

[
ξDT (t)D(t) + ξ−1ET (t)τ 2k P

2E(t)

VOLUME 12, 2024 26321



F.-H. Hsiao, S.-W. Chang: Integrating RC6 Stream Cipher to a Chaotic Synchronization System

+ n ET (t)RTRE(t) + n−1ET (t)τ 2k P
2E(t)

]
−

∑g

k=1

[
ET (t − τk) ψkE (t − τk)

]
(41)

=

∑φ

i=1

∑σ

l=1
hi(t)h̄l(t)ET (t)

{
ngRTR

+

∑g

k=1

[
bGTilGil + ψk + τ 2k P

2
(
ξ−1

+ n−1

+ b−1
+ ga−1

)]}
E(t)

+

∑g

k=1

∑φ

i=1
hi(t)ET (t − τk)

[
gaĀTik Āik

− ψk ]E (t − τk)+ ξgDT (t)D(t) (42)

From Eq. (42) and Definition 2:

V̇ (t)E(t) − ρ2DT (t)D(t)

≤

φ∑
i=1

σ∑
l=1

hi(t)h̄l(t)ET (t)1ilE(t)

+

φ∑
i=1

g∑
k=1

hi(t)ET (t − τk)∇ikE (t − τk)

+

(
ξg− ρ2

)
DT (t)D(t)

≤

φ∑
i=1

σ∑
l=1

hi(t)h̄l(t)λmax (1il)ET (t)E(t)

+

φ∑
i=1

g∑
k=1

hi(t)λmax (∇ik)ET (t − τk)E (t − τk)

+

(
ξg− ρ2

)
DT (t)D(t)

< 0 (43)

where

1il ≡

∑g

k=1
bGTilGil +

∑g

k=1
ψk + ngRTR+ I

+

∑g

k=1
τ 2k P

2

×

(
ξ−1

+ n−1
+ ga−1

+ b−1
)

(see (20a))

∇ik ≡gaĀTik Āik − ψk (see (20b))

We can get the following inequality by integrating Eq. (43)
from t = 0 to t = ∞:

V (∞) − V (0) +

∫
∞

0
ET (t)E(t)dt

− ρ2
∫

∞

0
DT (t)D(t)dt ≤ 0

With zero initial conditions (i.e., E(t) ≡ 0 for t ∈

[−τmax , 0]), we have:∫
∞

0
ET (t)E(t)dt ≤ ρ2

∫
∞

0
DT (t)D(t)dt

That is, the H∞ control performance (19) is realized with a
prescribed attenuation ρ. Since∑g

k=1
λmin(P)τkET (t)E(t)

≤

∑g

k=1
ET (t)τkPE(t)

= V (t) −

∑g

k=1

∫ τk

0
ET (t − π )ψkE(t − π )dπ

< V (t),

the following inequality can be obtained from Eq. (43):

V̇ (t) + ET (t)E(t) − ρ2DT (t)D(t)

<

φ∑
i=1

σ∑
l=1

hi(t)h̄l(t)

 λmax (1il)
g∑

k=1
τkλmin(P)

V (t)

< 0 (44)

Then, the following is obtained:

V (t)|D(t)=0 ≤ V (t0) expβ̄ (t − t0) (45)

where

β̄ =

φ∑
i=1

σ∑
l=1

hi(t)h̄l(t)

 λmax (1il)
g∑

k=1
λmin(P)

 . (46)

Eqs. (38) and (45) show that:∑g

k=1
τkλmin(P)ET (t)E(t)

≤

∑g

k=1
ET (t)τkPE(t)

= V (t) −

∑g

k=1

∫ t

t−τk
ET (π )ψkE(π )dπ

< V (t0) expβ̄ (t − t0)

−

∑g

k=1

∫ t

t−τk
ET (π )ψkE(π )dπ

< V (t0) expβ̄ (t − t0)

That is, ∥E(t)∥2 <
V (t0)

g∑
k=1

τkλmin(P)
expβ̄ (t − t0). According to

Definition 1, it is concluded that:

∥E(t)∥ ≤ αexp (−β (t − t0))

with α ≡

√√√√√ V (t0)
g∑

k=1
λmin(P)

> 0 (47)

and β = −
1
2
β̄ > 0. (48)

Therefore, based on Definition 1, the error system (16) under
the fuzzy controller (5) is exponentially stable for D(t) = 0.
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