IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 15 January 2024, accepted 26 January 2024, date of publication 9 February 2024, date of current version 21 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3364397

== RESEARCH ARTICLE

Multi-Scale Based Approach for Denoising
Real-World Noisy Image Using Curvelet
Thresholding: Scope and Beyond

SUSANT KUMAR PANIGRAHI”1, SANTOSH KUMAR TRIPATHY?2,
ANIRBAN BHOWMICK!, (Senior Member, IEEE),

SANTOSH KUMAR SATAPATHY?, (Member, IEEE), PAOLO BARSOCCHI %,
AND AKASH KUMAR BHOI 45, (Member, IEEE)

1School of Electrical and Electronics Engineering, VIT Bhopal University, Kothri Kalan, Sehore, Madhya Pradesh 466114, India
2School of Computing Science and Engineering, VIT Bhopal University, Kothri Kalan, Sehore, Madhya Pradesh 466114, India
3Information and Communication Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India
“Institute of Information Science and Technologies, National Research Council, 56124 Pisa, Italy

SDirectorate of Research, Sikkim Manipal University, Gangtok, Sikkim 737102, India

Corresponding authors: Santosh Kumar Tripathy (santoshtripathy 1448 @ gmail.com) and Paolo Barsocchi (paolo.barsocchi @isti.cnr.it)

This work was supported by the CHIPS project “Cyber and Human Intelligence for Physical Systems”, under Grant
CUP: B53C24000490005.

ABSTRACT Naive simulated additive white Gaussian noise (AWGN) may not fully characterize the
complexity of real world noisy images. Owing to optimal sparsity in image representation, we propose a
curvelet based model for denoising real-world RGB images. Initially, the image is decomposed in three
curvelet scales, namely: the approximation scale (that retains low-frequency information), the coarser
scale and the finest scale (that preserves high-frequency components). Coefficients in the approximation
and finest scale are estimated using NLM filter, while a scale dependent threshold is adopted for signal
estimation in the coarser scale. The reconstructed image in spatial domain is further processed using Guided
Image Filter (GIF) to suppress the ringing artifacts due to curvelet thresholding. The proposed approach
known as CTuNLM method is extended for color image denoising using uncorrelated YUV color space.
Extensive experiments on multi-channel real noisy images are conducted in comparison with eight sate-of-
the-art methods. With four encouraging qualitative and quantitative measures including PSNR and SSIM,
we found that CTuNLM method achieves better denoising performance in terms of noise reduction and
detail preservation. We further examined the potential of proposed approach by focusing only on the Finest
scale curvelet Coefficients (FC). Features like small details, edges and textures always add up to improve
the overall denoising performance, while minimizing spurious details. We studied ‘“The Curious Case of
the Finest Scale” and constructed “Deep Curvelet-Net”’: an encoder-decoder-based CNN architecture, as a
pilot work. The encoder uses multiscale spatial characteristics from noisy FC, while the decoder processes
de-noised FC under the supervision of encoder’s multiscale spatial attention map. The “Deep Curvelet-
Net” links encoder multiscale feature modeling with decoder spatial attention supervision to learn the most
essential features for denoising. The CNN-based architecture only estimates FC, while all other CTuNLM
stages are left unchanged to produce the denoised output. Results presented in this article validated the design
of proposed CNN architecture in curvelet domain and motivated us to search beyond classical thresholding
and/or filtering approaches.

INDEX TERMS Curvelet thresholding, deep Curvelet-Net, GIF, AWGN, skip-connection.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and The increasing demand of high (spatial) resolution images,
approving it for publication was Sudhakar Radhakrishnan . with constant die size of CCD sensors, imaging systems
© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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FIGURE 1. Comparison of (a) real noisy image with (c) simulated noisy image corrupted with Additive White Gaussian Noise (AWGN).

invariably add unwanted noise components while acquiring
images. Higher pixel counts under limited sensor size
damages the signal integrity at each pixel by receiving less
photons (lights) and resulting less charges and lower signal to
noise ratio [1], [2]. As modifying imaging systems is almost
impractical, thus developing densoing algorithms is a key
indispensable step in many image processing and computer
vision tasks [3]. Furthermore, the general problem of image
restoration can be solved through variable splitting by
using sub-tasks of denoising algorithms [4], [5], [6], [7], [8],
[91, [10].

Noise in the real-world images are generated from various
sources of imaging pipeline including: short noise, amplifier
noise and quantization noise. Moreover, real world images are
scanned, quantized and also under gone through various lossy
compression techniques. Therefore, the observed noise is
signal dependent, correlated and can’t be generalized as white
and i.i.ds of Gaussian distributions [11]. As illustrated in
Fig. 1, the noise statistics varies independently with different
image patches for example the noise pattern in back-box is
totally different from that of cyan box, although both patches
are taken from same white object. In contrast, the noise
pattern observed due to simulated additive noise, as shown in
Fig. 1(d) is almost homogeneous for similar objects. Many
literature attempts to recover a clean image from its noisy
observation by using prior knowledge of both signal and
degradation process. Neglecting the complexity of real-world
noise, the degradation process can be formulated as the sum
of a clean image, x and the additive white Gaussian noise
(AWGN), n as: y = x + n, where n € R(0, o2).

Image denoising may be formulated as an Il,-norm
minimization problem assuming both the clean/ reference
and noisy image laying in a higher dimensional space (see
Fig.2). The task is to find an approximation of clean image
such that the /;-norm between the reference image and the
noisy image is minimum. As there are infinite such points
exist in the circumference of the circle, the most appropriate
solution — without any new artifacts added due to the
denoising algorithm assumptions — would be the point joining
the straight line between the noisy and the clean image.
Although, almost all the denoising algorithm invariably add
some new artifacts in the recovered image, one must seek
to develop an approach that produces denosing image with
minimum visually annoying artifacts.
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FIGURE 2. The two denoised images have the same ¢,-distance to the
clean image, but only the denoised image lying on the path between the
noisy image and the clean image contains no new artifacts.

With variety of techniques describing the essential qual-
itative and quantitative features of the image, the existing
methods can be broadly categories into the model based [4],
[51, [12], [13], [14], [15] and the discriminative learning
based methods [8], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25]. Model based methods can be categorized into two
main sub-groups, spatial-domain-based dictionary learning
methods [26], [27], [28], [29], [30] and transform-domain
based multi-scale thresholding approaches [31], [32], [33],
[34], [35], [36]. On the other hand, discriminative learning
based approaches adopt the training set of degraded and
ground truth image either in stage-wise (learning of image
prior) [17] or convolutional neural network (CNN) [16], [18],
[37] based methods to approximate the denoised image.

The model based methods rely on constructing an opti-
mization scheme by adopting the distribution of noise or
by exploiting the image priors as constraints or penalties.
The non-local self-similarity (NSS) image priors search
for similar patches in the whole image assuming natural
images have structural similarity that may exist far from
local patches [12]. Euclidean distance is commonly used as
a measure of self-similarity. The NSS prior has been suc-
cessfully utilized in many inverse problems, while obtaining
state-of-the-art denoising performance for BM3D [31] and
WNNM [4] methods. On the other hand, transform domain
approaches construct a representative Euclidean space for
sparse image representation (with a small number of signifi-
cant coefficients) and therefore allow highly efficient image
models. The transform-based methods can be grouped into
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data-adaptive and non-data-adaptive transform models. Data-
adaptive transform models [27], [29] use image patches as
basis functions. However, these types of modeling strategies
might behave inconsistently with respect to outlier data or
on the data which are not considered for training. Moreover,
to create an abstract model with high quality performance,
choosing the correct model parameters can be costly due to
the amount of data they require. The fixed kernel based non-
data adaptive, multiscale approaches are very popular and
promising in exploiting line and Curve singularity for image
denoising [38], [39]. The sparsity in image representation
and the ability of fixed kernel basis functions to decorrelate
the image signal and the noise subspace are key factors
in the development of thresholding (or shrinkage) based
image denoising approaches. Nevertheless, the sudden jump
in coefficient magnitude can introduce ringing artifacts in
the resulting denoised images. Notably, the recent adap-
tive soft-thresholding based method improves the image
quality by exploiting the non-local correlation among the
overlapping image patches; rather than considering a global
image modeling [40]. Literature also supports combined
approaches of feature selective thresholding and filtering
in different frequency bands of transformed coefficients for
image denoising [34], [41]. Recently these methods achieved
competitive state-of-the-art results in many image restoration
applications.

Recently, with availability of numerous image datasets,
the discriminative learning based methods almost achieved
the competitive performance of denoising under simulated
additive Gaussian noise [3]. Without providing image priors
manually, deep learning based denoising methods employ
CNNs to develop models using a large set of clean and
noisy image pairs. Notable CNN based denoising models like,
DnCNN [18] and IrCNN [8] adopts deep residual network for
image denoising, which effectively captured residual noise
patterns. Flexibility to adopt unknown and varied noise level
is still a challenging task for many neural network models.
Zhang et al. [19] introduced FFDNet, which offered a fast and
flexible solution using parallel feed-forward denoising blocks
for adaptively control the trade-off between noise reduction
and detail preservation. Data over-fitting for Gaussian noise
and poor generalization to real-word noisy images (with more
sophisticated noises) are two major road-blocks of CNN
based approaches for image denoising [20].

Generally, denoising real-noisy image is a two-step
process: noise estimation (challenging for spatially varying
uncorrelated noises) and feature attentive, non-blind denois-
ing [3]. Noise Clinic [42] proved to be efficient in estimating
the noise model depending on signal and frequency followed
by non-local Bayes (NLB) model for image denoising.
In contrast, the well-known software toolbox Neat Image [43]
and few other methods [44], [45] are developed specifically
for handling real-world noises. Interestingly, the bench-
marking BM3D [31] (or CBM3D [32]) still demonstrates
competitive performance compared to several denoising
approaches [29]. We in this article try to amalgamate the
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concepts of signal sparsity and non-local self-similarity
(NSS) to develop an algorithm for denoising real-world
(RGB) noisy images. Inspired from [46], [47], [48], [49] and
the seminal work presented in [50], we define the constrained
minimization problem as:

N 1
% = argmin E||y—x||§ + AR(x) (1)
X

Note, the first term represents the data fidelity, whereas
the second term depends on the image priors used. The
regularization parameter A effectively balances the trade-off
between these two components. In this proposed work,
we estimate X from the frequency domain coefficients,
assuming the image is sparsely represented using curvelet
basis functions. Thus a well-defined scale dependent
threshold can be used to separate the signal components
from its noisy observations, whereas an explicit prior is
chosen using nonlocal constraint to estimate the denoising
coefficients in the curvelet approximation and the finest
scale (Section III). However, in the Deep-CNN based
approach the adaptive moment estimation (ADAM) [51] is
used to estimate the finest scale coefficients — instead of
NLM filter — in the supervised deep-learning-based method
(Section V-B).

A. SIGNIFICANT CONTRIBUTION

Owing to energy compact and linearity properties (due to
tight frames), the multiresolution curvelet transform can
represent any square integrable function and also obeys
Parsevals’ theorem. As a result the noise may remain additive
in the transformed domain and NLM filter can be applied
on the curvelet coefficients [2]. With a single parameter
based image denoising framework, we highlight the main
contribution of our work:

1) A fast and efficient model adopted to spatially varying
noise; tunable at any known noise level is proposed
for denoising real-world noisy images while demon-
strating its potential for practical applications. Here,
the hybrid approach is implemented using fast and
improved NLM filter [12], [52] to speed-up the overall
process.

2) We also examined the curious case of the Finest scale
curvelet Coefficients (FC) and highlighted the scope of
improvement for any method adopting curvelet based
multiscale approach for image restoration.

3) Finally, an encoder-decoder based CNN architecture
with spatial attention blocks (SAB) known as “‘Deep
Curvelet-Net” is developed for denoising the curvelet
finest scale coefficients.

Il. PROPOSED DENOISING FRAMEWORK

In this section, we look closely at the sparse land model for
image representation using curvelet transform and formulate
the problem of image denoising with detailed block diagram
in the subsequent sections.

VOLUME 12, 2024
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FIGURE 3. (a) Construction of continuous curvelets. In Fourier space, curvelets are supported near a “parabolic” wedge. (b) A basic
curvelet and the possible translations and orientations. (c) Discrete curvelet tilting with parabolic pseudopolar support in the

frequency plane.

A. SPARSE IMAGE REPRESENTATION IN THE CURVELET
DOMAIN

The 2" generation, non-data-adaptive multiscale curvelet
transform found its popularity in many application areas
including image processing, seismic data exploration,
fluid mechanics, and solving partial differential equations.
By adopting an-isotropic scaling (width = length®), curvelet
efficiently represent curve singularity with minimum number
of complex coefficients. Alike any other transformation,
an image function x € L?(R?) can be represented as
a linear combinations of curvelet basis or frame atoms
®y.0,r € LZ(R2), as:

X = Z Cy,r,o(x)¢y,r,o (2)

V,T,0

where, C, : » =< x, ¢y ¢, > are the curvelet coefficients
and < -,- > represents scalar product in L2(R?).
Here, ¢, the basic curvelet is located at different scales,
y, translation, 7 and rotations, o. In general formulation
the curvelet is formed as a combination of two window
functions W(-) (radial window) and V(-) (angular window);
defined in frequency domain. Assuming & = (&1, &)

representing frequency variable. Further, let r = ,/512, 522,
o = arctan(§1 /&) be the coordinates in frequency domain.
We define the “dilated basic curvelet” in polar coordinates
as:

by.0.0(r, ®) = 27 W@ r)Vy, (@): r >0, o € [0, 27)
3

As shown in Fig.3, the curvelet elements are locally
supported near wedges; where the number of wedges defined
atany scale27” as N, = 42770 (i.e. wedges doubles at each
ring). Now, we define the complete curvelet family in spatial
domain with position index p as:

by.r.0(P) = ¢y.0.0 (Re, ,(p — bY°)) “

with parameters y € Ng and t = (11, 72). Note the rotation
matrix at an angle 6, in Eq.4 is denoted as Ry. Let us define
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the equidistance rotation angles 6, , as:

T o 24%1
bro="5—

and the positions as:
T
= b =Ry ((@/2)@/272)

Finally, we redefine the curvelet transform of any 2D signal
in spatial domain as [38]:

Cy.r.0(p)
= / x(p)¢y,r,o(p)dp
R2

Y0 _ Y0
b =b

- /R 400 (Re, £) N ae (o)

where X(£) and dA)y,o‘o(E ) are the Fourier transform of x(p)
and ¢(p).

For images being represented in Cartesian arrays; the
curvelets are approximated (interpolated) to concentric
squares instead of circular rings (Eq.3). Thus the rotation in
replaced by shearing as shown in Fig.3(c).

3 3y S5
y.00&) = 2% W(2_”$1)V( ; Ez) ©

Here, the basic curvelet ¢~>y,0,0 determines the frequencies
in trapezoid as:

@ g <g <ot o512 8 s 2
- 376 3
Now let us define the digital curvelet families in the

Cartesian 2D grids at various scales, y, translations, T and
orientations o as:

$y.0®) = dr.00 (57,00~ 51) ™

where, the shear matrix is:

1 O
So = (—tan@ 1)
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and b}’ = So. Tory. Applying Fourier transform to Eq.7,
we obtained the (ﬁgitﬁl curvelet basis function as:

¢y,t,o

. _FV.o0 2 _
—e i<by ,.§>¢V’0’0 (S lg)

0y.0

Ceye . 3 2L5)
:e_’<b¥ ’S>2;¢VW(2_Y§1)V( %-1%_2 +0) 8)

Thus, qu,w is a compactly supported curvelet in the
Fourier domain on sheared trapezoids.

The digital curvelet in Cartesian grid (Eq.8) is defined in
the Fourier domain and simply for an image in 2D the curvelet
transform can be calculated as:

C(Image) = IFFT [FFT (Curvelet) x FFT (Image)] (9)

With two digital implementations proposed in [38] Fast
Discrete Curvelet Transform (FDCT) via. Unequispaced
FFT (USFFT) corresponds to the most faithful and exact
implementation strategy with computational complexity
approximately close to FFT implementation: O(M?log(M)).
In this article we have considered FDCT algorithm for sparse
image representation and noise reduction via. multiscale
filtering and hard thresholidng.

B. PROBLEM FORMULATION

Fig. 4 depicts the problem formulation of the proposed
approach in the curvelet domain. We define a operator A,
and reformulate the problem with a fast limited (three) scale
curvelet decomposition method to analyze both the coarser
scale (low-frequency) and the finest scale (high-frequency)
noise, distinctively. Assuming a scale dependent threshold
Ay, we defined the operator, A, in the curvelet domain
Tcurveler as:

A, = [ANLM,VI | icysz | ANLM,yh] (10)

The image is initially transformed to curvelet domain but
only decomposed in three curvelet scales. Here, Ay y,
and Anry .y, are two operators depicting the non-local
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means filter applied independently in the approximation
(low-frequency) scale and the Finest (high frequency)
scale, respectively. On the other hand in the coarser scale,
we applied adaptive threshold, A\, and the identity matrix
operator I retained the coefficients, C, > A, . As shown in
Fig.4, the parameters of operator A,, are tuned by minimizing
the MSE, | E, | between estimated and desired coefficients
denoted as B,,.

In the last and final step, we processed the reconstructed
image (known as initial denoised image obtained by inverse
curvelet transform Tgulwelet using Guided image Filter (GIF).
Cgir in the spatial domain is adopted to mitigate the
distortions introduced due to thresholding. Moreover, the
edge-aware filter also aides in preserving local structures like:
edges, textures and small details. Literature suggests that with
proper tuning parameters of Cgrr, improves the denoising
performance up to 1.0dB [41]. Moreover, compared to
its earlier versions proposed in [35], for computational
tractability and ease of usage a single input parameter, o,
(estimated noise standard deviation) is used to tune all other
parameters in Eq. 10.

lll. METHODOLOGY
The proposed image denoising framework, as shown in Fig. 5
is designed specifically to handle the real-world noisy image
with a single tuning parameter. By adopting several changes
compared to the initial algorithm as in [35], we developed
a fast, efficient and flexible, denoising method using a
standalone model that can handle both spatially variant and
invariant noise when the noise standard-deviation is known
or unknown for real-time applications. Moreover, we purely
focused on multi-channel (RGB) images contaminated with
natural sensor noise especially due to low-light conditions.
The noise variance estimator in [53] is used to calculate
noise standard deviation, o, as the median absolute
deviation (MAD) of wavelet coefficients at the HH-scale.
The wavelet based noise estimator, o, % proved
to very efficient and robust [54]. In the proposed multiscale
based NLM filtering approach the single unknown parameter,
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FIGURE 5. Block diagram of the proposed CTuNLM Framework. Here S(-) and S~ (.) are forward and inverse color transform matrix.

noise standard deviation is estimated as the first indispensable
step. Out of two solutions listed in [35], and inspired from
the seminal work of Dabov et al. [32], we considered
luminance /color-difference based de-correlated space for
image denoising, as shown in Fig. 5. Literature also suggest
that a better subjective quality — with an improvement up to
1.2dB - can be obtained for algorithms implemented in YUV
color space compared to correlated RGB-space [55].

We particularly exploit the knowledge that multiscale
transforms like curvelet, constructed for detecting corre-
lations in images lead to sparse representations in the
transform domain with a small number of significant
coefficients at various scales/frequency-bands having high
intra-scale correlation. Therefore, it allows highly efficient
image models [39]. The FDCT via. USFFT [38] is initially
applied in the YU & V-channels to perform a limited
scale decomposition and to fully exploit the non-local self-
similarity (NSS) in the approximation and finest scale.
Unlike [12], the weights of NLM filter as defined in Eq. 11
is optimized by taking the advantages of symmetry property
(roughly halves the computation time) and adopting a look-up
table for speeding-up the computation process. Moreover,
the NLM filter (known as FNLM [52]) is partly c-coded to
improve the overall run-time complexity. For any two given
noisy coefficients, Cy at positions &; and &;, the similarity
between two (non-local) patches (in either approximation/the
finest scale) N(&;) and N(&)) is reformulated in the curvelet
domain as:'

I Cy (NGE) — Cy (N&)) 13,
h2

Wi, §) =exp | — (1)

The Gaussian modulated similarity measure using Eucle-
dian distance is denoted as || - ||%a with a represented as

IThe NLM filter is applied in the curvelet domain by decomposing each
channel of color image in YUV-space, separately. Therefore, we formulate
NLM filter for single channel 2D coefficient sub-band.
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the standard deviation of Gaussian function. The parameters,
hy = ky - 0.y and hy = kyp - 0.5 control the smoothness
of the NLM filter in the approximation and finest scales,
respectively. As the smoothing parameter is mathematically
related to estimated noise o,.g, it is capable of adapting
varying noise power.

Unlike, the approximation and the finest scale: the courser
scale coefficients are decomposed in various angles (or
orientations), o. As defined in Eq. 10, we defined the scale
dependent threshold as:

Ay =koes0y (12)

The scale dependent variance o2 is estimated using
Monte-Carlo simulation and the parameter, k = 1.5 is
obtained using empirical method. The hard-thresholding in
the coarser scale although separates noise from the signal
components, introduces ringing artifacts. Cycle spinning
of curvelet coefficients [56] and post-processing filtering
techniques [41] are only few solutions suggested in the
literature for suppressing ringing artifacts around the edges.
The reconstructed image obtained from inverse curvelet
transform (in YUV Space) is further processed using Fast
Guided Image Filtering (GIF) [57] to retain small image
details like textures and edges. Moreover, the fast GIF
is computationally efficient and improves the speed up
to O(M) for M pixels. Fig. 6 illustrates the visual and
quantitative improvement of denoised image before and after
the applications of GIF. The results validate the application
of post-processing Guided Image filtering for suppression of
ringing artifacts and preservation of image small details like
textures and edges.’

2The code implemented and tested in MATLAB @2022 will be available
in our official gitHub page: https://github.com/susant146/CTuNLM_Image-
Denoising/
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(a) Before GIF (b) After GIF

FIGURE 6. Effect of post-processing GIF filter. (a) PSNR = 29.735, SSIM =
0.8927. (b) PSNR = 30.585, SSIM = 0.9306.

IV. RESULTS AND DISCUSSION

A detail analysis and comparison of image denoising
performance with various state-of-the-art techniques are
presented in this section. As illustrated earlier the proposed
method is investigated for denoising real (RGB) noisy image
corrupted with natural noises. For uniformity in comparison,
the image dimension was kept either fixed to default size
as provided in the database or cropped to M = 512 x
512 rows and columns. Three bench-marking real-noisy
image datasets: PolyU Real-noisy Image Database [58],
Cross Channel (CC) image database [59] and Renoir Image
Dataset [60] were considered in this article for testing
and validation of proposed denoising algorithm. Being the
simplest inverse problem, a plethora of research has been
carried out in this area, still it remains an open problem
in image processing [33], [61]. With various denoising
methods available, authors of this article only focused on
seven recent and/or benchmarking techniques including:
CBM3D [32], MC-WNNM [13], DDID2 [34], FFDNet [19],
GSRC-NLP [30], TWSC [28] and MSI Color-tSVD [29] for
comparison. The selected methods are specifically designed
for multi-channel real noisy image and according to literature
these methods achieved best performance for both spatially
invariant and variant noises. Moreover, the authors of this
article either used MATLAB/Python codes available publicly
under default parameter settings for un-biased and faithful
comparison.’

A. IMPLEMENTATION DETAILS

The proposed CTuNLM based denoising algorithm has four
tunable parameters including, k; and k>, the weight kernel
parameters of NLM filter (see Eq. 11) applied on the
curvelet coefficients in the approximation and the finest scale,
respectively. Similarly, k, the scale dependent constant in
Eq. 12 and k3 (¢ = k3 x o) the smoothing parameter of
GIF [57] are the other two tunable quantities of the proposed
algorithm. We used a similar approach as mentioned in [41]
to obtain the optimal value for these parameters. Note, in this
well-engineered approach, the parameters are tuned once,
using TID2013 image database [63]. ky = 0.4, k, = 0.6,
k = 1.5 and k3 = 2.1. As mentioned earlier, our algorithm
only takes two inputs, noisy image (in RGB scale) and

3We would like to thank all authors for sharing their codes.
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the estimated noise standard deviation o,y with all other
parameters being co-dependent on 0.

B. QUANTITATIVE AND VISUAL ASSESSMENT

Visual quality provides subjective assessment, while the
quantitative measures provide a numerical interpretation, that
is more objective than subjective. In absence of reference
images, we adopted subjective assessment to study the
perceptual quality of the denoised image in terms of the
correct preservation of edges and textures and non-presence
of artifacts. Fig. 7 and 8 illustrate the denoised output
obtained from various methods including the commercially
available Neat Image (NI) denoising software [43]. Assuming
BM3D and FFDNet are widely considered as bench-marking
image denoising algorithms, we choose to compare our
resultant images with these methods for visual assessment.
CBM3D, MC-WNNM and DDID2 exhibit few visible
artifacts manifesting as low frequency and structural noise.
As one can see that Neat Image [43], reduces much noises,
while preserving most of the image details. GSRC-NLP [30],
TWSC [28] and MSI Color-tSVD [29] induced many
algorithm-based artifacts. On the other hand, FFDNet [19],
a well-engineered approach for handling spatially varying
non-Gaussian noise selects from many outputs from set of
noise levels excels in optimizing noise reduction and detail
preservation. The proposed method without needing any
training and entirely based on image/signal representation
technique, proved to be very efficient in retaining image
features both around the edges and in the flat regions.

Table 1 and 2 presents the quantitative results in terms
of PSNR and SSIM measure. We provide three best and
three competitive results with average value of the PSNR and
SSIM measure in the last row of each table. The results were
obtained from two different datasets containing real world
noisy image and the corresponding ground truth or clean
image. Noise estimation and adopting variant, non-Gaussian
noise is an important task — while it is very implausible —
but unless otherwise specified, we assumed invariant noise
standard deviation for real-noisy image. The noise vari-
ance is calculated using well known wavelet based MAD
estimator [53] for our proposed method. For all the other
methods, images were denoised at default settings without
changing the authors suggested algorithms/parameters. One
can see that the proposed algorithm provides competitive
results compared to CBM3D, MC-WNNM and DDID2
methods for all the images. An increase in PSNR and
SSIM measure indicates both noise reduction and structural
preservation of denoised image with respect to the available
ground truth image. The hybrid approaches of CBM3D and
DDID2 combines spatial filtering and wavelet thersholding
for image denoising and widely considered as the bench-
marking denoising approach. However, these methods are
not yet perfect, while introducing visible artifacts in the
homogenous region, manifesting as low-frequency noise. The
weight based and the group level correlation employed for
enhancing sparsity based methods in TWSC [28] and MSI
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(a) Noisy Image

f) TWSC

(g) MSI Color-tSVD

FIGURE 7. Visual comparison 01.

(f) TWSC (g) MSI Color-tSVD
FIGURE 8. Visual comparison 02.

Color-tSVD [29] proved efficient in denoising real-noisy
image as these models are specifically developed for handling
non-Gaussian color noises. The CNN based FFDNet [19]
picks the best resultant image from multiple outputs with
varying noise map seems to take the betterment at denoising
for few real-noisy images, while proposed method excels in
removing noise with preserving significant details for other
images.

To complement the quantitative results as shown in Table 1
and 2 best denoising output from each database are shown in
Fig. 9 and 10 with corresponding PSNR and SSIM values.
The results demonstrate CBM3D and DDID2 generate some
noise-caused color artifacts across the whole image, while
MC-WNNM, TWSC and MSI Color-tSVD tend to over-
smooth the resultant image. However, our method provides
promising results in comparison with the sate-of-the-art
FFDNet algorithm.
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(h) Neat Image

(i) FFDNet () CTuNLM

C. ARTIFACT STUDY

The problem of image denoising formulated as /; norm mini-
mization (Section I), not only requires the point (corresponds
to noisy image represented in higher dimension) to move as
close as to the reference point (corresponds to ground-truth
clean image) but also it is indispensable to lie on the line
joining the two points, as shown in Fig. 2. Finding such
a method from infinitely possible solutions is practically
implausible. Every denoising algorithm, while dealing with
real-noisy image (including proposed CTuNLM method)
makes some initial assumption about the image model —
assuming image is sparse in the curvelet domain — and
the noise model. Moreover, almost-all denoising algorithm
estimate noise, while assuming the spatially varying noise
as invariant quantity, for real noisy scenario [19]. We also
highlight the fact that, the denoising method Dj always
estimates the parameter / that are based on some assumptions
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TABLE 1. PSNR and SSIM measures on test-set images of CC-Image dataset [59]. First three-rows indicate the best results obtained from the selected
images, whereas the next three rows illustrate comparable results and the last row presents the average measure on the images of entire dataset.

MC-WNNM CBM3D DDID2_C GSRC-NLP TWSC MSIColor- FFD-Net Proposed
[13] [32] [34] [30] [28] tSVD [29] [19] CTuNLM
Peak Signal to Noise Ratio (PSNR) in dB
40.355 43.485 42.904 41.954 41.664 42.939 43.814 44.171
41.242 43711 43.141 41.867 41.860 43.223 44.070 44611
38.511 42.464 41.953 41.806 42.789 41.334 42.551 44.556
38.312 40.856 40.169 40.409 40.575 40.134 41.215 40.798
36.384 37.088 37.220 34.262 37.241 37.496 37.034 36.518
37.948 41.640 41.234 39.620 40.987 41.164 41.728 40.279
38.621 41.272 40.891 39.732 41.098 40.709 41.626 41.536
Structural Similarity Index Measure (SSIM) [62]
0.9587 0.9848 0.9846 0.9838 0.9738 0.9775 0.9850 0.9894
0.9340 0.9754 0.9731 0.9710 0.9636 0.9666 0.9764 0.9901
0.9426 0.9718 0.9656 0.9672 0.9727 0.9647 0.9698 0.9858
0.9593 0.9795 0.9806 0.9799 0.9696 0.9521 0.9783 0.9651
0.9227 0.9435 0.9432 0.9457 0.9153 0.8945 0.9472 0.9120
0.9684 0.9863 0.9871 0.9902 0.9849 0.9596 0.9841 0.9805
0.9501 0.9784 0.9785 0.9607 0.9793 0.9742 0.9824 0.9856

TABLE 2. PSNR and SSIM measures on test-set images of PolyU-image dataset [58]. First three-rows indicate the best results obtained from the selected
images, whereas the next three rows illustrate comparable results and the last row presents the average measure on the images of entire dataset.

MC-WNNM CBM3D DDID2_C GSRC-NLP TWSC MSIColor- FFD-Net Proposed
[13] [32] [34] [30] [28] tSVD [29] [19] CTuNLM
Peak Signal to Noise Ratio (PSNR) in dB
40.288 40.799 40.649 40.743 40.281 40.403 40.962 41.496
37.803 40.739 40.764 40.969 40.739 39.808 41.139 41.311
33.369 34.398 34.386 34.179 33.969 34.187 34.498 34.635
38.594 39.759 39.645 39.023 38.929 39.502 39.853 39.763
35.292 35.956 35.675 35.601 35.996 35.887 36.051 35.876
37.544 39.896 39.581 39.888 39.956 39.290 40.197 39.855
36.458 37.711 37.535 37.494 37.691 37.389 37.832 37.865
Structural Similarity Index Measure (SSIM) [62]
0.9723 0.9802 0.9804 0.9801 0.9765 0.9768 0.9820 0.9848
0.9632 0.9828 0.9851 0.9822 0.9724 0.9788 0.9856 0.9867
0.9733 0.9785 0.9783 0.9766 0.9720 0.9767 0.9791 0.9804
0.9494 0.9595 0.9561 0.9432 0.9603 0.9626 0.9512 0.9377
0.9647 0.9776 0.9791 0.9722 0.9765 0.9757 0.9795 0.9759
0.9346 0.9629 0.9639 0.9523 0.9592 0.9584 0.9642 0.9586
0.9547 0.9741 0.9750 0.9705 0.9725 0.9701 0.9755 0.9765

on either signal or noise. According to [12], the “method
noise” — as the difference between the clean ground truth
image and the denoised image — should be as similar as to the
noise, without any visible structural distortions, that are not
part of the latent image. For any approximation prospective,
a denoising approach with a smaller value of method noise
adds less visual artifacts.

More often or not it is very hard to locate and identify
any artifacts in the denoised image. This is because that
(sometimes) artifacts increase the preserved realism of the
denoised image, as structures in the image are recognized
as details. We have conducted a few experiments using
Renoir image dataset [60] and selected flat/homogeneous
regions with almost constant image pixel intensity, as shown
in Fig. 11. The selected image patches would highlight
the denoising performance of each approach while yielding
the notable artifacts manifesting as method noises. Fig. 12
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illustrates the characteristic of artifacts for each denoising
method with respective quantitative values. Most of the
denoised outputs in Fig. 12 exhibit low-frequency noises
and additionally suffer from loss of contrast. The use of
GIF almost eliminates structural artifacts and flattens the
low-frequency noise, while preserving the essential details.
To complement the visual assessment, we provide the average
PSNR and SSIM measures (in Table 3) to indicate the
competitiveness of proposed approach in suppressing visual
artifacts while favoring the image and noise modeling.

D. RUN-TIME COMPLEXITY

Table 4 compares the run-time complexity (in seconds) of
all competing methods. Here, experiments were conducted
using MATLAB 2022b environment on a machine with
Intel(R) Core(TM) i5 — 3210MCPU @2.50GHz and 4GB-
RAM. The average CPU run-time (in seconds) of different
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(a) Original Image (b) Noisy Image

\

(f) GSRC-NLP (g) TWSC

(a) Original Image (b) Noisy Image

(f) GSRC-NLP

(g) TWSC

(¢) MC-WNNM

(h) MSI Color-tSVD

(c) MC-WNNM

(h) MSI Color-tSVD

(d) CBM3D (e) DDID2-C

=

(i) FFDNet (j) CTuNLM

FIGURE 9. Visual and quantitative comparison 01. (b) PSNR = 37.9748, SSIM = 0.9458; (c) PSNR = 41.2228, SSIM = 0.9798; (d) PSNR = 42.8671,

SSIM = 0.9847; () PSNR = 42.2852, SSIM = 0.9846; (f) PSNR = 42.4273, SSIM = 0.9837; (g) PSNR = 41.7750, SSIM = 0.9738; (h) PSNR = 41.7191,
SSIM = 0.9775; (i) PSNR = 42.7998, SSIM = 0.9850; (j) PSNR = 42.9445, SSIM = 0.9894.

(d) CBM3D (e) DDID2-C

(i) FFDNet () CTuNLM

FIGURE 10. Visual and quantitative comparison 02. (b) PSNR = 34.9890, SSIM = 0.9253; (c) PSNR = 36.7342, SSIM = 0.9459; (d) PSNR = 37.1164,
SSIM = 0.9605; () PSNR = 36.7269, SSIM = 0.9596; (f) PSNR = 37.0585, SSIM = 0.9548; (g) PSNR = 36.9569, SSIM = 0.9523; (h) PSNR = 36.7353,
SSIM = 0.9547; (i) PSNR = 37.1293, SSIM = 0.9613; (j) PSNR = 37.1813, SSIM = 0.9653.

algorithms implemented on 500 images are shown in
Table 4. We highlight the computational complexity of each
background methods used for proposed algorithm: FDCT
(USFFT) = O(M?log(M)) (with three scale decomposition).
Fast NLM filter is used in the approximation scale with
% coefficients and the finest scale with M coefficients.
The use of look up-table for weight calculation and the
partially C-codded algorithm accelerate the overall speed
of the algorithm. Similarly, the GIF is computationally
efficient with complexity equals to O(M) for M-pixels.
However, as the proposed CTuNLM needs extra time
to denoise the each YUV components for multi-channel
implementation compared to the following methods CBM3D,
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MSI Color tSVD and FFDNet. Note although CBM3D is
implemented using C++, mex-function and parallelization,
the proposed approach is competitive with purely MATLAB
implementation.

V. BEYOND CURVELET THRESHOLDING: DEEP
CURVELET-NET

Curvelet transform is a multiscale and multidirectional image
representation technique that has proven to be valuable
in many image restoration tasks. However, we need to
look beyond multiscale thresholding, while preserving fine
details in the restored image. In this section, a pilot work
demonstrating both the power of Convolutional Neural
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(a) Noisy Imagel (d) Noisy Image4 (e) Noisy Image5

FIGURE 11. A sample of noisy flat/homogeneous regions with almost constant image pixel intensity. Images are obtained from Renoir image
dataset [60].

(a) Original Image (b) Noisy Image (c) MC-WNNM (d) CBM3D (e) DDID2-C

(f) GSRC-NLP (h) MSI Color-tSVD (i) FFDNet () CTuNLM

(b) Noisy Image2 (c) Noisy Image3

(g) TWSC

FIGURE 12. Artifact Study. The highlighted patches illustrate the method noise present in each denoised image. (b) PSNR = 30.584, SSIM = 0.6775;
() PSNR = 37.016, SSIM = 0.8868; (d) PSNR = 38.501, SSIM = 0.9223; (e) PSNR = 38.409, SSIM = 0.9225; (f) PSNR = 39.0802, SSIM = 0.9277;
(g) PSNR = 40.386, SSIM = 0.9533; (h) PSNR = 39.490, SSIM = 0.9308; (i) PSNR = 39.961, SSIM = 0.9495; (j) PSNR = 40.326, SSIM = 0.9542.

TABLE 3. Artifacts study.

MC-WNNM CBM3D DDID2_C GSRC-NLP

TWSC  MSI Color- FFD-Net Proposed
[13] [32] [34] [30] [28] tSVD [29] [19] CTuNLM
Peak Signal to Noise Ratio (PSNR) in dB

29.796 31.510 30.512 29.777 31.561 31.153 32.151 32.443
Structural Similarity Index Measure (SSIM) [62]

0.6772 0.7473 0.7482 0.7398 0.7618 0.7413 0.7716 0.7846

TABLE 4. Average and standard deviation of run-time complexity of various methods, implemented on 500 different color images.

CPU Run-Time in Seconds

MC-WNNM CBM3D DDID2_C  GSRC-NLP

TWSC MSI Color-  FFD-Net  Proposed
[13] [32] [34] [30] [28] tSVD [29] [19] CTuNLM
516.072 4.379 694.823 625.904 548.398 9.372 37.449 26.642
+ 18.656 +0.181 444884 + 57.32 + 27.694 + 0.707 + 1.362 + 3.673

Networks (CNNs) and the discriminative ability of curvelet
feature in the finest scale is investigated for the general
problem of image denoising.* Prior to the application of
deep-CNN model, we discus the curious-case of the finest

4While authors are still working on fully exploring the concept for other
curvelet scales.

25100

scale coefficients and its importance in image denoising
problems.

A. THE CURIOUS CASE OF THE FINEST SCALE

By focusing on the finest scale, curvelet transform enables the
isolation and targeted denoising or artifact removal, leading
to improved image restoration results. At the finest scale,
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(a) Original Image

(b) Noisy Image (o = 30)

(¢) CTuNLM

(d) FFDNet

() CTuNLM with Original
Finest Scale Coef.

FIGURE 13. The curious case of the Finest Scale. lllustration of denoising improvement, while preserving the original Finest scale coefficients.
(b) PSNR = 18.617, SSIM = 0.6839; (c) PSNR = 27.493, SSIM = 0.8891; (d) PSNR = 27.811, SSIM = 0.8945; (e) PSNR = 30.347, SSIM = 0.9182.

Y, p, coefficients are precisely aide in representing textures,
and other significant image structures, making it easier to
enhance or restore these specific features without affecting
the rest of the image. To study the significance of finest
scale coefficients in image restoration, we conducted several
experiments on the TID2013 image dataset [63]. While
considering the proposed CTuNLM method applied to all
other curvelet scales but retaining the original image finest
scale coefficients, we obtained the denoised image as shown
in Fig. 13. From simulated AWGN with standard deviation
o ranging between [5, 50], we found that on an average
of 0.075 to 0.3 improvement in SSIM index and 1.5 to
3dB improvement in PSNR measure of the denoised images.
Results demonstrated the importance of curvelet finest scale
coefficients in preserving most indispensable latent image
feature.

B. DEEP CURVELET-NET

Multiscale or scale-invariant feature modelling and spatial
attention mechanisms using deep learning played a crucial
role in shaping several research objectives by providing a
way to exploit enhanced features from the input data. One
way to utilize multiscale features is to design a multilayer
CNN with varying receptive fields [64]. The conceptual
denoising encoder-decoder model proposed in this study is
depicted in Fig. 14. The proposed model takes advantage
of both multiscale feature modelling and spatial attention
mechanisms in a unique manner. Specifically, the encoder is
meticulously designed using multilayers of depth-separable
convolution layers (DSCL). Each layer incorporates three
columns of DSCL. Thus, the proposed encoder consists of
six layers with three columns of DSCL. Each layer’s features
are fused and surpassed by the next layer in order to transfer
the multiscale features to the next layer.

On the other hand, the decoder, which is designed using
single-column multilayers of depth-separable convolution
layers, has the advantage of surpassing the multiscale spatial
attention maps from each encoder layer to its corresponding
decoder layer of a particular scale. Such decoder module we
call as multiscale spatial attentive decoder. The preference for
depth-separable convolutions over conventional convolutions
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is driven by the objective of reducing computational overhead
during convolution processes [65]. During decoding the
denoised FC, the fusion of multiscale spatial attention maps
from the encoder at each scale of the decoding layer acts
as additional supervision to improve the feature modelling
capability. Such an attention map is obtained by using the
Spatial Attention Block (SAB) [66] and applying it to the
features at different scales of the encoder. The architecture
details of SAB are presented in Fig. 14(b). Note that such
spatially attentive features are used in the respective scale
of the decoder through a skip connection, as shown in
Fig. 14. We highlight the layer details of the proposed CNN
architecture in Table 5.

1) OPTIMIZATION

As illustrated in Eq. 10, the finest curvelet scale is denoted
as Ay, and from Eq. 1, we define set of latent coefficients

— HXWxN  Qimi
as Xxy'h = {xuyh,x%h, Ty ) € ROV Similarly,
the noisy finest curvelet coefficients are represented by a set
— HXWxXN

Y, '—.{y.lkyh.,)&)\yh, ~ynAyh} € RIAXWXN We formulate
the minimization function as the squared error between the
input and output denoised coefficients as stochastic objective
function with parameters 6 [51].

argmin Loss = argmin(l X i(X,\ —Yy,)H)  (13)
0 9 N v s

i=1

2) NETWORK TRAINING

The training process is carried out using the TID2013 image
dataset [63], which encompasses 24 images representing
a diverse range of natural scenes. To ensure uniformity,
all reference images in the dataset are resized to 512 x
512 pixels. The noisy images are generated using simulated
additive Gaussian noise (AWGN) of zero mean and standard
deviations of ¢ = [1,70]. The training leverages the
curvelet finest scales from both reference and noisy images,
employing the ADAM optimizer and Mean Squared Error
(MSE) loss function. Specifically, the ADAM algorithm
utilizes hyperparameters « = 0.01, 81 = 0.9, 8> = 0.999,
ande = 1078, alongside a mini-batch size of 24. The learning
rate is exponentially decayed from 0.001 to 0.0001 over
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FIGURE 14. Proposed deep curvelet-net model.

TABLE 5. Layer details of proposed CNN architecture shown in Fig. 14.

Layer Names  Kernel Shape  Depth Multiplier = Layer Names  Kernel Shape = Depth Multiplier

L11 11 x 11 2 L4 3x3 1
L12 9x9 2 L5 3x3 1
L13 Tx T 2 L6 3x3 1
L14 5x5 2 L7 3x3 1
L15 4 x4 2 L8 3x3 1
L16 3 x3 2 L9 3x3 1
L21 9%x9 2 L31 3x3 2
L22 7T 2 L32 3x3 2
L23 4 x4 2 L33 3x3 2
L24 3 x3 2 L34 3x3 2
L25 3 x3 2 L35 2 X 2 2
L26 3x3 2 L36 2% 2 2

(a) Original Image (b) Noisy Image (o = 20) (c) CTuNLM (d) FFDNet (e) CurveletNet

FIGURE 15. lllustration of proposed deep CurveletNet Results applied on the Finest curvelet Coefficients. (b) PSNR = 22.150, SSIM = 0.8077;
(c) PSNR = 28.733, SSIM = 0.9187; (d) PSNR = 28.836, SSIM = 0.9158; (e) PSNR = 29.711, SSIM = 0.9246.

30 epochs. For the denoising process, training and testing denoising. Fig. 15 & 16 illustrate the results obtained using
involve 70% and 30% of coefficients, respectively, offering deep CurveletNet architecture applied on the noisy curvelet
a comprehensive evaluation of the model’s effectiveness. finest scale, while keeping the estimation method same for

We conducted a few initial experiments to demonstrate other scales as shown in Fig. 5. Note the improvement
the effectiveness of proposed CNN architecture in image in denoising quality, while maintaining both structural and
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(b) Noisy Image (o = 30)

(a) Original Image

(¢) CTuNLM

(d) FFDNet (e) CurveletNet

FIGURE 16. lllustration of proposed deep CurveletNet Results applied on the Finest curvelet Coefficients. (b) PSNR = 18.622, SSIM = 0.7115;
(c) PSNR = 27.367, SSIM = 0.9046; (d) PSNR = 27.635, SSIM = 0.9077; (e) PSNR = 28.059, SSIM = 0.9103.

textural details. The quantitative measures PSNR and SSIM
also validates the pilot attempt of curevlet coefficient esti-
mation from its noisy observation using CNN architecture,
as shown in Fig. 14. However, the performance of the
proposed approach may be limited by the limitations of signal
dependent noise representation/filtering in Curvelet domain
for uncertain real-world photographs other than contaminated
under low-light conditions. Therefore, authors are still
working on developing a standalone CNN architecture using
Curvelet coefficient for general inverse problems in image
processing.

VI. CONCLUSION

Designing a standalone model for denoising real-world
images contaminated from multiple sources of noise is
always challenging; yet an indispensable problem in image
processing. By adopting optimal sparsity in image repre-
sentation, we propose a curvelet based denoising model
that offers an efficient way to analyze both low-frequency
and high-frequency noises separately. Multiscale filtering
(fast NLM filter) in the approximation and the finest scale,
while threshoding the coarser scales, the proposed CTuNLM
algorithm is extended for denoising multi-channel real-world
noisy images (with single input parameter). The use of
Guided Image filter (GIF as post-processing operation in
spatial domain) further enhances the quality of denoised
images by suppressing ringing artifacts due to curvelet thresh-
olding. The performance of proposed CTuNLM algorithm
is compared with several recent methods including state-of-
the-art BM3D and FFDNet algorithm. Experimental results
validate the rationale of multiscale combined approach and
exhibit superior denoising performance in terms of objective
and subjective evaluation metrics on multi-channel real-
world noisy images. In the second approach, by looking
beyond multiscale curvelet filtering, we studied ‘“The
Curious Case of the Finest Scale”, in search for further
improvement in restoration quality. Thus, in a pilot work,
an encoder-decoder based deep leaning CNN architecture
with spatial attention block (SAB) known as “Deep Curvelet-
Net” was developed for denoising the finest curvelet
coefficients. Plugging these denoised coefficients in the
CTuNLM logarithm, we observed a significant improvement
in performance for images corrupted with simulated Gaussian
noises. This innovative approach highlights the significance
of supervised learning based CNN methods in estimating
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curvelet coefficients, while opening up new possibilities for
further improvement in the broad domain of inverse problems
in image processing.
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