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ABSTRACT Alzheimer’s disease (AD) is a neurodegenerative disorder. Diffusion tensor imaging (DTI)
provides information about the integrity of white matter fiber bundles that are related to the neuropathological
mechanisms, and it is one of the commonly used techniques in AD research. In this study, we first divided
each subject’s brain into 90 regions based on the automated anatomical labeling (AAL) brain atlas. The
average fractional anisotropy (FA) values between each pair of regions were applied to construct a brain
network. We utilized the number of voxels with fibers passing through each brain region as the node features.
The brain networks and node features were input into a novel graph convolutional neural network (GCN)
structure involving the self-attention pooling mechanism proposed in this study to classify AD and normal
controls (NC). The classification performance was compared among different preprocessed brain networks
and node features. The final classification result achieved an accuracy of 87.5%.

INDEX TERMS Alzheimer’s disease, diffusion tensor imaging, image classification, brain networks, graph

convolutional neural networks.

I. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder
that causes irreversible deterioration of neurological function.
It is primarily characterized by a decline in cognitive function,
significantly impacting the everyday lives of patients and
their families [1]. In 2021, over 55 million people worldwide
were diagnosed with this disease, and the number of AD
patients is estimated to reach 78 million by 2030 [2].
With the development of neuroimaging techniques, various
neuroimaging modalities have shown potential for improving
the diagnosis of AD from different perspectives.

Diffusion tensor imaging (DTTI) is a non-invasive magnetic
resonance imaging (MRI) technique that captures water
molecules’ degree of anisotropic diffusion along axons in the
white matter. It can identify abnormal diffusion patterns in
various neurological disorders and provide information about
the integrity of white matter fiber tracts related to neurobio-
logical mechanisms [3]. So far, DTI is the only neuroimaging
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technique that can describe white matter fiber pathways and
is highly sensitive to microstructural white matter damage
within fiber bundles. Therefore, DTI is typically used to
specify anatomical connectivity impairments that cannot be
detected by structural MRI (sMRI). The two most frequently
used features to characterize white matter integrity are
fractional anisotropy (FA) and mean diffusivity (MD) [4]. FA
provides information about fiber density, axon diameter, and
myelination, with decreased values indicating a loss of fiber
tract integrity. MD measures the average diffusivity of water
molecules in non-collinear directions, with increased values
indicating increased free diffusion of water molecules and
compromised anisotropy. The main pathological features of
AD include neuritic plaques or amyloid plaques (extracellular
deposits) and neurofibrillary tangles (intracellular aggregates
of hyperphosphorylated tau proteins), which can be revealed
as decreased FA and increased MD in the cingulate, corpus
callosum, and hippocampus regions [5], [6].

Graph neural network (GNN) is a general type of graph
neural network that can handle various types of graph data,
including directed, undirected, and weighted graphs [7].
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Compared to the convolutional neural network (CNN), which
is primarily used for grid-like data such as images arranged
in a 2D or 3D grid structure (e.g., pixels in an image
or frames in a video), GNN operates on graph-structured
data where nodes have relationships and connections. Graph
data can be characterized as a collection of nodes and
edges, such as social networks, knowledge graphs, and brain
networks. GNN is a universal framework for processing
graph-structured data. Its core idea is to capture interactions
between nodes by propagating messages among them.

The graph convolutional network (GCN) is a GNN
structure that involves convolutional operations. GCN models
the relationships between nodes and edges to learn from the
graph layout [8]. Each layer of GCN performs convolution
operations among the features of nodes and their neighboring
nodes, allowing for richer representations. GCN typically
consists of multiple graph convolutional layers and nonlinear
activation functions. Through comparison, it has been found
that GCN is more suitable for brain network classification
and can better explore the connections between various brain
regions. Therefore, we have determined to develop a brain
network classification model based on GCN.

IIl. RELEVANT RESEARCH

AD-related GCN research was first conducted in 2019. Using
fiber tractography, Song et al. generated a fiber graph based
on brain regions. The obtained adjacency matrix was then
input into GCN for the four-class AD classification. The
node degree and clustering coefficient were also input into
a support vector machine (SVM) classifier for performance
comparison with GCN. The results indicated that GCN
outperformed SVM [9]. Kong et al. suggested a generative
model for structural brain networks based on adversarial
learning. They directly learned the structural connections
from DTI images and input the generated connectivity
matrix into GCN for AD classification, achieving satisfactory
classification results [10]. Yang et al. proposed a method
for extracting features from graph-structured data. They
optimized the features using maximum mutual information
and then employed the brain network to classify AD subjects.
This approach exceeded other feature extraction methods in
classification accuracy [11].

Not only single-modality DTT images but GCN has also
been widely applied in recent years to classify using a com-
bination of DTI and other modality images. Especially the
functional MRI (fMRI)-DTI combination since it is straight-
forward to get functional and structural brain networks [12],
[13], [14], [15], [16]. Although structural MRI (sMRI)-DTI
fusion classification research can consider gray and white
matter features, the CNN model mainly accomplishes the
classification [17], [18], [19], [20]. One study has endeavored
to combine images of three modalities for classification.
3D sMRI images were input into the multi-channel ResNet
network model, while the brain networks constructed by DTI
and fMRI were input into the GCN model. Finally, multi-
channel ResNet and GCN were combined for multi-modality
classification to obtain pleasing results [21].
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Other than the limited applications of GCN in AD-related
research, the currently favored AD-classification approaches
utilizing DTT images are briefly introduced as follows.

GCN-excluded classification studies can be organized
into three categories: voxel-based, brain region-based,
and network-based classification studies. The research on
voxel-based classification is to select the most representative
AD voxels from the whole brain, calculate their DTI param-
eter values, such as FA and MD, and then classify them by
various classifiers [22], [23], [24], [25]. Brain region-based
research predominantly focuses on the AD-sensitive brain
regions, such as the parietal lobe, hippocampus, amygdala,
and middle temporal lobe [26], [27]. The white matter
features are extracted from the abovementioned regions and
then input into various classifiers [28], [29]. Due to the
influence of AD, some connections of neurons would be
damaged, resulting in information transmission barriers and
corresponding symptoms [30]. Therefore, the network-based
classification research can be categorized into classification
by extracting DTI parameters from fiber bundles [31], [32]
and classification by analyzing brain networks [33], [34],
[35], [36].

More and more studies have been conducted in recent
years on using GCN networks to classify mental diseases.
Besides Alzheimer’s disease, GCN has also applied to
classify other diseases such as Parkinson’s disease [37], [38],
[39], autism [40], [41], [42], major depression [43], [44], [45],
schizophrenia [46], [47], [48], attention deficit hyperactivity
disorder [49], [50], and bipolar disorder [51], [52].

In recent years of research, the studies using GCN for
classification can account for about 70%. In other words,
the current research has begun to pay more attention to the
essential characteristics of DTI images: the white matter fiber
bundle can be abstracted into a structural brain network.
With the unveiling potential of GCN algorithms, researchers
have tried to employ GCN on white matter connectivity
for AD classification to reach satisfactory performance.
Hence, more attempts need to be conducted. Moreover,
a well-known finding is that AD attacks specific white
matter fiber bundles [53], [54]. However, the current GCN-
based AD classifications treat all the network connections
equally.

Moreover, GCN is more suitable for the classification
of brain networks. Firstly, GCN can make full use of the
structure information of brain networks in DTI images for
classification, and can extract and utilize the connection
pattern and topology of brain networks from DTI data, so as
to better capture the changes of brain networks in Alzheimer’s
disease. The second point is that GCN is able to classify both
node features and connection information, combining them
as input features. This helps to more fully characterize brain
networks in Alzheimer’s disease and improve classification
performance. The third point is that in the task of classifying
Alzheimer’s disease, the global structure of the entire brain
network is critical to understanding and identifying disease
features. GCN can aggregate global information layer by
layer, and can capture a broader context of the brain network
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across connections of different distances, helping to improve
classification performance.

Therefore, we applied the GCN on the brain networks
abstracted from the DTI image for classification. Notably,
we endeavored to add the self-attention mechanism to the
original GCN structure in this study to realize better AD
classification.

IIl. EXPERIMENT

Our study utilizes the white matter features of DTI images
and employs GCN with the self-attention mechanism for
classification. The network takes structural brain networks
based on DTI as input to generate cognitive state category
labels and uses these labels as output to obtain the final
classification accuracy. Our experiments use two labels: AD
and normal control (NC). The DTI data processing will be
introduced in the first part of this section, followed by a
description of the GCN framework in the second part. The
results of the experiments will be presented in the third part.
Finally, we summarized our investigation and provided the
expectations for future research.

A. EXPERIMENTAL DATA

The data applied in this study is sourced from the ADNI
database (https://adni.loni.usc.edu/), from which we selected
70 AD patients and 70 NC individuals. The preprocessing
experiments were conducted using FSL (FMRIB Software
Library) and the FSL-based PANDA (Pipeline for Analyzing
braiN Diffusion imAges) software. PANDA is a Linux-based
software that is running within MATLAB. The preprocessing
workflow begins with converting the downloaded data from
ADNI into the nii.gz format using FSL. Subsequently, skull
stripping and eddy current correction are performed, and then
DTI parameters such as FA and MD are calculated via FSL.
Next, PANDA’s deterministic fiber tracking technique was
employed to construct white matter fiber bundles based on the
white matter trajectories. Finally, the automated anatomical
labeling (AAL) brain atlas is utilized to segment the brain into
a 90 x 90 brain network. Each brain region can be considered
a node in the network, with features encompassing the
number of voxels in each brain region. After preprocessing,
three structural brain networks are obtained: (1) the FA brain
network, constructed based on the average FA values between
each brain region according to the brain atlas; (2) the FN
brain network, constructed based on the number of fibers
between each brain region according to the brain atlas; (3) the
LEN brain network, constructed based on the average fiber
length between each brain subdivision according to the brain
atlas. The node features include (1) ROIS (ROISurfaceSize),
denoting the number of voxels traversed by fibers in each
brain region; (2) ROIV (ROIVoxelSize), representing the
number of voxels in each brain region.

B. EXPERIMENTATION

This section primarily introduces the overall workflow of
the study, starting with the GCN framework used in this
study. The calculation formula of GCN and the process
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of information propagation are explained. Following that,
the general design of the model is presented, and finally,
an overview of the working process of the self-attention
mechanism is provided.

D represents the degree matrix of the graph, and H denotes
the feature matrix of the nodes. Adding self-connections to
the adjacency matrix is crucial, implying that the diagonal
numbers are all set to 1. This definition is used in the graph
convolution formula, although in other cases, the adjacency
matrix may not include self-loops [55]. The adjacency matrix
with self-connections allows the preservation of the features
of each node and their propagation through the network.
Calculating the degree matrix D involves summing each row
of the adjacency matrix and assigning the resulting values
to the diagonal. The added diagonal values are then inverted
and square-rooted to obtain the degree matrix with a value
of —1/2. Multiplying the adjacency matrix on both sides by
the degree matrix effectively adds weights to the edges. This
adjustment leverages the varying node degrees to control the
amount of information transmitted.

HID = (D 2AD 2 HOW D), (1

The significance of incorporating the degree matrix is that,
after multiplying the self-connection matrix and the node
feature matrix, if a node is connected to many edges, the
resulting feature of that node may become exceptionally
large. This is because it needs to be summed with the
feature vectors of multiple nodes. In our study, we selected
voxel values as node features for each brain region. As
these features are propagated, they can become particularly
significant. Therefore, it is necessary to normalize the nodes
by applying normalization techniques to confine all features
within a reasonable range. This normalization helps balance
the importance of nodes with more significant degrees.
Incorporating the degree matrix is akin to performing this
normalization operation.

The purpose of GCN is to perform feature extraction, and
according to the rules of matrix multiplication, multiplying
the adjacency matrix and the feature matrix is the information
propagation process. If the information is propagated to the
141 layer, it is necessary to obtain the feature matrix of the
141 layer using the feature matrix of the 1 layer. As shown in
Figure 1, Node 0 is connected to Node 1 and Node 2, and each
node has its feature matrix. So, the feature matrix of Node
0 in the 1+1 layer is obtained by adding the feature vector of
Node 0 in the 1 layer to the feature vector of Node 1 and the
feature matrix of Node 2 in the 1 layer. The propagation of
graph convolution is the process of information transmission.
Each node first receives information from its neighboring
nodes and then gathers information from all nodes in the
graph in a layer-by-layer propagation process. In our study,
we treat each brain region as a node. Through preprocessing,
we obtain a 90 x 90 adjacency matrix. In this adjacency
matrix, the association between each brain region can be
regarded as an edge between two nodes. Therefore, the
information propagation in the brain network within GCN
is the “‘communication” between each brain region through
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FIGURE 2. lllustration of AD Classification Model Based on Self-Attention Mechanism.

their node features, ultimately obtaining the features of each
node in the entire network for final training.

Our experimental model consists of a three-layer GCN
hierarchical pooling model, as shown in Figure 2. It consists
of three modules, each consisting of a graph convolutional
layer and a graph pooling layer. The outputs of each module
are aggregated in the readout layer, which is responsible for
aggregating node features to generate a fixed-size represen-
tation. The sum of the outputs from each readout layer is then
passed through a linear layer for classification. The model’s
key aspect lies in the pooling layer’s design, which incorpo-
rates a self-attention mechanism. This mechanism filters the
nodes by using self-attention pooling to eliminate irrelevant
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nodes. We take the DTI brain network and node features as
input. After one layer of convolution, in the pooling layer,
we first compute the self-attention scores Z for the input brain
network. Once the self-attention scores are obtained, we use
the top-rank function to sort the self-attention scores of each
node in the brain network. Then, we define a pooling ratio
k to select the desired number of nodes to retain. Finally,
we output the new graph structure, adjacency matrix, and
feature matrix. After three rounds of convolution, the newly
obtained node features from each convolution are outputted
through the readout layer. Then, they are aggregated and
passed through a fully connected layer for classification,
resulting in the final classification results.
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FIGURE 3. Operation process of the self-attention mechanism, where circles of different colors represent different brain regions, connecting lines
represent the connections between brain regions, and dotted lines and dotted circles represent nodes with lower rankings to be removed.
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FIGURE 5. Accuracy Comparison between FN+ROIS/ROIV.

The self-attention pooling mechanism we incorporated
allows learning hierarchical representations with relatively
fewer parameters in an end-to-end manner. It takes into
account both node features and the topological structure.
Additionally, it utilizes a self-attention mechanism to distin-
guish between nodes that should be removed and retained
[45]. The calculation process of the self-attention mechanism
is displayed in Figure 3. Firstly, it computes the self-attention
scores for each node in each brain network. Then, it sorts
the nodes based on these scores. Finally, setting a pooling
ratio removes the nodes to obtain the final graph. Nodes that
are removed can be determined based on prior knowledge
of deleting nodes that are irrelevant to AD classification.
Next, we will provide a detailed explanation of the calculation
formula and process of the self-attention mechanism.

The calculation of self-attention scores and the top-rank
function is depicted in equations (2) and (3). The formula
for calculating the self-attention scores Z uses parameters
similar to those used in graph convolution. Here, X represents
the nodes’ feature matrix and the convolutional weights of
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FIGURE 6. Accuracy Comparison between LEN+ROIS/ROIV.
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FIGURE 7. Accuracy Comparison between FA/FN/LEN+ROIS.

the input feature space. Once the self-attention scores Z are
obtained, the top-kN nodes can be selected based on the
values of Z. After sorting, the top-rank function is used to
obtain the indices of the top-kN values. The parameter k
is a hyperparameter ranging from 0 to 1, representing the
pooling ratio determining the number of nodes retained.
After obtaining the indices of the retained nodes, a new
feature matrix and adjacency matrix can be obtained. In
simple terms, the self-attention scores are calculated using the
formula, and based on these scores, the nodes are sorted while
irrelevant nodes are removed. The pooling ratio k determines
the number of nodes to be removed.

Z = (D IAD 2 X0u) )

idx = top — rank(Z, [kN]) 3)

Our research combines the self-attention mechanism with
GCN to classify AD. We utilize DTI to abstract the brain
networks into traits based on the number of white matter
fibers and combine them with GCN for classification. The

experimental process begins with obtaining preprocessed
brain networks, including FN, FA, LEN, and node features
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FIGURE 9. The accuracy of different feature combinations combined with different k values was compared with

that of SVM.

ROIS and ROIV. The connections between each brain region
are abstracted as relationships between nodes and edges in
the network. ROIS and ROIV serve as node features, and
each node’s graph membership and graph labels are used as
inputs to the GCN model. Next, the model is designed with
three convolutional layers. In the pooling layers following
each convolutional layer, the self-attention mechanism is
incorporated to filter the nodes. By removing irrelevant
nodes from the entire brain network, the accuracy of the
classification is improved.

C. EXPERIMENTAL RESULTS
In this experiment, six combination features were tested in
the ADNI dataset: FN brain network as network feature
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and ROIS as node feature, FN brain network as network
feature and ROIV as node feature, FA brain network as
network feature and ROIS as node feature, FA brain network
as network feature and ROIV as node feature, LEN brain
network as network feature and ROIS as node feature,
LEN brain network is the network feature and ROIV is the
node feature. To compare the impact of different k values
on accuracy, the k value was scaled from 0.5 to 0.9. The
final result showed that using the FA brain network as
network features, ROIS as node features, and setting the k
value to 0.8 achieved an accuracy of 87.5%. Figures 4-7
show the accuracy of different combinations when k = 0.8,
and Figure 8 shows the various combinations’ accuracy,
sensitivity, and specificity. Figure 9 compares the accuracy
of each k value and SVM.
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TABLE 1. Table 1. Accuracy of different matrix and node feature
combinations with different k values.

Matrix + Node Features K=0.5 K=0.6 K=0.7 K=0.8 K=0.9

FA+ROIS 78.6% 192% 82.6% 87.5% 81.3%
FA+ROIV 7M15% 71.6% 754% 79.5% 73.1%
FN+ROIS 76.3% 134% 18.6% 832% 19.3%
FN+ROIV 703% 71.2% 73.4% 19.7% 71.3%
LEN+ROIS 71.1% 71.9% 732% 81.6% 71.6%
LEN+ROIV 70.6% 71.3% 72771% 18.6%  75.5%

TABLE 2. Comparison of accuracy with other literature.

Literature  Classifier Features Accuracy
[46] GCN Connectivity Matrix 83.3%
[47] GCN Graph Data 77.3%
Ours GCN FA+ROIS 87.5%

This study considers the combination of different adja-
cency matrices representing brain networks and various node
features and tests the influence of different k& values on
accuracy. The accuracy graph indicates that using the FA
brain network as network features and ROIS as node features
yields the best classification results. Moreover, using ROIS
as node features generally outperforms using ROIV as node
features for classification. By analyzing the node feature data,
this result may be because ROIS represents the number of
voxels with fibers passing through them. In contrast, ROIV
represents the number of voxels in each brain region, with
significant differences in the number of fibers in each brain
region.

Regarding the choice of k value, the best result is achieved
at k = 0.8, with slightly better results for k = 0.7 compared
to £k = 0.9. This may be because there are still more
redundant nodes retained at k = 0.9. The lower accuracy at
k = 0.5 and k = 0.6 may be due to the deletion of overmuch
nodes, resulting in incomplete information propagation. The
accuracy results of this experiment compared to other studies
are listed in Table 2. This experiment achieved good accuracy
results in classification research conducted using GCN. In
addition, this experiment is compared with the traditional
machine learning algorithm SVM, and it can be seen that
the accuracy of FA4ROIS is higher than that of SVM when
k = 0.8. At the same time, other combinations are lower than
that of SVM.

This experiment’s advantages lie in using different brain
networks combined with varying node features for experi-
mentation. Furthermore, integrating the self-attention mecha-
nism with GCN allows for effective information propagation
between each node feature. Using the k value enables the
removal of redundant nodes, ensuring that each node receives
more important information during information propagation.
Additionally, the experiment considers the impact of different
k values. However, there are certain limitations in this study.
The current approach does not allow for autonomously
setting the k value for each layer during the training process.
Currently, the experiment assesses the impact of fixed &
values on the results. However, in the training process of
GCN, if it were possible to dynamically set the k value to
match the current state at each convolution, it could lead
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to improved results. This aspect remains an area for further
research.

There have been relatively few experiments using GCN for
classification in the current research landscape. Moreover,
researchers commonly treat DTI as auxiliary images and
combine them with fMRI, inputting structural and functional
brain networks into GCN for classification. However, this
study shifts its focus to standalone DTI images. It achieves
promising results in binary classification and multi-modality
experiments conducted using GCN.

IV. SUMMARIZE

Our study combines the self-attention mechanism with
GCN to classify AD from NC, using structural brain
networks constructed based on DTI images. The purpose is
to investigate the classification performance of the unique
white matter network derived from DTI images when
the self-attention mechanism is included with GCN. The
advantage lies in avoiding complex preprocessing and feature
extraction steps. Instead, only the DTI brain network is
input to GCN to obtain classification accuracy. Most studies
focus on innovative feature extraction methods in the current
research landscape. They extract features from voxels or
brain regions using various feature extraction techniques
and then employ traditional classifiers such as SVM for
classification. However, due to the primary role of DTI
images in AD’s white matter regions and its image clarity
limitations, relatively few studies utilize DTI images for
classification research using CNN models. Therefore, our
study directs its attention to DTI brain networks.

The self-attention mechanism is involved because specific
brain regions are essential in AD classification research,
and others are irrelevant. After abstracting DTI images into
brain networks, the importance of each brain region can be
determined based on its degree within the network. The self-
attention mechanism can eliminate irrelevant nodes during
the training process, equivalent to removing brain regions
unrelated to AD in the brain network. Additionally, it can
rank each node based on its self-attention score, allowing
for integration with AD-related brain regions and improving
classification accuracy.

This study has room for improvement regarding the
automatic selection of the k value. The k value is used in
the self-attention pooling model to determine the number of
nodes to retain. However, it cannot be set as a self-learning
parameter that autonomously selects the optimal number
of nodes for each network during classification training.
This issue requires incorporating prior medical knowledge to
determine the appropriate number of brain regions to include
in the brain network for optimal classification. In future
research, particular attention will be given to this problem to
achieve autonomous learning of the k value.

This study successfully integrates the self-attention mech-
anism with GCN to classify DTI brain networks and achieves
promising results. It demonstrates the feasibility of directly
using DTI brain networks through GCN for classification,
providing a new approach for future research. Different
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GCN models can be employed for AD classification studies,
thus filling the gap in deep learning classification research
utilizing DTI images. Previously, the application of DTI
images in deep learning primarily served as a supplementary
role, combined with gray matter features from sMRI images
to enhance classification accuracy.

Future research on AD classification using DTI images
can focus on the unique structural brain networks derived
from DTI images. Especially with the rise of GCN, more
studies aim to simplify the classification process by using
GCN, eliminating the need for complex and tedious prepro-
cessing steps. This approach is more conducive to practical
implementation in the future. Traditional machine learning
algorithms consume significant time for training when
dealing with large brain images. However, by processing
them into brain networks, not only can a substantial amount
of time be saved, but there is also no need for additional
feature extraction. DTI brain networks can be directly trained.
This time-saving aspect becomes particularly beneficial in
practical use in the future.GCN is a relatively new network
with plenty of space for development. Therefore, future
research on AD classification using DTI images, functional
brain networks derived from fMRI, and the fusion of these
two networks should pay more attention to this aspect of
utilizing GCN.
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