
Received 21 November 2023, accepted 25 January 2024, date of publication 9 February 2024, date of current version 20 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3364361

Low-Power and Low-Latency Hardware
Implementation of Approximate
Hyperbolic and Exponential
Functions for Embedded
System Applications
AYAD M. DALLOO 1, AMJAD JALEEL HUMAIDI2, AMMAR K. AL MHDAWI 3,
AND HAMED AL-RAWESHIDY 4, (Senior Member, IEEE)
1Department of Communication Engineering, University of Technology, Baghdad 10066, Iraq
2Department of Control and System Engineering, University of Technology, Baghdad 10066, Iraq
3Department of Computer Science and Engineering, Edge Hill University, L39 4QP Ormskirk, U.K.
4Department of Electronic and Electrical Engineering, Brunel University London, UB8 3PH Uxbridge, U.K.

Corresponding author: Hamed Al-Raweshidy (hamed.al-raweshidy@brunel.ac.uk)

ABSTRACT The hyperbolic and exponential functions arewidely used in various applications in engineering
fields such as machine learning, Internet of Things (IOT), signal processing, etc. To fulfill the needs of future
applications effectively, this paper proposes a low-latency, low-power, acceptable accuracy, and low-cost
architecture for computing the approximate exponential function e±z and the hyperbolic functions sinh(z)
and cosh(z) using a table-driven algorithm named Approximate Composited-Stair Function (ApproxCSF).
By adopting a FPGA, the proposed design is realized and demonstrates significant improvements in terms of
latency, hardware cost, power consumption, and MSE by 91%, 96%, 74%, and 99%, respectively, compared
to the state-of-the-art. Xilinx Virtex-5/7 FPGAs have been employed throughout the functional verification
and prototype processes. Compared to related works, it shows that the proposed architectures are much
better for low-cost and low-latency computations of exponential and hyperbolic functions than CORDIC,
stochastic computation, and the Look-up Table approaches. The source code is publicly available online
https://github.com/AyadMDalloo/ApproxCSF.

INDEX TERMS Hyperbolic functions, exponential function, elementary functions, CORDIC, table-driven
algorithm, machine learning, approximate computing.

I. INTRODUCTION
The current trend of research in the development of high-
performance very large-scale integration (VLSI) designs is
increasingly focused on real-time digital signal process-
ing (DSP) and machine learning algorithms. This focus is
essential for applications such as surveillance and wearable
electronics, which require the analysis and evaluation of
sensed data to recognize patterns [1], [2], [3]. IoT and edge
processing require immediate action based on sensed data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Nuno M. Garcia .

Some prioritize local processing over cloud computing due
to latency and connection limits. Unfortunately, local pro-
cessing critically demands low-power, high-accuracy, low-
latency, and low-cost solutions. A significant number of
these algorithms utilize elementary functions such as trigono-
metric, hyperbolic, exponential, logarithmic, division func-
tions, etc. The calculation of these transcendental functions
via computer software always leads to significant delays.
Hardware implementations have gained considerable promi-
nence due to the performance improvements that they pro-
vide over software implementations. There is a substantial
amount of published material that describes the hardware

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 24151

https://orcid.org/0000-0002-8748-1630
https://orcid.org/0000-0003-1806-1189
https://orcid.org/0000-0002-3702-8192
https://orcid.org/0000-0002-3195-3168

A. M. Dalloo et al.: Low-Power and Low-Latency Hardware Implementation

implementation of these functions (exponential and hyper-
bolic). In general, there are five common types of comput-
ing methods for implementing these functions, including the
look-up table (LUT) approach [4], [5], [6], [7], the polyno-
mial approximation methodology [7], [8], and the coordi-
nate rotation digital computer (CORDIC) algorithm [9], [10],
[11], [12], piecewise polynomial approximations [13], [14],
[15], and hybrid (table-driven) approaches [16], [17]. The
approximate and stochastic computing approaches [18], [19],
[20], [21] have also garnered considerable interest in recent
years. The benefits and drawbacks of each implementation
approach will be discussed in the next section.

There are no known Field-Programmable Gate Arrays
(FPGAs) designs in the literature that precisely combine
the qualities of low-cost, wide-range, low-latency, acceptable
high accuracy all at the same time. In this paper, we propose
simple architectures of exponential and hyperbolic functions
based on the table-driven approach in [22]. The proposed
architectures outperform existing state-of-the-art designs in
terms of latency, cost, operational range, and power con-
sumption. The results of the experiments that are given in
this paper provide more credence to this fact. Thus, the key
contributions of the paper are as follows:

• Development of the Exponential Function: The paper
introduces an innovative table-driven algorithm for com-
puting the exponential function. This approach signif-
icantly improves performance and reduces cost while
extending the input range. The use of Xilinx Virtex-5/7
FPGAs for verification and prototyping underscores the
practical applicability of the design.

• Design of Hyperbolic Functions: The paper presents
novel architectures for the hyperbolic functions sinh(x)
and cosh(x), based on the table-driven approach for the
exponential function. This design effectively balances
hardware complexity, cost, performance, and accuracy,
eliminating the need for data input scaling.

• Comprehensive Review of Elementary Function Imple-
mentations: An extensive review of key studies and
various methods for implementing elementary functions
(exponential and hyperbolic) is provided. This review
offers valuable insights into the state of the art and
highlights the advantages of the proposed approach.

• Comprehensive Architectural Advancements: The paper
presents architectures that excel in accuracy and
range, are energy-efficient, scalable, and flexible, and
contribute to the open-source community, supporting
diverse applications and technological evolution.

The rest of the paper is organized as follows: Section II
surveys and outlines the most pivotal studies of different
methods for implementing elementary functions. Section III
elucidates the background of the computation of expansion
and hyperbolic functions. Section IV describes the archi-
tecture of expansion and hyperbolic functions. Afterward,
in Section V, the experimental results are used to quantify
the benefits of our proposed architecture. Finally, Section VI
concludes the paper.

II. LITERATURE REVIEW
Exponential and hyperbolic functions are essential for many
computational tasks, requiring accurate and efficient imple-
mentation. Efficient and accurate approximations of these
functions are important for FPGA-based computing, where
hardware resources are limited and speed is critical. To this
end, we have surveyed the most pivotal studies in the field
published between 2011 and 2022, with a focus on those
appearing in the last seven years between 2017 and 2023.
Furthermore, this review includes some of the earliest studies
documenting the concept’s inception. In particular, articles
published by highly regarded publishers like IEEE, Elsevier,
MDPI, Nature, ACM, and Springer were prioritized. The
ArXiv repository has provided the source for a few of the
chosen papers. In this section, we will highlight the benefits
and drawbacks of each approach and review some of the
recent published studies on approximating and implement-
ing hyperbolic and exponential functions on FPGAs and
ASICs.

A. LOOK-UP TABLE APPROACH
The Look-Up Table (LUT) method [4], [5], [6], [7], is consid-
ered the easiest, most effective, and quickest method for com-
puting exponential and hyperbolic functions by interpolating
information stored in memory blocks. In Figure 1, the LUT
addresses a defined range of input values with 8-bit address-
ing. Values beyond this range might need extrapolation or
error management. Therefore, the interpolation techniques
(e.g., linear interpolation) can be used to improve accuracy
and generate input values between LUT entries. This low-
complexity method requires ample silicon space since the
accuracy is affected by the size of the memory. LUTs are par-
ticularly useful for functions that have a small input domain
and a fixed output precision. Therefore, it is not suitable for
highly oscillatory or rapidly changing functions. The core
challenge with such functions is their need for an extremely
dense set of points in the lookup table to accurately capture
their behavior. This requirement for a high density of points
leads to increased memory usage. This makes the lookup
table approach inefficient or even impractical for these types
of functions, particularly in scenarios demanding real-time
processing systems with restricted computing capabilities.
Saint-Genies et al. [4] proposed a method for using error-
free values by tabulating two or more terms per table row
using Pythagorean triples. This technique reduces memory
use by up to 29% and floating-point operations by up to
42%. Deng et al. [6] introduced a framework for automat-
ically developing of a look-up table (LUT) to generate and
evaluate the functions for optimization of hardware resources
in FPGAs. The evaluation of the function is conducted
through a numerical approximation methodology employing
Taylor polynomials. This approach is meticulously tailored
to meet specific demands regarding precision and computa-
tional speed. The result of the exponential function shows the
maximum error is 1.69e-7. Magalhães et al. [5] provided an
optimization tool for creating accurate and efficient LUTs,

24152 VOLUME 12, 2024

A. M. Dalloo et al.: Low-Power and Low-Latency Hardware Implementation

FIGURE 1. (a) Hardware implementation of exponential function using
one LUT, (b) The illustration of linear interpolation method [7].

which is composed of layers with thicknesses that specify the
distance between pre-calculated points.

B. POLYNOMIAL APPROACH
Another approach is polynomial approaches, which are tech-
niques used to approximate mathematical functions by a
polynomial function of a given degree. The Taylor series and
polynomial approximation approaches are both techniques
used to approximate mathematical functions, but they dif-
fer in their underlying mathematical principles and imple-
mentation. The implementation of exponential and hyper-
bolic functions frequently employs Taylor series, a renowned
mathematical method for approximating functions through a
sequence of derivatives at a specific point. Although these
series may converge slowly for larger values, truncating them
to a finite number of terms often yields a satisfactory level
of accuracy. Nonetheless, this method may demand signifi-
cant computational resources and is susceptible to numerical
instability, especially with larger argument values.

To address these issues, various alternative methods have
been proposed in recent years. Costa et al. [23] provided
a Taylor Series exponential function with a variable input
range and an eight-byte LUT. The proposed architecture
used a Newton-Raphson division and a radix-4 Squarer unit
for designing a Taylor series exponential function. To mini-
mize error and get a reliable approximation, the polynomial
approximation would like to be used [7], [8]. However, this
method requires many multipliers, adders, and tables for
storing coefficients. It is both slow and inefficient, as depicted
in Figure 2(a). Wu et al. [8] presented an approximate expo-
nential function unit (EFU) based on Taylor expansion and
optimized using discrete gradient descent with a power con-
sumption of 3.73 pJ/exp. Polynomial approximation is a com-
mon approach for approximating exponential and logarithm
functions on FPGAs. The idea is to represent the function as
a polynomial that approximates the function over a specific
input range. The polynomial coefficients can be determined
by fitting a polynomial to the function using least-squares
regression or another curve-fitting algorithm. In their respec-
tive studies, Chen et al. [24], Nandagopal [25], and Ze [26]

FIGURE 2. Architecture of the exponential function using (a) a 3rd-order
polynomial Approach, (b) stochastic approach of a 5th-order Maclaurin
polynomial [19].

FIGURE 3. Hardware implementation of the conventional Cordic
algorithm.

have each introduced a hardware accelerator specifically
designed for elementary transcendental functions, demon-
strating significant enhancements in computational through-
put. Notably, the work of Chen et al. [24] exemplifies
this advancement, achieving an approximate throughput of
2.5 GFLOPS utilizing 65nm CMOS technology. This devel-
opment is further characterized by its precision, maintaining
an average error of 0.5 units in the last place (ulp) and a
maximum error of 3 ulp.

C. CORDIC APPROACH
The third method is the CORDIC algorithm, which is a low-
cost iterative algorithm designed by Volder [12] in 1959.
It uses adders, wire shift operations, and a few registers,
as depicted in Figure 3. Unfortunately, it has delayed per-
formance like a serial multiplier and a limited input range,
making it not the ideal method for exponential and hyperbolic
function computation.

Recent enhancements to the CORDIC algorithm offer
potential for affordable, high-performance real-time comput-
ing hardware solutions [8], [9], [10], [11]. Osta et al. [18]

VOLUME 12, 2024 24153

A. M. Dalloo et al.: Low-Power and Low-Latency Hardware Implementation

have conducted research with the objective of diminishing the
energy usage of specialized circuits in real-time execution of
CORDIC algorithms within the realm of machine learning.
This is achieved through the application of approximate com-
puting methodologies. The findings from their study indicate
that the integration of Lower-Part Or adder (LOA) leads to
a significant reduction in power consumption, quantified at
21%. Based on adapting the current [27] architecture with
an approximation, Chen et al. [9], [28] presented a new
approximate approach for coordinate rotation digital com-
puter (CORDIC) construction. A completely parallel approx-
imation CORDIC (FPAX-CORDIC) technique is developed,
which eliminates the memory register of Para-CORDIC and
makes rotation direction generation totally parallel. Although
approximation CORDIC and parallel CORDIC functions
have their benefits, they nevertheless have limits in terms of
input range and latency. When dealing with difficult math-
ematical processes or big input quantities, the performance
of these functions may be hampered. Hence, researchers and
developers continue to explore new solutions and enhance-
ments to meet these issues and produce more effective and
adaptable algorithms for a wide range of areas.

D. PIECEWISE APPROXIMATIONS APPROACH
The fourth method is Piecewise Linear/Nonlinear/ poly-
nomial Approximations. Piecewise Linear Approximation
(PLA) is a computationally efficient method for numerical
approximation, particularly suitable for real-time systems
with resource constraints. PLA is characterized by its sim-
plicity, which makes it suitable only for implementing simple
functions in constrained computational environments. PLA
generates non-uniform segments based on themaximum error
threshold. The number of segments affects the length of the
input interval. It also impacts the steepness of the function.
However, PLA suffers from limitations where it has limited
accuracy for complex, non-linear functions. It also introduces
discontinuities at the boundaries between segments.

Moving beyond PLA’s simplicity, Piecewise Nonlinear
Approximation (PNA) offers a more advanced solution. PNA
utilizes nonlinear functions such as exponentials, logarithms,
and trigonometric functions. Its aim is to accurately represent
complex functions. However, it comes at the cost of increased
computational complexity and the challenge of selecting the
most appropriate nonlinear function for each segment.

Lastly, Piecewise Polynomial Approximation (PPA) bal-
ances computational complexity and accuracy by using
polynomials of different degrees over segmented inter-
vals. PPA is widely used in signal processing and sci-
entific computing. It can face boundary issues and needs
domain expertise for best results. It’s chosen for applica-
tions needing a good speed-accuracy trade-off. Figure 4 illus-
trates piecewise linear and quadratic approximations. For
example, Chiluveru et al. [13] developed a novel iterative
algorithm designed for the piecewise linear approxima-
tion of the sigmoid function, characterized by its con-
trolled accuracy. Dong et al. [14] introduced an advanced,

FIGURE 4. General structure of piecewise approximation approaches
(a) Linear; (b) Quadratic.

universally applicable, and error-minimized piecewise linear
(PLA) approximation methodology. This approach is elab-
orated through a comprehensive piecewise linear approxi-
mation computation (PLAC) technique, which is effectively
applicable across a broad spectrum of nonlinear unary func-
tions. The PLAC method is distinguished by its two primary
components: an optimized segmentation mechanism and a
refined quantization process. Then Lyu et al. [15] built PLAC
without using a multiplier. This architecture is optimized by
Yu et al. [29] to find the minimum number of segments and
reduce the maximum absolute error (MAE). All the authors
concentrated on the [0,1) interval for their circuit designs.
However, these designs necessitate employing the scaling
property of the exponential function for input and output
processing.

E. HYBRID (TABLE-DRIVEN) APPROACH
Hybrid (Table-driven) methods involve combining multiple
approximation techniques to improve accuracy or reduce
computational cost [16], [22], [30]. For example, a lookup
table can be combined with a linear or polynomial approx-
imation to improve accuracy over a wider input range.
To address the need for an efficient implementation of the
exponential function with variable precision fixed point nega-
tive input, Chandra [16] proposed a hybridmethod combining
LUTs and polynomial approximation to reduce the number of
multipliers and adders. The space requirements and energy
consumption decreased by over 30% and 50%, respectively.

Overall, hybrid methods are a powerful tool for approx-
imating complex functions and are widely used in many
areas of science and engineering. Exponential and hyper-
bolic functions are important in many areas of science and
engineering, but they can be computationally expensive to
evaluate directly, especially for large inputs or high precision.
Hybrid methods can be used to overcome these challenges by
combining different approximation techniques that are well-
suited to different parts of the function’s domain.

F. APPROXIMATE AND STOCHASTIC COMPUTING
APPROACH
In recent years, there has also been a great deal of inter-
est in the techniques of approximation computing and

24154 VOLUME 12, 2024

A. M. Dalloo et al.: Low-Power and Low-Latency Hardware Implementation

stochastic computing [18], [19], [20], [21], [31]. High clock
speeds and fault tolerance are two distinguishing features of
stochastic computing, resulting in exceptionally low hard-
ware costs and power consumption. Frameworks for stochas-
tic computation based on the fundamental building blocks
of arithmetic and logic are shown in Figure 2(b). However,
it has drawbacks such as decreased precision and extended
latency. Luong et al. [21] explored the implementation of
stochastic logic in executing complex arithmetic functions,
notably exponential, sigmoid, and hyperbolic tangent func-
tions. This study utilized piecewise linear and polynomial
approximations, specifically employing Lagrange interpo-
lation, to achieve these computations. The findings show
power consumption and hardware complexity reduced by
40% and increased the critical path by 2.5% compared to
earlier designs.

In addition, approximate computing is a technique for
reducing the gap between CMOS scaling and future appli-
cation needs by utilizing the trade-off between hardware cost
and accuracy, which offers significant promise for enhanc-
ing the performance of integrated systems [31]. The parallel
CORDIC proposed by [27] was approximated by [9] and [18],
but these approximated CORDIC versions may still not meet
many applications’ needs due to their delay.

In this literature review, we have examined a wide range of
methodologies for implementing low-power and low-latency
hardware designs for approximate hyperbolic and expo-
nential functions, crucial in embedded system applications.
Our analysis covered various approaches, including Look-
Up Table (LUT), polynomial approximation, CORDIC algo-
rithms, Hybrid (table-driven) methods, etc. Every method
offers unique advantages and drawbacks. The selection relies
on the needs of the particular application.

The LUT method is notable for its low latency and ability
to replace complex calculations. However, it demands exten-
sive memory for high precision, which can be a drawback,
as seen in Hugues’ approach [4] for exact hyperbolic func-
tions, where high memory access and floating-point opera-
tions become a disadvantage due to delays and high-power
consumption. Conversely, Magalhães [5] and Deng [6] have
contributed tools for automating LUT development, optimiz-
ing hardware resources. From my experiments, LUTs are
suitable for generating functions with lower accuracy or for
functions like the exponential with negative inputs, which
have outputs in the [0, 1] range. While LUTs offer lower
latency and accuracy compared to our proposed method, our
goal is to balance these aspects. Similarly, the polynomial
approximation needs to high order of polynomial for satis-
fying high precision needs. One of methods to reduce the
interpolation points is to use polynomial approach.

Piecewise approximations (PA) present a middle ground
between accuracy and computational load but may need sig-
nificant hardware for coefficient storage and calculations.
The main time consumption in PA lies in coefficient address-
ing, and compared to our method, PAs have higher delays,
despite sharing similar characteristics.

The CORDIC algorithm and stochastic methods are less
costly in terms of hardware and power but come with their
own set of challenges. The CORDIC algorithm faces higher
latency and lower accuracy, whereas the stochastic method
trades accuracy for lower latency. Essentially, each method
compromises one design aspect. However, hybrid approaches
aim to merge the advantages of different methods to boost
performance, albeit at the cost of increased design and imple-
mentation complexity. For instance, Chandra [16] combined
LUT and polynomial approximation in designing an expo-
nential function for negative inputs, reducing the need for
multiple multipliers and adders.

Our review highlighted that despite the advancements in
these methodologies, challenges remain in achieving an opti-
mal balance between power consumption, latency, accuracy,
and hardware cost. Notably, the current implementations
exhibit limitations in scalability, flexibility, and efficiency
when subjected to the demanding requirements of real-time
DSP and machine learning applications. These gaps under-
score the necessity for innovative approaches that can adeptly
navigate the trade-offs inherent in hardware design for expo-
nential and hyperbolic function computations. Our proposed
architecture, leveraging the Approximate Composited-Stair
Function (ApproxCSF) and table-driven algorithms, aims to
address these shortcomings by offering a design that sig-
nificantly improves upon latency, power consumption, and
hardware efficiency, while maintaining acceptable accuracy
levels, thus presenting a viable solution to the identified gaps
in the literature.

III. BACKGROUND OF TABLE-DRIVEN ALGORITHM
A table-driven (hybrid) implementation algorithm is pro-
posed by Tang et al. [22] to provide a software implementa-
tion of the exponential function in IEEE Floating-point arith-
metic. Fixed-point numbers are used to speed up the process-
ing of exponential functions, and the table-driven technique
is used to improve both speed and accuracy. In this article,
we present a simplified approach to the table-driven tech-
nique for the exponential function, building upon the frame-
work established in [22]. The algorithm, originally detailed
in [22], is described in the following steps:

In this design, the values of 2j/32, corresponding to the
fractional part of N/32, are pre-computed and stored in
32 memory locations, utilizing a lookup table. This setup is
pivotal for the algorithm’s efficiency. This approach allows
for rapid retrieval of these values during computation, thereby
reducing the computational complexity and underscoring the
table-driven nature of our design.

As part of the VLSI design of support vector machines
(SVM), Patankar et al. [32] used a table-driven algorithm
to implement the exponential function e−z to realize the
Gaussian function. The drawback of this implementation
is utilizing the divider unit, which has a high computation
cost. The divider unit is employed for normal division oper-
ation between two numbers and for critical tasks such as
input normalization and output scaling. Division operations,

VOLUME 12, 2024 24155

A. M. Dalloo et al.: Low-Power and Low-Latency Hardware Implementation

Steps Algorithm 1

Step 1: The input argument X is reduced to the range
[−log(2)/64, log(2)/64]. Obtain integers m, j, and r,
where |r| ≤

log2
64

X =
(32m+ j) × log (2)

32
+ r,

m =
N1

32
, j = N2,

N = Intger Round
(
X ∗

32
log (2)

)
,

N2 = N mod 32, N1 = N − N2 (1)

Step 2: The function exp(r)-1 is approximated by a polyno-
mial p(r), where

p (r) = r + a1r2 + a2r3 + . . . + anrn+1 (2)

Step 3: Reconnect exp(x) via

exp (X) = 2m(2
j
32 + 2

j
32 × p (r)) (3)

while necessary for these tasks, are inherently more compu-
tationally intensive than simpler arithmetic operations. Divi-
sion operations are notably time-consuming, often requiring
a considerable amount of clock cycles, varying from tens
to hundreds. Furthermore, division operations necessitate
significant area due to their complexity. Even a minimal
improvement in the divider circuit, such as 1%, can signif-
icantly boost the overall system performance by up to 20%
[32]. In our design, we decide to eliminate the divider circuit
due to several critical considerations. The following formula
for calculating the exponential function was adopted in [33]:

exp (−z) =

(
1
2m

)
·

(
1

2
j/32

)
·

(
1

1 + r+ 1
2 r

2

)
(4)

Our development is divided into two phases to acquire
a comprehensive description and analysis of our architec-
tures. We provide a broad description of the design and a
breakdown of how exponential and hyperbolic functions are
implemented in the circuit.

IV. THE PROPOSED ARCHITECTURES
A. GENERAL DESCRIPTION OF ARCHITECTURE
This paper presents a systematic framework for exponential
functions which segments the functions into two parts: the
Stair-Step Function (SSF) and the Composited-Error Func-
tion (CEF). The SSF is essentially a piecewise function that
approximates the exponential curve by breaking it down into
a series of discrete ‘steps’ or segments. This stepwise approx-
imation simplifies the complex nature of the exponential
function, making it more manageable for computational pur-
poses. On the other hand, the CEF is designed to capture and
represent the error introduced by the stepwise approximation
of the SSF. It models the deviation from the actual exponential

curve as a sawtooth waveform, which helps in analyzing
and compensating for the approximation error in subsequent
processing stages. We have named our proposed architecture
the Approximate Composited-Stair Function (ApproxCSF).
It employs a table-driven approach to approximate the expo-
nential function, as detailed in Algorithm 1.

This design converts the input parameter z into an integer
number N by multiplying it by a certain constant C1 and
feeding N into two segments, each with its own function. The
SSF segment can generate the stepped-exponential function
in stair form directly by looking up 2N/32, but the cost of
this process will be high because dividing N by 32 yields a
fractional amount. Consequently, it requires a large number of
memory places to achieve the highest precision. To reduce the
cost of this design, the integer number N is divided by 32 into
quotient m and remainder j. Figure 5 illustrates the design’s
block diagram. The remainder j is generated by extracting
5 bits from N and the remaining bits are used as quotient m
(e.g., m=6 bits if N is 11 bits). The fractional component of
N/32 is represented by storing 2∓j/32 values in 32 memory
locations. Regarding the integer quotient m, it is shifted by
one position to generate 2∓m through the use of a decoder,
instead of utilizing a shift register. The last step of the SSF
segment is to multiply 2∓m by 2∓j/32 to yield 2∓N /32 as
described in algorithm I and detailed more below.

X = 2Ni/32 = 2
(N−j)+j

32 = 2
N−j
32 +

j
32 = 2m · 2

j
32 (5)

In the CE segment, the error value ε is determined by
subtracting the estimated input argument zn from the input
argument z, where zn is calculated from the integer number
N after multiplying by a certain constant C2 (=1/C1). The
output of the segment (Y) is computed by adjusting the error
(ε) through addition or subtraction of 1 to calculate ex or
e−x, respectively. The approximate exponential function is
then computed by multiplying the segment’s output, Y, by the
segment’s output, Feng et al. [33] entered the error ε into
the second-order polynomial p (ε) and then divided it by
the output of SSF segment X. This is a drawback of Feng‘s
implementation.

The implementation of hyperbolic functions sinh(x) and
cosh(x) can be easily developed by adding and subtracting
two exponentials’ functions, e−x and ex, and then wire shift-
ing them, as follows:

sinh (x) =
ex − e−x

2
, cosh (x) =

ex + e−x

2
(6)

B. THE CIRCUIT DESIGN
The exponential function is a fundamental part of activation
functions for neural networks and various algorithms. For
instance, the exponential function is used by the Gaussian
function in the construction of a support vector machine
(SVM). in conscious of the fact that the exponential function
for a negative domain is s more widely used than the positive
domain [16]. As a result, we proposed and constructed a
variety of range structures for the exponential and hyperbolic

24156 VOLUME 12, 2024

A. M. Dalloo et al.: Low-Power and Low-Latency Hardware Implementation

FIGURE 5. The circuit diagram of the implementation of the exponential function (a) e−z (b)e+z.

functions to reduce hardware costs and properly compare
them to existing architectures.

The first architecture of the exponential function is limited
to the negative input, as shown in Figure 5a. The design
is pipelined to achieve a four-clock latency. We use the
signed fixed-point s4.11 format (16 bits). The integer number
s10.0 is extracted after multiplying the input argument z
(s.4.11) by the constant 32/ln(2) (s6.13). Then it is fed to
the stair-step function (SSF) and composited-error function
(CEF) segments. In the CEF section, the error ε is computed
by calculating the difference between estimated and exact
input parameters, which is always less than one. The final
output of the CEF segment (represented by X) may be less
than or more than one used to calculate the exponential
function e−z or ez, respectively, as explained below.

X =

{
1 − ε, for e−z

1 + ε, for e+z
(7)

where ε = z-zn, z represents the exact input argument, and zn
is the estimated input argument. Since outcome X is always
around one, the outcome is always represented by s1.16.

In the stair-step function segment, the integer number N
is split into two numbers (denoted j and m), and the reminder
number j is used to access the lookup table in order to acquire
2−j/32 for e−z or 2j/32 for ez. Because the output of the
decoder 2−m for e−z or 2m for ez is 16 bits, the quotient m
is represented by just 4 bits here. The output of the stair-step
function (SSF) segment is explained below.

For the exponential of negative input argument:

fraction = 2−j/32
≤ 1 → s1.14

quotient = 2−m
≤ 1 → s1.14 (8)

For the exponential of positive input argument:

fraction = 2j/32≥ 1 and ≤ 2 → s1.14

quotient = 2m≥ 1 → s15.0 (9)

Multiplying the outputs of two segments (X and Y) yields
the final circuit output, which reflects the input argument’s
exponential function. The final output is represented by
32 bits, with s1.30 for e−z and s17.14 for ez. Figures 5a and 5b
depict the exponential function circuits, and the section on the
results and assessment describes the aspects of these circuits.

As demonstrated in Figure 6, the aforementioned architec-
tures may be integrated, modified further, and simplified to
encompass the exponential function of the positive and nega-
tive input ranges. The design selects between the exponential
functions of negative and positive input arguments based on
the sign of the input argument. In this design, we utilize a
64-memory location lookup table to find 2−j/32 for e−z and
2j/32 for ez, which are addressed by combining the remainder
of j with the sign of input argument z. In the SSF segment,
the quotient number m must be inverted, and the decoder’s
output must shift only when the parameter z is negative. The
sign of the input parameter determines how the operation
is performed in the CEF segment. The error ε is directly

VOLUME 12, 2024 24157

A. M. Dalloo et al.: Low-Power and Low-Latency Hardware Implementation

FIGURE 6. The circuit diagram of the implementation of the exponential function e±z.

inserted into the adder or subtractor to obtain 1±ε and is
controlled by the sign of the input argument. The output
of the CEF segment has a distinct numerical format when
the exponential functions e−z and ez are calculated. This
distinction necessitates an increase in the number of output
bits from 32 bits to 41 bits to avoid accuracy loss.

When hyperbolic functions are significant, it is necessary
to build both exponential functions in parallel. Thus, the
circuits depicted in Figure 5 operate in parallel, with their
outputs fed into the adder/subtractor unit as per Equation 6.
Subsequently, a wire shift is applied to generate the hyper-
bolic functions. The control signal is used to choose between
cosh(z) and sinh(z). Figure 7 shows the architecture of sinh(z)
and cosh(z) functions.

V. EXPERIMENTAL RESULTS
The hyperbolic and exponential functions have been devel-
oped in VHDL to evaluate and assess the features of the
proposed architectures presented in the preceding section.
Then, these designs are synthesized in the Xilinx ISE Design
Suite and evaluated on the Xilinx Virtex-5 (XC5VLX110T)
and Virtex-7 (XC7VX485) FPGAs, which support 16-bit
operands with the fixed-point format s4.11.

In this work, we analyze the architectures based on a
variety of important metrics, such as delay, area (number
of LUTs, FFs, and slices), maximum frequency, latency,
throughput, and error. Each proposed architecture has been
functionally verified with 106 different uniformly distributed
random input patterns. The error metrics are then calculated
by comparing the hardware simulation results of the pro-
posed designs with the floating-point results of the Matlab
program. Following this, we discuss the timing analysis and
hardware utilization to conclude the FPGA implementation
study. In this work, we conduct three primary tests on the
proposed exponential and hyperbolic function designs.

A. PERFORMANCE OF APPROXIMATE EXPONENTIAL
COMPOSITED STAIR FUNCTION
To show the superiority and highlight the advantages of our
architectures (ApproxCSF) for generating the exponential

TABLE 1. Comparison of different architectures of 16-bit approximate
exponential function e−z.

function compared to other best FPGA-implementing archi-
tectures. The first architecture of the exponential function
is designed only for negative input. It is compared with the
architecture developed by [33] and [34], and the standard
CORDIC algorithm known as Xilinx CORDIC IP Core V4.
All hardware was simulated with a clock of 5 ns, but the non-
pipelined proposed architecture was simulated with 10 ns.

According to Table 1, our proposed method decreased
the latency from 44 to 4 clocks with the same maximum
frequency compared with the method in [33]. In other words,
we reduced the latency by 91% and 83% compared with
the methods in [33] and the Xilinx CORDIC IP core, which
is illustrated in Figure 8. The employment of the costly
and latency-intensive divider unit is the cause of the high
latency in [33]. The proportion of slices used by the proposed
architecture is just 8% and 88% in [33] and [34], compared
to the CORDIC IP core, as shown in Figure 8. In addition,
the proposed architecture consumes 74% less power than the

24158 VOLUME 12, 2024

A. M. Dalloo et al.: Low-Power and Low-Latency Hardware Implementation

FIGURE 7. The circuit diagram of the implementation of the hyperbolic functions.

FIGURE 8. Comparative performance analysis of the proposed design
against the [33] design and the IP Core in terms of Latency, Slices,
Dynamic Power, and Mean Squared Error (MSE). The MSE is excluded
from the IP Core comparison due to its significantly higher value.

approach described in [33] and [34] due to its usage of fewer
hardware resources. However, it has the same delay as the
other approaches. Figure 8 depicts a visual comparison of
the advantages of the proposed architecture over alternative
architectures. The CORDIC IP Core has higher error met-
rics and a smaller input range than the other approaches,
according to Table 1. Therefore, the error metrics of IP Core
are excluded from our comparison. Figure 9 illustrates the
distribution of errors across the input domain, spanning from
−10.397 to 0, for both the architecture proposed in and our
proposed architecture. Our findings indicate that excluding
the quadratic term results in a significant reduction of the

maximum error value by 85%. However, this modification
leads to a marginal increase in the overall error rate, specif-
ically by 2%. Moreover, excluding this term facilitates a
reduction in hardware complexity and cost by obviating the
need for an additional multiplier and adder. Thereby, this
simplification enhanced the system’s accuracy and efficiency
in terms of power consumption, hardware complexity, and
resource allocation. Based on the results presented in Table 1,
our design outperforms the methods described in [33] by
achieving 94%, 99%, and 93% enhancements in MAE, MSE,
and STD, respectively. However, it also results in a 2% higher
error probability.

For handling negative inputs in exponential functions, the
proposed architecture outperforms the current state-of-the-
art approaches. This architecture is also employed to develop
hardware implementations of exponential functions for both
full and positive inputs, leveraging its distinctive features.
The architectural outcomes for handling both negative and
positive inputs exhibit similar performance characteristics
facilitating straightforward comparison. Figure 10 illustrates
the error distribution across the range [0, 10.397].

In light of the distinct qualities of the two aforementioned
designs, we were inspired to create a single architecture
capable of handling both the positive and negative broad
ranges of exponential computation (as shown in Figure 6).
Table 2 showcases a comparison of our design against various
approaches in the literature. Our architecture achieves better
latency and hardware efficiency. However, the method in [35]
surpasses our design in terms of error metrics and range

VOLUME 12, 2024 24159

A. M. Dalloo et al.: Low-Power and Low-Latency Hardware Implementation

FIGURE 9. Distribution of errors in the implementation of the exponential
function e−z for (a) our proposed architecture and (b) the architecture
referenced in [32].

coverage due to its 55-bit floating-point precision, 16Kb
BRAM lookup table, and high-end hardware. Our proposed
architecture employs a 16-bit fixed-point format for preci-
sion, whereas the approach in [35] uses a 55-bit floating-point
format. Consequently, the design presented in [35] is capable
of processing a significantly broader input range compared
to our proposed design. Despite identical maximum frequen-
cies, our design significantly lowers latency, LUT, and FF
usage by 82%, 91%, and 92%, respectively, compared to [35].
Our design prioritizes power efficiency with a trade-off in
accuracy. Enhancing precision would require more bits and
potentially separate storage for integer functions in the lookup
table.

This study aims to balance different metrics, finding an
equilibrium that optimizes overall performance without dis-
proportionately favoring any single aspect.

B. PERFORMANCE OF APPROXIMATE HYPERBOLIC
COMPOSITED STAIR FUNCTION
In this section, we design and implement hyperbolic functions
on the FPGA Virtex-7 XC7VX485T in order to perform a
fair comparison with the approach described in [11]. Our
proposed circuit demonstrates significant improvements in
cost, power, and performance, accompanied by a minimal
0.074% decrease in accuracy, which remains satisfactory.
Table 3 depicts an evaluation and comparison of the proposed
architecture with the modified CORDIC algorithms reported
in [11] in terms of timing analysis, hardware utilization,
and error metrics. The proposed architecture adopts a 16-
bit fixed-point precision with accepting a minor decrease
in accuracy to avoid the complexities and delays inherent

FIGURE 10. The normalized error distribution of implementing of the
exponential function e+z.

in floating-point computations. Fu et al. [11] introduced a
128-bit floating-point version of the exponential function,
emphasizing precision over other considerations. As a result,
this design suffers from reduced performance and high imple-
mentation costs. The proposed architecture significantly out-
performs the method described in [11] reducing latency and
delay times by 81.25% and 98.45%, respectively. This leads
to a remarkable 99% improvement in throughput at an oper-
ational frequency of 200 MHz. Furthermore, the architecture
is characterized by minimal hardware utilization, which con-
tributes to lower power consumption (128mW at 200 MHz),
utilizing only 61 slices compared to the 9430 slices required
by [11]. Table 3 demonstrates that the input ranges of the
two approaches for hyperbolic functions are comparable. The
findings indicate that the highest output error recorded is
7.042 at an output value of 9517.2, with this maximum error
being normalized to 7.4× 10−4, equivalent to 0.074% of the
output value. In addition, the maximum output error observed
is 1.5225, representing 0.0138% of the highest output value,
which is 11.013×103. As previously mentioned, the work of
Fu et al. [11] emphasizes precision, achieving near-accuracy
with an error probability of only 0.4%. In contrast, our archi-
tecture for hyperbolic functions prioritizes minimizing power
consumption, reducing footprint and latency, and broadening
the input range, albeit at the cost of some precision.

Table 4 demonstrates the comparisons of the LUT, stochas-
tic computing, andmodified CORDICmethods with Approx-
CSF. Ref. [4] demonstrated that it is possible to compute
trigonometric and hyperbolic functions with an accuracy of
4 bits using 77-bit look-up tables. This method requires an
exponentially increasing number of look-up tables to achieve
higher precision, while a larger look-up table decreases
performance. Stochastic computing is a kind of comput-
ing that makes use of stochastic bitstreams; it is character-
ized by being both energy-efficient and cost-effective [21].
In stochastic computing, accuracy is directly proportional to
the number of random numbers used [20], [21]. According
to the findings in Table 4, the stochastic computing architec-
ture [21] provides the highest latency, area, and error rate.
In contrast to the others, it has a significant latency and a small
input range [0, 1]. Consequently, the latency of the methods
in [11] and [20], and this paper is 10240 ns, 297.472 ns, and

24160 VOLUME 12, 2024

A. M. Dalloo et al.: Low-Power and Low-Latency Hardware Implementation

TABLE 2. Comparison of the different architectures of approximate
exponential function e±z .

TABLE 3. Comparison of the different architectures of approximate
hyperbolic functions.

19.78 ns, respectively. Significant delays, area requirements,
and energy consumption are inevitable consequences of high-
precision computations because of the massive amount of
stochastically produced data.

To sum up, the use of a certain architecture depends on the
applications and costs. We promote adopting stochastic com-
puting for applications that need low power, cost, accuracy,
and range and where latency is unimportant. We advocate
using the method described in [4] for applications that aren’t

TABLE 4. Comparison the architectures of hyperbolic functions for the
proposed, LUT, stochastic computing, and cordic.

as concerned about power consumption or cost. We encour-
age utilizing our recommended solution for cases where all
metrics are crucial.

VI. CONCLUSION AND FUTURE WORK
In this study, we introduced efficient frameworks for comput-
ing the exponential and hyperbolic functions through using a
table-driven algorithm approach. The proposed designs are
characterized by their acceptable accuracy, low cost, low
power consumption, and low latency. The experimental find-
ings of the proposed method show considerable improve-
ments over the previously reported best designs in terms of
performance, error, and hardware cost metrics. Moreover,
the proposed architecture offers versatility and scalability,
facilitating enhanced accuracy at larger scales.

In future developments, we aim to enhance both the delay
and accuracy of our work through the implementation of the
following four strategies.
1. The output range of the exponential and hyperbolic func-

tion can be extended by splitting the input argument into
two or more parts: the integer and fraction parts to be
represented in the combination of the look-up table and
this table-driven method as follows:
when x = n1 + n2+f→

y = exp (x) = exp (n1) ∗ exp (n2) ∗ exp (f) (10)

where n1, n2 are integers, and f is fraction of input argu-
ment x. Furthermore, by splitting the integer lookup table
intomultiple sections, we can significantly reduce the total
storage requirement.

2. In future work, we aim to enhance computational effi-
ciency by minimizing multiplier use, especially for
constant-factor operations. We plan to replace the first
two multipliers with shift operations and an adder tree,
optimizing input scaling and resource usage. Furthermore,
we intend to substitute the third multiplier with a barrel
shifter, driven by specific ‘‘m’’ values, to easily adjust
the outputs of the LUT in our design. This modification
makes the computation less complex. It also makes the

VOLUME 12, 2024 24161

A. M. Dalloo et al.: Low-Power and Low-Latency Hardware Implementation

process faster. Such improvements are valuable for real-
time signal processing tasks.

3. In the proposed method, we may employ approximation
computation, such approximate adders and multipliers,
with a tolerable loss of precision to reduce the latency.
In this case, increasing the precision (bits) of the input
arguments does not result in a corresponding increase in
delay or reduction in maximum frequency.

4. The exponential function exhibits a unique scaling prop-
erty where input values can be scaled, allowing for cal-
culations within a limited range to be extended through
appropriate scaling. This feature allows for efficient com-
putation, especially when dealing with a wide range of
input values. This property is based on the mathematical
principle that the exponential function can be scaled and
shifted in a way that preserves its essential characteristics.
This is particularly useful when working with hardware
implementations, where computing the exponential func-
tion directly over a large input range might be computa-
tionally expensive or impractical.

REFERENCES
[1] L. Alzubaidi, ‘‘Review of deep learning: Concepts, CNN architectures,

challenges, applications, future directions,’’ J. Big Data, vol. 8, no. 1, p. 53,
Mar. 2021, doi: 10.1186/s40537-021-00444-8.

[2] H. S. Ilango, M. Ma, and R. Su, ‘‘A FeedForward–convolutional neural
network to detect low-rate DoS in IoT,’’ Eng. Appl. Artif. Intell., vol. 114,
Sep. 2022, Art. no. 105059, doi: 10.1016/j.engappai.2022.105059.

[3] R. H. Hadi, H. N. Hady, A. M. Hasan, A. Al-Jodah, and A. J. Humaidi,
‘‘Improved fault classification for predictive maintenance in industrial IoT
based on AutoML: A case study of ball-bearing faults,’’ Processes, vol. 11,
no. 5, p. 1507, May 2023, doi: 10.3390/pr11051507.

[4] H. de Lassus Saint-Geniès, D. Defour, and G. Revy, ‘‘Exact lookup
tables for the evaluation of trigonometric and hyperbolic functions,’’
IEEE Trans. Comput., vol. 66, no. 12, pp. 2058–2071, Dec. 2017, doi:
10.1109/TC.2017.2703870.

[5] H. Magalhães, ‘‘An optimization approach to generate accurate and effi-
cient lookup tables for engineering applications,’’ in Proc. 6th Int. Conf.
Eng. Optim., H. C. Rodrigues, J. Herskovits, C. M. Mota Soares, A. L.
Araújo, J. M. Guedes, J. O. Folgado, F. Moleiro, and J. F. A. Madeira,
Eds. Berlin, Germany: Springer, 2019, pp. 1446–1457, doi: 10.1007/978-
3-319-97773-7_124.

[6] L. Deng, C. Chakrabarti, N. Pitsianis, and X. Sun, ‘‘Automated optimiza-
tion of look-up table implementation for function evaluation on FPGAs,’’
in Proc. SPIE, Sep. 2009, pp. 353–361, doi: 10.1117/12.834184.

[7] P. Nilsson, A. U. R. Shaik, R. Gangarajaiah, and E. Hertz, ‘‘Hardware
implementation of the exponential function using Taylor series,’’ in Proc.
NORCHIP, Oct. 2014, pp. 1–4, doi: 10.1109/NORCHIP.2014.7004740.

[8] D. Wu, T. Chen, C. Chen, O. Ahia, J. S. Miguel, M. Lipasti,
and Y. Kim, ‘‘SECO: A scalable accuracy approximate exponen-
tial function via cross-layer optimization,’’ in Proc. IEEE/ACM Int.
Symp. Low Power Electron. Design (ISLPED), Jul. 2019, pp. 1–6, doi:
10.1109/ISLPED.2019.8824959.

[9] L. Chen, J. Han,W. Liu, and F. Lombardi, ‘‘Algorithm and design of a fully
parallel approximate coordinate rotation digital computer (CORDIC),’’
IEEE Trans. Multi-Scale Comput. Syst., vol. 3, no. 3, pp. 139–151,
Jul. 2017, doi: 10.1109/TMSCS.2017.2696003.

[10] E. Manor, A. Ben-David, and S. Greenberg, ‘‘CORDIC hardware accel-
eration using DMA-based ISA extension,’’ J. Low Power Electron. Appl.,
vol. 12, no. 1, p. 4, Jan. 2022, doi: 10.3390/jlpea12010004.

[11] W. Fu, J. Xia, X. Lin, M. Liu, and M. Wang, ‘‘Low-latency hardware
implementation of high-precision hyperbolic functions Sinhx and Coshx
based on improved CORDIC algorithm,’’ Electronics, vol. 10, no. 20,
p. 2533, Oct. 2021, doi: 10.3390/electronics10202533.

[12] J. E. Volder, ‘‘The CORDIC trigonometric computing technique,’’ IRE
Trans. Electron. Comput., vol. EC-8, no. 3, pp. 330–334, Sep. 1959, doi:
10.1109/TEC.1959.5222693.

[13] S. R. Chiluveru, M. Tripathy, and B. Mohapatra, ‘‘Accuracy controlled
iterative method for efficient sigmoid function approximation,’’ Electron.
Lett., vol. 56, no. 18, pp. 914–916, Sep. 2020, doi: 10.1049/el.2020.0854.

[14] H. Dong et al., ‘‘PLAC: Piecewise linear approximation computa-
tion for all nonlinear unary functions,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 28, no. 9, pp. 2014–2027, Sep. 2020, doi:
10.1109/TVLSI.2020.3004602.

[15] F. Lyu, Y. Xia, Z. Mao, Y. Wang, Y. Wang, and Y. Luo, ‘‘ML-PLAC:
Multiplierless piecewise linear approximation for nonlinear function eval-
uation,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 69, no. 4,
pp. 1546–1559, Apr. 2022, doi: 10.1109/TCSI.2021.3133931.

[16] M. Chandra, ‘‘On the implementation of fixed-point exponential function
for machine learning and signal–processing accelerators,’’ IEEE Des. Test.
IEEE Des. Test. Comput., vol. 39, no. 4, pp. 64–70, Aug. 2022, doi:
10.1109/MDAT.2021.3133373.

[17] P. Li, H. Jin, W. Xi, C. Xu, H. Yao, and K. Huang, ‘‘A reconfigurable hard-
ware architecture for miscellaneous floating-point transcendental func-
tions,’’ Electronics, vol. 12, no. 1, p. 233, Jan. 2023, doi: 10.3390/elec-
tronics12010233.

[18] M.Osta, A. Ibrahim, andM.Valle, ‘‘FPGA implementation of approximate
CORDIC circuits for energy efficient applications,’’ in Proc. 26th IEEE
Int. Conf. Electron., Circuits Syst. (ICECS), Nov. 2019, pp. 127–128, doi:
10.1109/ICECS46596.2019.8964758.

[19] K. K. Parhi and Y. Liu, ‘‘Computing arithmetic functions using stochastic
logic by series expansion,’’ IEEE Trans. Emerg. Topics Comput., vol. 7,
no. 1, pp. 44–59, Jan. 2019, doi: 10.1109/TETC.2016.2618750.

[20] L. Huai, P. Li, G. E. Sobelman, and D. J. Lilja, ‘‘Stochastic comput-
ing implementation of trigonometric and hyperbolic functions,’’ in Proc.
IEEE 12th Int. Conf. ASIC (ASICON), Oct. 2017, pp. 553–556, doi:
10.1109/ASICON.2017.8252535.

[21] T.-K. Luong, V.-T. Nguyen, A.-T. Nguyen, and E. Popovici, ‘‘Efficient
architectures and implementation of arithmetic functions approximation
based stochastic computing,’’ in Proc. IEEE 30th Int. Conf. Application-
specific Syst., Architectures Processors (ASAP), Jul. 2019, pp. 281–287,
doi: 10.1109/ASAP.2019.00018.

[22] P.-T. P. Tang, ‘‘Table-driven implementation of the exponential function in
IEEE floating-point arithmetic,’’ ACM Trans. Math. Softw., vol. 15, no. 2,
pp. 144–157, 1989, doi: 10.1145/63522.214389.

[23] P. da Costa, M. da Rosa, G. Paim, E. da Costa, R. Soares, and S. Bampi,
‘‘An efficient exponential unit designed in VLSI CMOS with custom
operators,’’ in Proc. 29th IEEE Int. Conf. Electron., Circuits Syst. (ICECS),
Oct. 2022, pp. 1–4, doi: 10.1109/ICECS202256217.2022.9970960.

[24] J. Chen and X. Liu, ‘‘A high-performance deeply pipelined archi-
tecture for elementary transcendental function evaluation,’’ in Proc.
IEEE Int. Conf. Comput. Design (ICCD), Nov. 2017, pp. 209–216, doi:
10.1109/ICCD.2017.39.

[25] R. Nandagopal, V. Rajashree, and M. Rao, ‘‘Accelerated piece-wise-linear
implementation of floating-point power function,’’ in Proc. 29th IEEE
Int. Conf. Electron., Circuits Syst. (ICECS), Oct. 2022, pp. 1–4, doi:
10.1109/ICECS202256217.2022.9970828.

[26] T. Ze, F. Feihu, Z. Jun, R. Xianglong, andW. Yang, ‘‘High-speed transcen-
dental function operation unit design,’’ in Proc. IEEE 9th Int. Conf. Cyber
Secur. Cloud Comput. (CSCloud)/ IEEE 8th Int. Conf. Edge Comput. Scal-
able Cloud (EdgeCom), Jun. 2022, pp. 160–165, doi: 10.1109/CSCloud-
EdgeCom54986.2022.00036.

[27] T.-B. Juang, S.-F. Hsiao, and M.-Y. Tsai, ‘‘Para-CORDIC: Parallel
CORDIC rotation algorithm,’’ IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 51, no. 8, pp. 1515–1524, Aug. 2004, doi:
10.1109/TCSI.2004.832734.

[28] L. Chen, F. Lombardi, J. Han, and W. Liu, ‘‘A fully parallel approxi-
mate CORDIC design,’’ in Proc. IEEE/ACM Int. Symp. Nanosc. Archit.
(NANOARCH), Jul. 2016, pp. 197–202, doi: 10.1145/2950067.2950076.

[29] H. Yu, G. Yuan, D. Kong, L. Lei, and Y. He, ‘‘An optimized method
for nonlinear function approximation based on multiplierless piecewise
linear approximation,’’ Appl. Sci., vol. 12, no. 20, p. 10616, Oct. 2022, doi:
10.3390/app122010616.

[30] J. Partzsch et al., ‘‘A fixed point exponential function accelerator for a
neuromorphic many-core system,’’ in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2017, pp. 1–4, doi: 10.1109/ISCAS.2017.8050528.

[31] A. Dalloo, ‘‘Enhance the segmentation principle in approximate com-
puting,’’ in Proc. Int. Conf. Circuits Syst. Digit. Enterprise Tech-
nol. (ICCSDET), Dec. 2018, pp. 1–7, doi: 10.1109/ICCSDET.2018.
8821112.

24162 VOLUME 12, 2024

http://dx.doi.org/10.1186/s40537-021-00444-8
http://dx.doi.org/10.1016/j.engappai.2022.105059
http://dx.doi.org/10.3390/pr11051507
http://dx.doi.org/10.1109/TC.2017.2703870
http://dx.doi.org/10.1007/978-3-319-97773-7_124
http://dx.doi.org/10.1007/978-3-319-97773-7_124
http://dx.doi.org/10.1117/12.834184
http://dx.doi.org/10.1109/NORCHIP.2014.7004740
http://dx.doi.org/10.1109/ISLPED.2019.8824959
http://dx.doi.org/10.1109/TMSCS.2017.2696003
http://dx.doi.org/10.3390/jlpea12010004
http://dx.doi.org/10.3390/electronics10202533
http://dx.doi.org/10.1109/TEC.1959.5222693
http://dx.doi.org/10.1049/el.2020.0854
http://dx.doi.org/10.1109/TVLSI.2020.3004602
http://dx.doi.org/10.1109/TCSI.2021.3133931
http://dx.doi.org/10.1109/MDAT.2021.3133373
http://dx.doi.org/10.3390/electronics12010233
http://dx.doi.org/10.3390/electronics12010233
http://dx.doi.org/10.1109/ICECS46596.2019.8964758
http://dx.doi.org/10.1109/TETC.2016.2618750
http://dx.doi.org/10.1109/ASICON.2017.8252535
http://dx.doi.org/10.1109/ASAP.2019.00018
http://dx.doi.org/10.1145/63522.214389
http://dx.doi.org/10.1109/ICECS202256217.2022.9970960
http://dx.doi.org/10.1109/ICCD.2017.39
http://dx.doi.org/10.1109/ICECS202256217.2022.9970828
http://dx.doi.org/10.1109/CSCloud-EdgeCom54986.2022.00036
http://dx.doi.org/10.1109/CSCloud-EdgeCom54986.2022.00036
http://dx.doi.org/10.1109/TCSI.2004.832734
http://dx.doi.org/10.1145/2950067.2950076
http://dx.doi.org/10.3390/app122010616
http://dx.doi.org/10.1109/ISCAS.2017.8050528
http://dx.doi.org/10.1109/ICCSDET.2018.8821112
http://dx.doi.org/10.1109/ICCSDET.2018.8821112

A. M. Dalloo et al.: Low-Power and Low-Latency Hardware Implementation

[32] U. S. Patankar, M. E. Flores, and A. Koel, ‘‘Novel data dependent divider
circuit block implementation for complex division and area critical appli-
cations,’’ Sci. Rep., vol. 13, no. 1, p. 3027, Feb. 2023, doi: 10.1038/s41598-
023-28343-3.

[33] L. Feng, Z. Li, and Y. Wang, ‘‘VLSI design of SVM-based seizure
detection system with on-chip learning capability,’’ IEEE Trans.
Biomed. Circuits Syst., vol. 12, no. 1, pp. 171–181, Feb. 2018, doi:
10.1109/TBCAS.2017.2762721.

[34] L. Feng, Z. Li, Y. Wang, and C. Wang, ‘‘A fast on-chip SVM-training
system with dual-mode configurable pipelines and MSMO scheduler,’’
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 11, pp. 4230–4241,
Nov. 2019, doi: 10.1109/TCSI.2019.2929054.

[35] W. Yuan and Z. Xu, ‘‘FPGA based implementation of low-latency floating-
point exponential function,’’ in Proc. IET Int. Conf. Smart Sustain. City
(ICSSC), Aug. 2013, pp. 226–229, doi: 10.1049/cp.2013.2022.

AYAD M. DALLOO received the B.Sc. and
M.Sc. degrees in electronic and communication
engineering. He is currently pursuing the Ph.D.
degree with the Electrical Engineering Depart-
ment, University of Technology, Iraq. He is also
a Faculty Member with the Communication Engi-
neering Department, University of Technology.
His research interests include approximate com-
puting and machine learning.

AMJAD JALEEL HUMAIDI received the B.Sc.
and M.Sc. degrees in control engineering from the
Al-Rasheed College of Engineering and Science,
in 1992 and 1997, respectively, and the Ph.D.
degree with a specialization in control and automa-
tion, in 2006. He is a Professor with the Engi-
neering College, University of Technology, Iraq.
His fields of interests include adaptive, nonlinear
and intelligent control, optimization, and real-time
image processing.

AMMAR K. AL MHDAWI received the Ph.D.
degree in electronic and electrical engineering
fromBrunel University London. He is an Assistant
Professor with the Department of Computer Sci-
ence and Engineering, Edge Hill University, U.K.
He possesses a strong academic background and
extensive expertise in the field of robotic mecha-
tronic design (aerial, underwater, and ground sys-
tems), control engineering, machine learning, and
embedded systems.

HAMED AL-RAWESHIDY (Senior Member,
IEEE) is a renowned Professor of communica-
tions engineering with the University of Tech-
nology, Baghdad. He has advanced qualifica-
tions from the University of Glasgow and the
University of Strathclyde, U.K. He has a rich
career, including roles with the Space and Astron-
omy Research Centre, Iraq; PerkinElmer, USA;
Carl Zeiss, Germany; British Telecom, U.K.;
and various universities such as Oxford Univer-

sity, Manchester Metropolitan University, and Kent University. Currently,
he directs the Wireless Networks and Communications Centre and Post-
graduate Studies in Electronic and Computer Engineering, Brunel University
London. He has published over 370 papers and edited the first book on
radio over fibre technologies for mobile communications networks. He is
also a consultant of global telecom companies and a principal investigator
of significant research projects. His current research focuses on advanced
technologies in communications engineering, including 5G and 6G develop-
ments, quantum computing, AI, and IoT applications.

VOLUME 12, 2024 24163

http://dx.doi.org/10.1038/s41598-023-28343-3
http://dx.doi.org/10.1038/s41598-023-28343-3
http://dx.doi.org/10.1109/TBCAS.2017.2762721
http://dx.doi.org/10.1109/TCSI.2019.2929054
http://dx.doi.org/10.1049/cp.2013.2022

