
Received 18 January 2024, accepted 8 February 2024, date of publication 9 February 2024, date of current version 28 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3365054

cKd-tree: A Compact Kd-tree
GILBERTO GUTIÉRREZ 1, RODRIGO TORRES-AVILÉS2, AND MÓNICA CANIUPÁN 2
1Departamento de Ciencias de la Computación y Tecnologías de Información, Universidad del Bío-Bío,Chillán 3800708, Chile
2Departamento de Sistemas de Información, Universidad del Bío-Bío, Chillán 3800708, Chile

Corresponding author: Mónica Caniupán (mcaniupan@ubiobio.cl)

This work was supported in part by the Agencia Nacional de Investigación y Desarrollo de Chile (ANID) under Grant 1230647, in part by
the Algoritmos y Bases de Datos (ALBA) Group under Grant 2130591 GI/VC, and in part by the Research Grant under Project INES I+D
22-14 and Project 2130520 IF/R.

ABSTRACT In the context of Big Data scenarios, the presence of extensive static datasets is not uncommon.
To facilitate efficient queries on such datasets, the utilization of multiple indexes, such as the Kd-tree,
becomes imperative. The current scale of managed points may, however, exceed the capacity of primary
memory, posing a significant challenge. In this article we introduce cKd-tree, a compact data structure
designed to represent a Kd-tree efficiently. The structure cKd-tree is essentially an encoding of the spiral
code sequence of points within an implicit Kd-tree (iKd-tree) using Directly Addressable Codes (DACs).
The unique feature of cKd-tree lies in its ability to perform spiral encoding and decoding of points by
relying solely on knowledge of their parent points within the iKd-tree. This inherent property, combined with
DACs’ direct access capability to sequence elements, enables cKd-tree to traverse and explore the tree while
decoding only the nodes relevant to queries. The article details the algorithms necessary for creating and
manipulating a cKd-tree, as well as algorithms for evaluating two fundamental queries over points: the point
query and the range query. To assess the performance of cKd-tree, a series of experiments are conducted,
comparing it with iKd-tree and k2-tree data structures. The evaluationmetrics include compression efficiency
and execution time of queries. cKd-tree achieves a compression ratio comparable to that of k2-tree,
approximately 70%, demonstrating heightened efficiency, particularly in scenarios characterized by sparse
data. Additionally, consistent with expectations, k2-tree exhibits superior performance in querying individual
points, whereas cKd-tree outperforms in the context of aggregate data queries, such as range queries.

INDEX TERMS Compression, indices, spatial data, spatial points, spatial queries.

I. INTRODUCTION
Consider a set of points of interest denoted as S, where
the requirement involves executing multiple queries over
this set. Various multidimensional data structures have been
devised for the storage and efficient querying of such points.
Noteworthy among these structures are the Kd-tree [1],
BSP-tree [2], and Quadtree [3] (for further insights, see [4]
and [5]). These structures enable the execution of diverse
single and aggregate queries without necessitating a full scan
of the entire dataset. However, these structures also provide
the flexibility to modify the set S through operations such as
insertion or deletion of points, albeit at the cost of requiring
additional O(|S|) space for storing pointers.

The associate editor coordinating the review of this manuscript and

approving it for publication was Dominik Strzalka .

Many of these structures are designed with the assumption
that sets of points are dynamic, meaning they can grow
or shrink over time, necessitating support for operations
like insertions and deletions. Consequently, these structures
are tailored to handle dynamic sets efficiently. In contrast,
when dealing with static sets-where the number of points
remains constant over time-data structures can focusing on
implementing operations that do not alter set size. This
results in more cost-effective implementations in terms of
storage, as the algorithm proposed in [6] that constructs
a static Kd-tree in O(dn log n) time. This static Kd-tree is
implicitly stored in an array, without using pointers, making it
occupy less storage while maintaining navigation efficiency
comparable to its dynamic counterpart.

Over the past few decades, there has been a pronounced
surge in the exploration and development of compact data
structures (CDS), drawing significant interest from both

28666

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-6059-1453
https://orcid.org/0000-0003-1543-2378
https://orcid.org/0000-0002-8887-4321

GUTIÉRREZ et al.: cKd-tree: A Compact Kd-tree

academic and industrial sectors. In essence, a compact
data structure compresses static data, minimizing storage
requirements and facilitating data processing without the
need for prior decompression. The latter characteristic
empowers the processing of larger datasets directly in main
memory. Additionally, the size of the dataset influences the
placement of the compact data structure in the memory
hierarchy, potentially positioning it at higher levels (closer
to the CPU). This strategic placement enhances overall
performance, offering a versatile and resource-conscious
approach to managing and querying datasets. The utilization
of compact data structures presupposes the static nature of
the data, or alternatively, a substantially lesser frequency of
modifications compared to the frequency of queries.

An illustrative example is found in [7], where the
authors introduce the k2-tree, a CDS originally designed
for representing web graphs but applicable to encoding any
binary relationship. In information retrieval, foundational
CDSs encompass Wavelet trees [8], [9], the Compressed
Suffix Array (CSA) [10], [11], and the FM-Index [12].
Furthermore, CDSs have found utility in diverse fields like
Geographical Information Systems, where they optimize
query processing [13], [14], [15]. For an insightful overview
of compact data structures, the book [16] stands as an
excellent resource, providing a comprehensive review of the
advancements and applications in this evolving domain.

The data structures employ a point encoding mechanism to
store information efficiently, reducing the amount of data that
needs to be stored. One such encoding method is the spiral
code, as utilized in [17]. The spiral code involves storing the
distance from each point to its parent point, resulting in a
more concise representation of information. This approach
minimizes the amount of registered data, optimizing storage
efficiency.

In this work, we introduce a compact version of the Kd-
tree designed for storing a set of static points S ⊆ N2,
named the cKd-tree. We focused our attention on the Kd-tree,
given its prominence as one of the most widely employed
structures for indexing spatial and geometric data [4]. The
cKd-tree we propose utilizes a spiral encoding scheme to
encode the points within the implicit Kd-tree, resulting in a
sequence C of integers. This sequence is then represented
using Directly Addressable Codes (DACs), a method that
encodes integer numbers and facilitates direct access [18].
The resulting cKd-tree achieves a highly efficient and
minimalistic representation of the underlying static point set.

The cKd-tree demonstrates a notable reduction (approxi-
mately 70%) in storage requirements, preserving the capa-
bility to execute standard Kd-tree queries. However, it incurs
an additional querying cost of O(log2 m) per node, where m
signifies the maximum value within the sequence C . This
supplementary cost becomes negligible when dealing with a
vast number of points, given that iKd-tree, due to its inability
to fit into main memory, necessitates queries involving
secondary memory. In contrast, our proposal exhibits a
significantly higher threshold for fitting withinmainmemory.

Notably, this compact data structure introduces the advantage
of requiring decoding solely for the points along the
navigation path of the tree during query operations.

We present the algorithms for constructing and querying
the structure, accompanied by a theoretical and experimental
analysis in comparison to the baseline k2-tree. As anticipated,
the comparison with k2-tree reveals that for individual data
queries, such as determining if a point belongs to S, our
proposal is comparatively slower (similar to the original
iKd-tree). However, when querying aggregate data, as in the
case of a range query, our proposal demonstrates superior
efficiency.

The subsequent sections of this article are structured as
follows: Section II delves into relatedwork, offering a contex-
tual overview. In Section III, the foundational data structures
and algorithms that underpin our proposed structure are
expounded upon. Section IV provides an exploration of the
cKd-tree compact data structure, accompanied by detailed
discussions on query processing algorithms (Section IV-B)
and a comprehensive analysis of complexity (Section IV-C).
Moving forward, Section V presents and discusses the exper-
imental results. Finally, Section VI presents the conclusions
drawn from this work and outlines directions for future
research.

II. RELATED WORK
Various dynamic data structures are available for storing
points in both primary and secondary memory. One of the
earliest and widely adopted structures is the Kd-tree [1]. A
Kd-tree is a hierarchical structure, specifically a binary tree,
where the space or subspace undergoes recursive subdivision
through iso-oriented hyperplanes of d − 1 dimensions [4].
Notably, the efficacy of a Kd-tree is contingent upon
the order in which objects are inserted. However, despite
this sensitivity, insertion, deletion, and search operations,
on average, exhibit temporal bounds of O(log2 n), with n
denoting the size of the point sets.

The BSP-tree, very similar to the Kd-tree, is a multidimen-
sional data structure that shares the concept of recursively
partitioning space using d − 1 dimensional hyperplanes.
Notably, these hyperplanes in the BSP-tree need not be
iso-oriented. In contrast to the Kd-tree, where partitions
alternate between different dimensions, the BSP-tree adapts
its partitions based on the distribution of objects within the
space or subspace.

Another notable data structure is the Quad-tree [3],
renowned for its various variants. This structure, like the
Kd-tree, employs recursive division of space or subspace
through iso-oriented hyperplanes. However, a key distinction
lies in the fact that each internal node of the Quad-tree
typically has 2d children. Unlike Kd-trees, these structures
are predominantly designed for dynamic object sets and are
commonly implemented using pointers.

In recent developments, these data structures have under-
gone adaptations to accommodate static sets of multidimen-
sional objects. Notably, in [6], an algorithm was introduced

VOLUME 12, 2024 28667

GUTIÉRREZ et al.: cKd-tree: A Compact Kd-tree

for constructing a static Kd-tree tailored for a set of points
S with a height of O(log2 n), where n = |S|. This
implementation eliminates the need for pointers, directly
storing points in an array. The resulting structure is referred
to as iKd-tree [19]. To achieve this efficiency, the algorithm
initially sorts the set along each dimension, incurring a total
cost of O(d · n log2 n). Subsequently, in a second step with
a time complexity of O(n), the algorithm selects the median
of the array as the root node of the iKd-tree, proceeding
recursively with each sub-array and alternating the coordinate
for partitioning [19].

Moreover, compact data structures offer an alternative for
representing points, exemplified by the k2-tree [7]. In this
structure, points are derived from an adjacency matrix A,
where a point p(x, y) in the set is symbolized by a stored
value of 1 in the cell A[x, y]. Essentially, the set of points
forms a subset of the Cartesian product across d dimensions.
The k2-tree is constructed recursively, startingwith a partition
of k2 sub-matrices within matrix A, leading to the creation
of the root node of the k2-tree with k2 children. Sub-
matrices lacking points (entirely containing zeros) remain
unpartitioned, with a corresponding zero bit recorded in those
nodes. Conversely, sub-matrices containing at least one cell
with the value 1 undergo recursive subdivision, generating
a new internal node where a bit is set to 1 and stored. This
process continues until reaching cells of size 1 × 1. The
versatility of this compact structure extends across diverse
application domains, including graph representations [7],
raster data [20], and points in N2 [14]. Noteworthy is the
k2-tree’s ability to store static sets of points without relying on
pointers, making it a foundational structure for comparative
analysis in our study.

III. BACKGROUND
This section provides an overview of the foundational data
structures that serve as the basis for the proposed cKd-tree
compact data structure.

A. KD-TREE DIMENSIONAL DATA STRUCTURE
A Kd-tree, short for k-dimensional tree, is a hierarchical
structure (binary tree), designed for recursive division of
multi-dimensional space [1]. Within this structure, each node
contains data representing a d-dimensional point in the space.
A non-leaf node within a d-dimensional Kd-tree strate-

gically partitions the space, creating two distinct halves or
half-spaces. Points located to the left of this partition are
correspondingly represented by the left sub-tree of the node,
while those on the right find representation in the right sub-
tree. The root of the Kd-tree aligns with an x-oriented plane,
while its immediate children align with y-oriented planes and
so on. At height d , the internal nodes revert to x-oriented
planes, creating a pattern that continues throughout the tree.
For a more concrete illustration, consider Example 1, that
illustrate the construction process of a Kd-tree for a 2D space
(where d = 2).

FIGURE 1. A Kd-tree and its spatial partitions.

Example 1: Consider the following sequence of points
S = ⟨p1(8, 6), p2(4, 7), p3(10, 3), p5(2, 11), p6(5, 3),
p4(12, 8)⟩with the x coordinate serving as the basis for space
partitioning at level 0, which corresponds to the root of the
tree. The construction of the Kd-tree unfolds as follows:

• Initially, the point p1(8, 6) is inserted as the root of the
tree, prompting a partition along the x axis at x = 8.

• Subsequently, when point p2(4, 7) is inserted, its x
coordinate being smaller than that of p1(8, 6) places
it in the left subspace of the partition created by
p1(8, 6). Another consequence of inserting p2(4, 7)
is the partitioning of this subspace based on its
y coordinate. Consequently, subsequent comparisons
involving p2(4, 7) will prioritize the evaluation of the y
coordinate.

28668 VOLUME 12, 2024

GUTIÉRREZ et al.: cKd-tree: A Compact Kd-tree

• Point p3(10, 3) is introduced into the structure, posi-
tioned to the right of p1(8, 6) owing to its higher x
coordinate value. The insertion of p3(10, 3) further
partitions the subspace to the right of p1(8, 6) based on
the y coordinate.

• Subsequently, when inserting point p5(2, 11) to the right
of point p2(4, 7), the decision is made based on its x
coordinate being smaller than that of p1(8, 6) and its y
coordinate being greater than that of p2(4, 7).

• Similarly, point p6(5, 3) is inserted to the left of p2(4, 7),
while point p4(12, 8) is positioned to the right of
p3(10, 3).

Figure 1 depicts the Kd-tree (shown in Figure 1a)
corresponding to the given list of points in S, considering the
partitioned space illustrated in Figure 1b.
The algorithm to search a point is very similar to the

insertion algorithm. For instance, to determine whether point
p7(2, 5) is within the Kd-tree (refer to Figure 1b), the
algorithm initiates its search from the root, traversing to the
leaves while inspecting if p7 corresponds to a point stored
in each visited node. In cases where p7 does not match the
point at the current node, a decision is made to continue the
search based on either the x or y coordinate. Ultimately, upon
reaching a leaf node without finding p7, it is concluded that
p7(2, 5) is not part of the set. Figure 1c visually demonstrates
the insertion of point p7(2, 5), placed to the left of p6(5, 3).
This insertion prompts the partitioning of the subspace based
on the y coordinate of p7.
According to [1], the fundamental operations of the

Kd-tree, on average, exhibit a temporal bound of O(log2 n),
where n represents the number of points in the sets. The
conventional implementation of a Kd-tree typically employs
pointers, facilitating the representation of dynamic sets of
points and enabling mixing insertion, deletion, and search
operations.

B. IKD-TREE: IMPLICIT KD-TREE
We refer to a balanced Kd-tree represented in an array as
iKd-tree. In this implementation, pointers are unnecessary,
as highlighted by [6]. The construction process of iKd-tree
is described in [6].
As an illustration, Figure 2 represents an iKd-tree con-

structed from the set of points S = ⟨p1(8, 6), p2(4, 7),
p3(10, 3), p5(2, 11), p6(5, 3), p4(12, 8), p7(2, 5)⟩ in Exam-
ple 1. The creation algorithm for an iKd-tree first sorts the
set of points in ascending order considering both coordinates.
This sorting process is performed only once for each coordi-
nate, yielding two arrays:OX = [p7(2, 5), p5(2, 11), p2(4, 7),
p1(8, 6), p3(10, 3), p4(12, 8)], containing the points sorted
by x coordinates, and OY = [p6(5, 3), p3(10, 3), p7(2, 5),
p1(8, 6), p2(4, 7), p4(12, 8), p5(2, 11)], containing the points
ordered by y coordinate. In the subsequent step, with x as the
partition coordinate for the first level, the array OX is split
into two subsets based on the median point of OX . Following
this, the array OY is divided, taking into account the median
of OX and comparing it with the x coordinate. Subsequently,

FIGURE 2. iKd-tree representation for the set of points S in Example 1.

the two subarrays are partitioned, this time considering the Y
coordinate of themedian points. This alternating procedure of
partitioning coordinates continues until each subset contains
a single point. The resulting arrangement is stored in array Q
(Figure 2b).

The construction cost of an iKd-tree isO(d ·n · log2 n). The
algorithm ensures the creation of a balanced binary tree, with
a tree depth of log2(n), as depicted in Figure 2a. Navigating
or exploring the iKd-tree is straightforward. Generally, the
position of the root node within the subtree, defined by the
initial positions li and final positions ls of array Q, (refer to
Figure 2b) is situated at position

⌊ li+ls
2

⌋
.

C. SPIRAL CODIFICATION OF POINTS
The spiral encoding method involves assigning a positive
integer to a point p in N2 based on another point q.
This encoding approach was applied in [17] for encoding
trajectories of moving objects.

Formally, considering points p(x, y) and q(x, y) from the
set S ⊆ N2 with dimensions |X | and |Y |, the spiral encoding
of qwith respect to p is denoted as a function sCodep : N2

→

VOLUME 12, 2024 28669

GUTIÉRREZ et al.: cKd-tree: A Compact Kd-tree

FIGURE 3. Spiral encoding of a set of points in N2.

0, . . . , |X | · |Y |. In this representation, sCodep(q) represents
the distance, measured in the number of cells, from the cell
of p to the cell of q following a spiral path with the origin
at p (cell 0). For clarification, Figure 3 illustrates the spiral
paths used to encode points q and r starting from the reference
point p. In this example, sCodep(q) is equal to 10, and
sCodep(r) is equal to 22.
On the other hand, the function sDecodep(q) : 0, . . . , |X | ·

|Y | → N2 facilitates retrieving the coordinates of a point q
from its spiral code with respect to the point p.

D. DACS
The acronym DACs stands for Directly Addressable
Codes [18], which represent a variable-length encoding of
sequences of non-negative integers, typically arrays.

Consider an array X = x0, . . . , xn−1 of non-negative
integers, and let b be the block size. Each integer in the
array X is encoded using Vbyte coding. This method divides
the binary representation of xi (where the size is at least
log2 xi + 1) into blocks of b bits. Each block is then stored
in a chunk of b+1 bits. The most significant bit of the chunk
is set to 0 when the chunk holds the most significant bits of
xi, and 1 otherwise.

After obtaining the Vbyte code for each xi ∈ X , the chunks
are grouped in order. Subsequently, the Vbyte codes of all xi
in the array are arranged into streams C = C0, . . . ,CL−1,
where L is the maximum value of m such that m =

⌈
⌊log2 xi+1⌋

b ⌉, for all xi ∈ X .
Each stream Cj consists of two parts. The most significant

bit of each Cj is concatenated into the bitmap Bj, while the
least significant b bits are stored contiguously in an array Aj.
Example 2: Consider X = {25, 2, 70, 10} and b = 3. The

Vbyte codes are 0011 1001, 0010, 0001 1000 1110 and 0001
1010, respectively. Then:

• C1 consists in array A1 = {001, 010, 110, 010}, and the
bitmap B1 = {1, 0, 1, 1}.

• C2 consists in array A2 = {011, 000, 001}, and the
bitmap B2 = {0, 1, 0}.

• C3 consists in array A3 = {001}, and the bitmap B3 =

{0}.
Bitmaps Bj are enhanced with an additional structure of

size o(|Bj|) to facilitate constant-time rank operations [21].
The rank operation on a bitmap B provides the count of 1s

(or 0s) up to a given position i. For example, given B =

0010110101011, the operation rank1(B, 6) = 3 indicates
that there are three occurrences of 1s in B before position
6 (inclusive). Since we solely use rank for counting 1s, the
sub-index is omitted in this document (i.e., rank1() is denoted
as rank()).

The overall structure encompasses the Bj bitmaps, their
corresponding rank structures, the Aj arrays of bitmaps, the
chunk size b, and pointers to these bitmaps and arrays.
Example 3: Consider the data in Example 2. To locate the

second element of the array, we begin with C1[2] = 1 : 110.
Since B1[2] = 1, we set i2 = rank(B1, 2) = 1. Continuing
with C2[1] = 1 : 000, as B2[1] = 1, we then have i3 =

rank(B2, 1) = 0. Finally, concluding with C3[0] = 0 : 001,
we obtain 001000110 = 70.

The worst-case scenario for a search is at most O
(
logM
b

)
accesses, whereM = maxX [18].

Although we have considered a fixed block size b for
DACs, it is possible to choose a different block size at
each level l (bl). This flexibility can be advantageous to
achieve specific goals, such as optimizing compression.
Additionally, modifications can be made to either consider
fewer levels or strike a balance between achieving good
access times and optimal compression, potentially resulting
in a larger last level. In this proposal, distinct block sizes for
b are strategically employed across various levels, aiming to
optimize the compression outcome.

IV. OUR PROPOSAL
In this section, we introduce cKd-tree, a compact data
structure designed for representing points, accompanied by
algorithms for efficient querying. Additionally, we provide a
comprehensive analysis of the complexity in terms of both
storage and query execution time.

cKd-tree is built upon the implicit version of a Kd-tree
and leverages spiral encoding to represent a set of points in
a multidimensional (d-dimensional) space. Moreover, cKd-
tree employs DACs encoding for a sequence of integers
(refer to Section III for details). This dual encoding approach
enables the structure to store information more efficiently.
Specifically, the distance from each node to its parent is
registered using spiral coding, and subsequently, the entire
spiral codification array-a positive sequence of integers-is
encoded using DACs, allowing for direct access.

Formally, let S ⊆ N2 be a set of points. A cKd-tree is
represented as a tuple ⟨Seq, p⟩, where Seq is a sequence of
integers encoded using DACs, representing an iKd-tree, and
p ∈ S denotes the root of the tree. The sequence Seq is derived
from the DACs encoding through a spiral codification of the
points in the iKd-tree.

A. CONSTRUCTION OF A CKD-TREE
Algorithm 1 outlines the construction process of a cKd-tree
for a set of points S. Initially, the function CreateiKdtree()
generates an iKd-tree, which is then stored in an arrayQ (refer

28670 VOLUME 12, 2024

GUTIÉRREZ et al.: cKd-tree: A Compact Kd-tree

to Figure 2). Subsequently, the function CreateCodecKd-
tree() (see Algorithm 2) is employed to produce a sequence
of integers (depicted as array C in Figure 2b). The resulting
sequence is represented using the DACs encoding and
compression method (Algorithm 1, Line 7).

Algorithm 1 Creation of a cKd-tree
1: CreatecKdtree(ArrayofPoints S)
2: Q = CreateiKdtree(S)
3: mid =

⌊
|Q|

2

⌋
4: p = Q[mid]
5: sea C[1 . . . |Q|] {C store the spiral codes}
6: CreateCodecKd-tree (Q, p, 1, |Q|,C)
7: Seq = CreateDACs(C)
8: return ⟨Seq, p⟩

Algorithm 2 Generation of a Spiral Code From Points in a
iKd-tree
1: CreateCodecKd-tree (ArrayofPoints Q, Point p, int li,

int ls, ArrayofInteger C)
2: if ls ≥ li then
3: mid =

⌊ li+ls
2

⌋
4: C[i] = sCode(p,Q[mid])
5: CreateCodecKd-tree (Q,Q[mid], li,mid − 1,C)
6: CreateCodecKd-tree (Q, q[mid],mid + 1, ls,C)
7: end if

B. PROCESSING OF QUERIES OVER A CKD-TREE
In this section, we delve into algorithms addressing two
fundamental queries on sets of points: the point query and
the range query for a cKd-tree. The point query determines
whether a given point q is part of the set of points represented
by the cKd-tree, while the range query retrieves all points
stored in the cKd-tree within the bounds of the specified
iso-oriented rectangle for the query range.

Algorithm 3 details the computation of the point query
for a cKd-tree, which closely mirrors the process for a iKd-
tree, with the only exception being Line 4. This discrepancy
arises because the point in the internal node is encoded and
necessitates recovery. Initially, the algorithm retrieves the
spiral code of the current point p from the DACs Seq using the
Access() function. Following this, it decodes the coordinates
of the current point using the sDecode() function (refer to
Section III-C). It is crucial to note that during the execution
of this query, decoding is only required for the points situated
on the path defined by the query point q in the cKd-tree.
TheGetCoor() function extracts the coordinates (x or y) of

p and q based on the partition coordinate stored in the variable
coor . If coor = true, the x coordinate serves as the partition
coordinate (generating a vertical partition), and y coordinate
otherwise (generating a horizontal partition). Analogous
to the iKd-tree, cKd-tree achieves a balanced Kd-tree by
compromising discrimination ability. There is a possibility
of having more than one point with a coordinate identical to

the partition coordinate of the median point. In such cases,
a search is required in both subspaces (Lines 15-18).
Example 4: Let’s consider the verification of whether the

point q(3, 2) is present in the cKd-tree generated from the
array C in Figure 2b. The initial call to PointQuery() involves
p = p6(5, 3), q(3, 2), li = 1, ls = 7, coor = true, and ck
containing the DACs encoding of the cKd-tree.
The root point p of the cKd-tree (which is part of the

cKd-tree) is used as the initial reference point in the spiral
decoding, with its encoding being 0 (Array C in Figure 2b).
At Line 4, we retrieve the spiral code of p from Seq using
the DACs Access() function. Subsequently, with the help
of the sDecode() function, we obtain the point p(5, 3) for
comparison with q(3, 2). As these points differ and the node
of p is not a leaf, we proceed to traverse down the tree.
In this case, the comparison is based on the x coordinates

of p and q to decide which subtree to explore further. Another
call is made to PointQuery with p(5, 3), q(3, 2), li = 1, ls = 3,
and coor = false. At Line 4 the function Access() returns
the spiral code 76. Following this, using the sDecode()
function and the point p(5, 3), we obtain the point p(4, 7),
which is again compared with q, this time considering the y
coordinates of both points.
The PointQuery function is called once more with p(4, 7),

q(3, 2), li = 1, ls = 1, and coor = true. In this
instance, Line 4, the point p(2, 5) is recovered. This point
is then compared with q(3, 2), taking into account their x
coordinates. Since q(3, 2) is expected to be in the subtree to
the right of p(2, 5), and p(2, 5) resides in a leaf node, the
algorithm concludes that q(3, 2) is not found in the cKd-tree.

Algorithm 3 Compute PointQuery() Over a cKd-tree
1: PointQuery(cKd-tree ck , Point p, Point q, int li, int ls,

bool coor)
2: if li ≥ ls then
3: i =

⌊
(li+ls)

2

⌋
4: p = sDecode(Access(ck.Seq, i), p)
5: if p = q then
6: return true
7: end if
8: cp = GetCoor(p, coor)
9: cq = GetCoor(q, coor)
10: if cq < cp then
11: return PointQuery(ck, p, q, li, i− 1, ¬coor)
12: else if cq > cp then
13: return PointQuery(ck, p, q, i+ 1, ls, ¬coor)
14: else
15: r = PointQuery(ck, p, q, li, i− 1, ¬coor)
16: if ¬r then
17: return PointQuery(ck, p, q, i+ 1, ls, ¬coor)
18: end if
19: end if
20: else
21: return false
22: end if

VOLUME 12, 2024 28671

GUTIÉRREZ et al.: cKd-tree: A Compact Kd-tree

Algorithm 4 details the computation of the range query
over a cKd-tree. This algorithm follows the logic employed
for computing such queries over a iKd-tree, with the
exception of Line 5. The core functionality of the algorithm
hinges on understanding the spaces occupied by the set of
points (R in the Algorithm) and the range query rQ. Both R
and rQ are iso-oriented rectangles and are defined by two
points, corresponding to the extreme points of the main or
secondary diagonal.

Similar to the preceding algorithm, this one retrieves
the coordinates of the points in the cKd-tree (Line 5).
Subsequently, it recursively assesses whether the current
rectangle, encompassing the current point p, intersects with
the rectangle rQ (Line 6). Following this, it determines the
position of the current point p within rQ (Line 8).

The algorithm then divides the current rectangle R
using the point p and the suggested coordinate from the
iKd-tree. It continues the recursive checking process with
both resulting rectangles (Line 11). Similar to Algorithm
PointQuery(), this algorithm selectively decodes points that
are part of the traversal process.

FIGURE 4. Range query.

Example 5: Let’s consider the task of identifying points
within the range of the rectangle rQ, as illustrated in Figure 2.
As in Example 4 the parameters are p = p6(5, 3), li = 1,
ls = 7, coor = true, ck containing the DACs encoding of the
cKd-tree, and R being the rectangle, defined by points (0, 0)
and (13, 13), and that contains the root point p. Also, as in
Example 4, the root point p of the cKd-tree is used as the
initial reference point in the spiral decoding, with its encoding
being 0, and then in Line 5 (Algorithm 4) we obtain the point
p(5, 3).
Given that the rectangles rQ of the range query and the

current rectangle R intersect, it is checked whether p(5, 3)
is located within rQ. Given the affirmative, p(5, 3) is added

to the solution (sol = {(5, 3)}). In Line 10 (Algorithm 4),
using the CreateRectangles() function, two rectangles R1 and
R2 are created by dividing R according to point p(5, 3) and
the coor = true parameter (which means divided vertically).
This is illustrates in Figure 4.
Subsequently, the algorithm recursively explores the sub-

spaces R1 and R2, seeking points that lie within rQ. For
R1 (similarly for R2), the call is initiated with the values
li = 1, ls = 3, p(5, 3), coor = false, and R = R1. Now,
in Line 5 (Algorithm 4), the point p(4, 7) is recovered, but
since it is not within rQ, it is not added to the solution. The
subspaces associated with the points p(2, 11) and p(2, 5) are
explored recursively, and they are similarly excluded from the
set sol. Upon exploring R2, the point p(10, 3) is added to the
solution. Ultimately, the set {(5, 3), (10, 3)} is returned.

Algorithm 4 Compute RangeQuery() Over a cKd-tree
1: RangeQuery(cKd-tree ck , Point p, Rectangle rQ,

Rectangle R, int li, int ls, bool coor)
2: sol = ∅

3: if li ≥ ls then
4: i =

⌊
(li+ls)

2

⌋
5: p = sDecode(Access(ck.Seq, i), p)
6: if IntersectRectangles(rQ,R) then
7: if Inside(p, rQ) then
8: sol = sol ∪ {p}
9: end if
10: ⟨R1,R2⟩ = CreateRectangles(R, p, coor)
11: sol = sol∪ RangeQuery(ck, p, rQ,R1, li, i −

1, ¬coor) ∪ RangeQuery(ck, p, rQ,R2, i +

1, ls, ¬coor)
12: end if
13: end if
14: return sol

C. COMPLEXITY ANALYSIS
In this section we present the complexity analysis
of the cKd-tree compact data structure. Let n = |S| denotes
the number of points on a structure cKd-tree, and let m be the
maximum spiral code. As in [18], the time complexity of the
Access() operation is proven to be asymptotically bounded
above by O(logm).
The PointQuery() algorithm (see Algorithm 3) traverses

the implicit tree structure, decoding the spiral code at each
internal node labeled i with the value Seq[i]. Its time
complexity is upper bounded byO(log n·logm). This analysis
assumes that in each recursive call, the values cp and cq are
unequal, which is the expected scenario (Lines 8 and 9).

In scenarios where certain recursive calls result in cp =

cq, the time complexity still adheres to the upper bound
of O(log n · logm). However, it’s crucial to acknowledge
a potential exception-a pathological case where this upper
bound is notably exceeded. This situation arises when we
store a straight line and subsequently query for a point along
that line. In such pathological cases, a consistent pattern

28672 VOLUME 12, 2024

GUTIÉRREZ et al.: cKd-tree: A Compact Kd-tree

TABLE 1. Storage (in Mbytes) and compression percentage (%C) for a space of size 16, 384 × 16, 384.

TABLE 2. Storage (in Mbytes) and compression percentage (%C) for a space of size 32, 768 × 32, 768.

FIGURE 5. Data Compression Percentages.

emerges wherein the values of cp and cq remain identical in
every consecutive pair of recursive calls. Consequently, this
pattern forces the algorithm to explore a substantial portion
of the implicit tree. In such instances, the time complexity is
upper-bounded by O(n · logm).
Algorithm RangeQuery() (refer to Algorithm 4) descends

along the implicit tree until it encounters an internal node i,
where the partition intersects with the given range query rQ.
This internal node i has a height denoted as h ≤ log2 n, which
is contingent on the range query rQ. During each recursive
call, the algorithm assesses whether both partitions intersect
with the range query rQ and subsequently processes those
specific partitions.

Consider only the partitions of the leaf nodes, denoted
as Rl = Rl1,Rl2, . . . ,Rlk , where k equals (n + 1)/2 in
the case of a full tree. If a partition Rlj intersects with the
range query rQ, the leaf needs to be queried, regardless
of whether the leaf is within rQ or not. Every internal

node marked for querying is part of the path of a node
whose partition intersects with rQ. Consequently, the time
complexity of Algorithm RangeQuery() is bounded by the
number of intersected partitions and the time needed to query
them, yielding an upper bound of O(|rQ ∩ Rl | · h · logm +

(log n− h)).
However, it is worth noting that the leaves involved in

this intersection share internal nodes. Since each internal
node divides its partition into two, and considering that
each partition is in close proximity to its sibling partition,
an improvement in the estimated time complexity can be
derived. In this case, the time behavior is better described as
O(|rQ ∩ Rl | · logm+ (log n− h)).

V. EXPERIMENTS
In this section, we conduct a series of experiments to
analyze the performance of the compact data structure
cKd-tree in terms of compression (Section V-A) and query

VOLUME 12, 2024 28673

GUTIÉRREZ et al.: cKd-tree: A Compact Kd-tree

FIGURE 6. Point query performance on a 32, 768 × 32, 768 matrix with
Uniform distribution.

FIGURE 7. Point query performance on a 32, 768 × 32, 768 matrix with
Gaussian distribution.

execution time (Section V-B). We compare cKd-tree against
iKd-tree and k2-tree, with the latter being known for its
efficiency in compression and query execution according
to existing literature. The iKd-tree and cKd-tree structures
were implemented in C++, while we utilized the k2-tree
implementation from [22].1

The experiments were conducted on a server running the
Linux operating system (Ubuntu 22.04.3 LTS) equipped with
an Intel(R) Xeon(R) E3-1220 V2 CPU, featuring 4 cores
operating at 3.1 GHz each, 24 GB of RAM, and a 1 TB SATA
7.2 k hard drive without RAID configuration.

In the experiments, we utilized synthetic two-dimensional
datasets comprising points. The dataset sizes ranged from
250, 000 to 100, 000, 000, distributed according to both
Uniform (indicated as (U) in the charts) and Gaussian
(indicated as (G) in the charts) distributions in space.
The datasets were generated within spaces (matrices) of
dimensions 214 × 214 and 215 × 215.

1Available at https://github.com/simongog/sdsl-lite

A. COMPRESSION AND STORAGE
The compression percentage, or simply compression, for a
set of points S ⊆ N2 located in an array of m× m and a data
structure cKd-tree or k2-tree, is defined as:

Compress = 100 − 100 · (su/ik)

Here, su is the storage in bits that are required by the data
structure cKd-tree or k2-tree. The variable ik = 2 · |S| ·

⌈log2m⌉ represents the storage (bits) required by iKd-tree
considering an optimal number of bits to represent the
coordinates of the points. On the other hand, the density of
the set of points S is given by:

Density = 100 · |S|/m2

These formulas provide a straightforward way to calculate
the compression and density metrics for point sets using
cKd-tree or k2-tree in comparison to the reference iKd-tree.
In this section, we examine the following percentage

density levels: 0.10%, 0.50%, 1.0%, 5.0%, 10.0%, 15.0%
and 20.0%, with array dimensions set to m = 16, 384 and
m = 32, 768.
Tables 1 and 2 present the total storage of iKd-tree, along

with the compression percentages of cKd-tree and k2-tree,
considering sets with Uniform and Gaussian distribution and
densities ranging from 0.1% to 20.0% for a space of size
16, 384 × 16, 384 (Table 1) and densities between 0.1% and
10.0% for a space of size 32, 768 × 32, 768 (Table 2).
Figure 5 illustrates the compression percentages for both

cKd-tree and k2-tree compact data structures in two space
scenarios (sizes 16, 384 × 16, 384 and 32, 768 × 32, 768,
respectively). The structures exhibit competitive compression
percentages ranging from approximately 18% to 90%. This
compression performance improves as the density increases.
At higher densities (≥ 12) and for Gaussian distribution
(G in the charts), k2-tree marginally outperforms cKd-tree.
Conversely, at lower densities (≤ 6), cKd-tree outpaces
k2-tree.
The enhanced compression performance of cKd-tree at

higher densities can be attributed to the spatial proximity of
points. In such scenarios, the resulting spiral codes of the
points are generally smaller, leading to a highly compressible
sequence of integers by DACs.

B. EXECUTION TIME OF QUERIES
We assess both point query and range query operations
across the three data structures. Regarding point query,
we measure the average execution time for 1, 000 queries,
divided evenly between successful queries (where the queried
point is present in the set) and unsuccessful queries (where the
point is not in the set). For range query, we consider ranges
representing 0.01% (328×328), 0.1% (1, 036×1, 036), and
1.0% (3, 276×3, 276) of the total matrix size (global space).
The execution time for each range query is averaged over
1, 000 rectangles uniformly distributed within the matrix.
Concerning the range query, the outcome is not a list of

points but the count of points that intersect with the specified

28674 VOLUME 12, 2024

GUTIÉRREZ et al.: cKd-tree: A Compact Kd-tree

FIGURE 8. Range query performance on a 32, 768 × 32, 768 matrix with Uniform distribution.

FIGURE 9. Range query performance on a 32, 768 × 32, 768 matrix with Gaussian distribution.

range. Nevertheless, each data structure individually traverses
the points constituting the answer, and the extra cost
associated with storing the points in the answer remains
consistent across all structures.

C. POINT QUERY
Figure 6 displays the execution times of three structures in
solving the point query for a Uniform distribution of points.
As expected, k2-tree outperforms cKd-tree by a significant
margin (about 200 times faster), and iKd-tree also performs
faster (11 times) than cKd-tree. The advantage of k2-tree
is attributed to its O(log2 m) query execution time, while
iKd-tree avoids the cost of decompressing points stored with
DACs.

In Figure 7, the execution times for point query are
depicted, considering a Gaussian distribution of points.
Notably, the differences observed in point query execution
times are consistent with those observed in the Uniform
distribution case (Figure 6).

D. RANGE QUERY
Figure 8 illustrates the execution times of range query
over a matrix of size 32, 768 × 32, 768 for different range
sizes. Notably, cKd-tree significantly outperforms k2-tree,
particularly for the range of 3, 276×3, 276 where it achieves
a speedup of approximately 4.7 times. And, as expected,
iKd-tree outperforms cKd-tree in range query, albeit to a
lesser extent, with an average speedup of about 3 times for
range queries of size 3, 276 × 3, 276.

Figure 9 illustrates the execution times for the range
query considering a Gaussian distribution. Interestingly,
in this distribution, k2-tree has better results, but it is still

outperformed by cKd-tree, in a lesser extend. The disparities
between cKd-tree and iKd-tree remain consistent with
those observed in the Uniform distribution. The improved
performance of k2-tree in this distribution is attributed to its
optimal operation when points are concentrated in specific
areas of space. This characteristic makes k2-tree sensitive to
point distribution, whereas both iKd-tree and cKd-tree exhibit
similar behavior across different distributions.

VI. CONCLUSION
This article introduces a novel compact data structure
named cKd-tree designed for representing an implicit static
Kd-tree. Through experimental evaluations against k2-tree
and iKd-tree, our findings reveal that cKd-tree achieves
compression rates ranging from 45% to 77% depending
on the density, exhibiting superior compression at higher
densities. In comparison with k2-tree, cKd-tree outperforms
when densities are below 5%, compressing up to twice
as much. However, at higher densities (above 5%), both
structures demonstrate competitive performance.

In terms of execution time for point queries, cKd-tree
exhibits a slower performance compared to k2-tree,
as expected. However, cKd-tree showcases superior exe-
cution times for range queries, significantly outperforming
k2-tree, especially in scenarios with Uniform distribution
where cKd-tree is approximately 4.7 times faster. This
performance gap continues to widen with increasing data
density.

Furthermore, while our proposal is currently implemented
in two dimensions, its natural extension to higher dimensions
is feasible. The spiral encoding in d dimensions involves a

VOLUME 12, 2024 28675

GUTIÉRREZ et al.: cKd-tree: A Compact Kd-tree

concentric numbering of size distd , where dist represents the
distance between points. Consequently, the extension to a d
dimensional iKd-tree involves encoding the children of each
node using d dimensional spiral encoding.

The Kd-tree is a widely adopted multidimensional/spatial
data structure applied across various applications, with
numerous geometric algorithms tailored for tasks like nearest
neighbor searches and range queries. cKd-tree extends this
versatility by providing a competitive alternative, enabling
the direct implementation of these algorithms in a compact
form. As evidenced by our experiments, cKd-tree exhibits
superior performance compared to k2-tree, particularly when
querying aggregate data. This suggests its potential for
enabling faster execution on more intricate queries, including
but not limited to K nearest neighbors and Pareto set
calculations.

In comparison to the Kd-tree, cKd-tree stands out by
achieving similar functionality while utilizing only 30% of
the storage. This efficiency is particularly valuable for sets of
certain sizes, where cKd-tree helps circumvent I/O operations
that are orders of magnitude slower than direct memory
access.

Our proposal, as per the reviewed literature, marks the first
attempt to introduce a compact version of a Kd-tree. The
reduced storage demands of cKd-tree position it as a viable
choice for applications on devices with constrained storage
capacities, such as tablets and mobile phones.

REFERENCES
[1] J. L. Bentley, ‘‘Multidimensional binary search trees used for associative

searching,’’ Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.
[2] H. Fuchs, Z. M. Kedem, and B. F. Naylor, ‘‘On visible surface generation

by a priori tree structures,’’ ACM SIGGRAPH Comput. Graph., vol. 14,
no. 3, pp. 124–133, Jul. 1980.

[3] H. Samet, ‘‘The quadtree and related hierarchical data structures,’’ ACM
Comput. Surv., vol. 16, no. 2, pp. 187–260, Jun. 1984.

[4] V. Gaede and O. Günther, ‘‘Multidimensional access methods,’’ ACM
Comput. Surv., vol. 30, no. 2, pp. 170–231, Jun. 1998.

[5] H. Samet, Foundations of Multidimensional and Metric Data Structures
(The Morgan Kaufmann Series in Computer Graphics and Geometric
Modeling). San Francisco, CA, USA:Morgan Kaufmann Publishers, 2005.

[6] R. A. Brown, ‘‘Building a balanced k-d tree in o(kn log n) time,’’ J. Comput.
Graph. Techn., vol. 4, no. 1, pp. 50–68, Mar. 2015.

[7] N. R. Brisaboa, S. Ladra, and G. Navarro, ‘‘Compact representation of
web graphs with extended functionality,’’ Inf. Syst., vol. 39, pp. 152–174,
Jan. 2014.

[8] R. Grossi, A. Gupta, and J. S. Vitter, ‘‘High-order entropy-compressed
text indexes,’’ in Proc. 40th Annu. ACM-SIAM Symp. Discrete Algorithms,
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
2003, pp. 841–850.

[9] G. Navarro, ‘‘Wavelet trees for all,’’ J. Discrete Algorithms, vol. 25,
pp. 2–20, Mar. 2014.

[10] R. Grossi and J. S. Vitter, ‘‘Compressed suffix arrays and suffix trees
with applications to text indexing and string matching,’’ SIAM J. Comput.,
vol. 35, no. 2, pp. 378–407, Jan. 2005.

[11] K. Sadakane, ‘‘Compressed text databases with efficient query algorithms
based on the compressed suffix array,’’ in Proc. 11th Int. Conf. Algorithms
Comput. Berlin, Germany: Springer, 2000, pp. 410–421.

[12] P. Ferragina and G. Manzini, ‘‘Opportunistic data structures with
applications,’’ in Proc. 41st Annu. Symp. Found. Comput. Sci., Nov. 2000,
pp. 390–398.

[13] N. R. Brisaboa, M. R. Luaces, G. Navarro, and D. Seco, ‘‘Space-
efficient representations of rectangle datasets supporting orthogonal range
querying,’’ Inf. Syst., vol. 38, no. 5, pp. 635–655, Jul. 2013.

[14] J. F. Castro, M. Romero, G. Gutiérrez, M. Caniupán, and C. Quijada-
Fuentes, ‘‘Efficient computation of the convex hull on sets of points stored
in a k-tree compact data structure,’’ Knowl. Inf. Syst., vol. 62, no. 10,
pp. 4091–4111, Oct. 2020.

[15] F. Santolaya, M. Caniupán, L. Gajardo, M. Romero, and R. Torres-Avilés,
‘‘Efficient computation of spatial queries over points stored in k2-tree
compact data structures,’’ Theor. Comput. Sci., vol. 892, pp. 108–131,
Nov. 2021.

[16] G. Navarro,Compact Data Structures—APractical Approach. Cambridge,
U.K.: Cambridge Univ. Press, 2016.

[17] N. R. Brisaboa, A. Gómez-Brandón, G. Navarro, and J. R. Paramá,
‘‘GraCT:A grammar-based compressed index for trajectory data,’’ Inf. Sci.,
vol. 483, pp. 106–135, May 2019.

[18] N. R. Brisaboa, S. Ladra, andG.Navarro, ‘‘DACs: Bringing direct access to
variable-length codes,’’ Inf. Process. Manage., vol. 49, no. 1, pp. 392–404,
Jan. 2013.

[19] C. E. Sanjuan-Contreras, G. G. Retamal, M. A. Martínez-Prieto, and
D. Seco, ‘‘CBiK: A space-efficient data structure for spatial keyword
queries,’’ IEEE Access, vol. 8, pp. 98827–98846, 2020.

[20] S. Ladra, J. R. Paramá, and F. Silva-Coira, ‘‘Scalable and queryable
compressed storage structure for raster data,’’ Inf. Syst., vol. 72,
pp. 179–204, Dec. 2017.

[21] F. Claude and G. Navarro, ‘‘Practical rank/select queries over arbitrary
sequences,’’ in Proc. 15th Int. Symp. String Process. Inf. Retr., 2009,
pp. 176–187.

[22] S. Gog, T. Beller, A. Moffat, and M. Petri, ‘‘From theory to practice: Plug
and play with succinct data structures,’’ in Proc. 13th Int. Symp. Experim.
Algorithms (SEA), 2014, pp. 326–337.

GILBERTO GUTIÉRREZ received the Ph.D.
degree in computer science from Universidad de
Chile, in 2007. From 2010 to 2012, he was a
member of the board of directors of the Chilean
Computer Science Society. He is currently an
Associate Professor with the Departamento de
Ciencias de la Computación y Tecnologas de Infor-
maçión, Universidad del Bío-Bío. His research
interests include spatial and temporal databases,
data structures, and algorithms.

RODRIGO TORRES-AVILÉS received the Ph.D.
degree in applied mathematics from Universidad
de Concepción, in 2016. He is currently an
Assistant Professor with the Departamento de
Sistemas de Información, Universidad del Bío-
Bío, Concepción, Chile. His research interests
include data structures and algorithms, automata
theory, and symbolic systems.

MÓNICA CANIUPÁN received the Ph.D. degree
in computer science from Carleton University,
Ottawa, ON, Canada, in 2007. She is currently a
Full Professor with the Departamento de Sistemas
de Información, Universidad del Bío-Bío. Since
2020, she has been a member of the board
of directors of the Chilean Computer Science
Society. Her research interests include databases,
data consistency, data warehousing, compact data
structures, and spatio-temporal databases.

28676 VOLUME 12, 2024

