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ABSTRACT The paper introduces a quadratic programming algorithm for real-time local path planning of
autonomous vehicles. The algorithm relies on discretized sampling points and an enhanced cost function.
Initially, we formulate the cost function to optimize the reference trajectory and establish the Frenet
coordinate system. The drivable region undergoes discretization to generate sampling points in the Frenet
coordinate system. We apply the principles of convex spatial obstacle avoidance to define the vehicle’s
drivable area, taking into account the vehicle’s kinematics and establishing barrier boundary conditions.
Subsequently, quadratic programming is employed to determine an optimal path within the vehicle’s drivable
area. Concurrently, two cost functions are devised, the first evaluates the distance between the vehicle and
obstacles, while the second assesses ride comfort, these cost functions are employed to evaluate sampling
points and speed profiles, facilitating the planning of an optimal speed profile on the selected path. Finally,
the algorithm undergoes validation through co-simulation using Matlab/Simulink, PreScan, and CarSim
software. Various road scenarios, including straight and S-curve roadswith both dynamic and static obstacles,
are created to assess the method’s feasibility. The test results demonstrate the algorithm’s efficacy in avoiding
moving and stationary obstacles and generating an ideal path compliant with driving conditions.

INDEX TERMS Autonomous driving, path planning, quadratic programming, cost function.

I. INTRODUCTION
The forefront of vehicle technology is currently occupied
by autonomous driving [1]. Path planning, a fundamental
component of autonomous vehicles [2], initially drew its the-
oretical foundations from the field of robotics. Autonomous
driving has subsequently optimized and adapted these meth-
ods to meet the specific demands of vehicles and address the
complexities of diverse traffic environments [3]. In the con-
text of autonomous driving, path planning can be categorized
into two primary domains [4]: Global path planning, relying
on high-precision maps, and local path planning, designed
to respond to changes in the vehicle’s immediate surround-
ings. Local path planning involves creating short-term vehicle
movement paths within a specific environment [5], [6]. Its
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primary objective is to facilitate safe and efficient move-
ment in the vicinity of the current position, aligning with
the objectives set by global path planning [7]. Local path
planning frequently complements global path planning, with
the latter determining the comprehensive route from the start-
ing point to the endpoint. Meanwhile, local path planning
is responsible for managing a specific segment of this path,
adapting to constraints, and navigating obstacles in response
to environmental changes [8].

Conventional path planning algorithms include the artifi-
cial potential field algorithm and Dijkstra’s algorithm [9].
The artificial potential field algorithm is a prevalent technique
in robot navigation and path planning [8]. Drawing inspi-
ration from the concept of potential fields in physics, this
algorithm models the path of a robot or a moving entity by
simulating particle motion within a potential field [10]. At its
core, this approach guides the robot along a feasible path by
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creating a potential field that attracts the target to the robot
while repelling the robot from obstacles [11]. In light of this,
Luo et al. introduced a path-planning algorithm that enhances
the artificial potential field by adjusting the radius of the
virtual potential field detection circle, effectively mitigating
the issue of local minima [12]. Dijkstra’s algorithm serves
as a solution to the shortest path problem, facilitating the
determination of the shortest paths from a starting node to
all other nodes within a directed graph [13]. In the inaugural
Driverless Challenge of 2004, sponsored by the Defense
Advanced Research Projects Agency (DARPA), vehicles
were tasked with autonomously navigating desert terrain
[14]. Many teams integrated Dijkstra’s algorithm into their
vehicle systems. While conventional path-planning methods
are both widespread and efficient, they may not always
yield the globally optimal solution when confronted with
complex problems. Consequently, traditional path-planning
algorithms should be supplemented with other methods when
dealing with intricate driving environments [15].
Machine learning, a subfield of artificial intelligence,

has numerous applications in the realm of path planning
[16], [17]. It empowers vehicles to autonomously acquire
knowledge, enhancing the adaptability of path planning to
environmental fluctuations and mission specifications [18].
Yin et al. introduced an N-step prioritized dual DQN path
planning algorithm, specifically designed to resolve the issue
of robot obstacle avoidance through the incorporation of a
reward screening mechanism [19]. Han et al. presented an
enhanced dual-DQN path planning method that optimizes the
reward function by employing a two-branch network struc-
ture. This refinement expedites model convergence, leading
to the generation of stable obstacle avoidance paths [17].
While machine learning can adapt to local environments, its
models require a substantial volume of training data, exhibit
diminished reliability and security, and grapple with han-
dling uncertainties in path planning. Consequently, machine
learning-based approaches have not witnessed widespread
implementation in real-world driving scenarios [20], [21].
Dynamic programming provides a viable approach to

addressing the shortest path planning problem [22]. At its
core, this method dissects the path planning challenge into
manageable sub-problems, leveraging the optimal solutions
from these sub-problems to construct an overarching optimal
path [23]. The Baidu Apollo autonomous vehicle employs
dynamic programming, rooted in EM planning and lattice
planning, both well-established within the literature [24].
Song et al. introduced an innovative dynamic program-
ming approach for computing optimal paths. This approach
harnesses Dijkstra’s algorithm and expands the number of
optimal path error correction regions [25]. Ren et al. pre-
sented a path-planning methodology grounded in dynamic
programming principles. It aims to identify an exact globally
optimal solution by discretizing the continuous state space
into a grid [26]. The adaptability of dynamic programming
to complex constraints within path planning, coupled with its

high scalability, positions it as a suitable choice for intricate
path-planning tasks [27].
This paper introduces a novel quadratic path planning

methodology, which involves the discretization of sampling
points and the enhancement of cost functions to tackle
real-time and stability challenges in the context of local path
planning for autonomous vehicles. The contributions of this
study are outlined as follows:

1)This article introduces an innovativemethod for calculat-
ing an optimized reference line, formulating evaluation crite-
ria, and imposing constraint conditions to achieve optimized
reference lines. Additionally, a path planning algorithm is
developed based on these optimized reference lines, aiming
to enhance the overall smoothness of the path.

2)The paper introduces a quadratic programming
algorithm designed to handle nonlinear constraint conditions
and optimize objective functions for path planning. This
algorithm integrates the principles of convex obstacle avoid-
ance with a discretized drivable area, resulting in enhanced
efficiency and security within the path planning process.

3)To mitigate the influence of speed on path planning,
a metric for assessing speed quality is introduced, and
the speed undergoes two optimization phases. The find-
ings indicate that rational speed curves can be strategically
planned across diverse driving scenarios, thereby enhancing
the resilience of the path.

The subsequent sections of this paper are structured as
follows: Section II furnishes comprehensive information
regarding the implementation of coordinate transformation
between the Frenet and Cartesian coordinate systems, placing
a particular emphasis on optimized reference lines. Section III
delineates the formulation of the cost function and the estab-
lishment of boundary conditions necessary for generating the
optimal path using quadratic programming applied to the
sampling points. Section IV concentrates on the derivation
of optimal velocities tailored to the planned paths. Section V
offers an exposition of the simulation results. Section VI
serves as the conclusion of this paper.

II. FRENET-CARTESIAN COORDIINATE
TRANSFORMATION
The Frenet coordinate system is widely applied in path plan-
ning, enabling the distinct consideration of a vehicle’s lateral
and longitudinal movements. This separation allows for dis-
tinct lateral and longitudinal control, leading to increased
adaptability to road geometries and the generation of smooth,
secure trajectories across diverse road conditions [3].

A. REFERENCE LINE OPTIMIZATION
Considering the challenges posed by excessively long paths
for coordinate transformation between Cartesian and Frenet
coordinate systems, and the associated difficulties in locat-
ing the vehicle’s projection point on the reference line,
it becomes imperative to address these issues to ensure
path smoothness. To achieve this, enhancements to the
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FIGURE 1. Discretization and smoothing of the reference line.

reference line are deemed necessary. In each planning cycle,
the vehicle’s projection point on the global path is initially
determined. Subsequently, the nearest discrete point to this
projection point is designated as the coordinate origin (x, y).
A 120-meter span is considered forward, and a 30-meter span
is considered backward, serving as the foundation for the
reference line. The design cost function is then applied to
refine and optimize this foundational reference line, resulting
in a trajectory formed by the processed point set, which serves
as the reference line. Figure 1 provides a visual representation
of this process: the black point represents the global path,
the green point signifies the vehicle’s projection point on the
reference line, the blue point indicates the nearest sampling
point to the same location, and the red point symbolizes the
optimized point.

This paper introduces three distinct cost functions designed
to assess the quality of the reference line. In Figure 2(a),
we observe P0, P1, and P2 as the three consecutive path
points, with |P1P3| serving as a measure of the reference
line’s smoothness. Smaller |P1P3| values correspond to a
smoother reference line. Ensuring a minimal gap between the
optimized reference line and the navigation path is crucial,
as illustrated in Figure 2(b). The blue straight line represents
the optimized path, and |P1P1r | + |P2P2r | + |P3P3r | serves
as a metric for assessing geometrical similarity to the original
path. Reduced P1P2 values indicate a closer resemblance to
the original path. Furthermore, achieving uniform spacing
between two path points on the optimized reference line is
essential, as depicted in Figure 2(c) by the dark straight line.
|P1P2|2 + |P2P3|2 is employed as a metric for evaluating the
uniformity of the reference line’s path. Smaller |P1P2|2 +

|P2P3|2 values signify a more uniform path.
In summary, we formulate the reference line cost func-

tion, where [(x1r , y1r ) , (x2r , y2r ) , · · · , (xnr , ynr )] represents
the original navigation path points (P1r ,P2r , · · · ,Pnr ), and
[(x1, y1) , (x2, y2) , · · · , (xn, yn)] signifies the reference line
path points (P1,P2, · · · ,Pn) for the desired solution. The
reference line cost function is thus defined and computed as
follows:

costFunction = ωsmoothCost

{
n−2∑
i=1

[
(xi + xi+2 − 2xi+1)

2

+ (yi + yi+2 − 2yi+1)
2
]}

+ ωsimCost

{
n∑
i=1

[
(xi − xir )2 + (yi − yir )2

]}

+ ωcompCost

{
n−1∑
i=1

[
(xi+1−xi)2+(yi+1−yi)2

]}
(1)

these are denoted as ωsmoothCost , ωsimCost , and ωcompCost ,
representing the cost weights for their respective terms. Let’s
formulate this into a quadratic programming optimal solution
problem, which is typically represented as follows [30]:

J =
1
2
xTHx + f T x s.t.Ax ≤ b, lb ≤ x ≤ ub (2)

The path smoothing cost is calculated as follows:

Costsmooth

=

n−2∑
i=1

[
(xi + xi+2 − 2xi+1)

2
+ (yi + yi+2 − 2yi+1)

2
]

= (x1, y1, · · · , xn, yn)



1 0 0 0 · · ·

0 1 0 0 · · ·

−2 0 1 0 · · ·

0 −2 0 1 · · ·

1 0 −2 0 · · ·

0 1 0 −2 · · ·

0 0 1 0 · · ·

0 0 0 1 · · ·

· · · · · · · · · · · · · · ·


2n×2n−4

×



1 0 0 0 · · ·

0 1 0 0 · · ·

−2 0 1 0 · · ·

0 −2 0 1 · · ·

1 0 −2 0 · · ·

0 1 0 −2 · · ·

0 0 1 0 · · ·

0 0 0 1 · · ·

· · · · · · · · · · · · · · ·



T

2n×2n−4

(x1, y1, · · · , xn, yn)T

(3)

remember that the 2n × 2n − 4 matrix in Eq. is A1,
so the smoothing cost is ωsmoothCostxTAT1 A1x, where x =

(x1, y1, · · · , xn, yn)T .
The path similarity cost is calculated as follows:

Costsim =

n∑
i=1

[
(xi − xir )2 + (yi − yir )2

]

= (x1, y1, · · · , xn, yn)


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


2n×2n

× (x1, y1, · · · , xn, yn)T

− 2 (x1r , y1r , · · · , xnr , ynr ) (x1, y1, · · · , xn, yn)T

(4)
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FIGURE 2. Measurement of the merits of the reference line. (a) The standard for measuring the smoothness of the reference line, (b) Criteria for
measuring the similarity of reference lines, (c) Standard for measuring the uniformity of reference line.

where the 2n×2nmatrix is the unit matrix, denoted asA2, and
hence the similarity cost is ωsimCostxTAT2 A2x+hT x

(
π
2 − θ

)
,

where h = (−2x1r , −2y1r , · · · , −2xnr , −2ynr )T .
The uniform cost of the path is calculated as follows:

Costcomp

=

n−1∑
i=1

[
(xi+1 − xi)2 + (yi+1 − yi)2

]

= (x1, y1, · · · , xn, yn)



1 0 0 0 · · ·

0 1 0 0 · · ·

−1 0 1 0 · · ·

0 −1 0 1 · · ·

0 0 −1 0 · · ·

0 0 0 −1 · · ·

· · · · · · · · · · · · · · ·


2n×2n−2

×



1 0 0 0 · · ·

0 1 0 0 · · ·

−1 0 1 0 · · ·

0 −1 0 1 · · ·

0 0 −1 0 · · ·

0 0 0 −1 · · ·

· · · · · · · · · · · · · · ·



T

(x1, y1, · · · , xn, yn)T

(5)

remember that the 2n × 2n − 2 matrix in Eq. is A3, so the
smoothing cost is ωcompCostxTAT3 A3x.

In summary, the reference line cost is:

costFunction

= xT
(
ωsmoothCostAT1 A1+ωsimCostAT2 A2+ωcompCostAT3 A3

)
x

+ ωsimCosthT x (6)

the weight matrix for the corresponding quadratic program-
ming is H = 2(ωsmoothCostAT1 A1 + ωsimCostAT2 A2+

ωcompCostAT3 A3), f T = ωsimCosthT , noting x =

(x1, y1, · · · , xn, yn)T and xsim = (x1r , y1r , · · · , xnr , ynr )T ,
and the constraints are x − xsim = K , where K is a constant.

B. COORDINATE CONVERSION
In Cartesian coordinates, the vehicle’s state of motion is
conventionally represented as [r⃗v, v⃗v, a⃗v, θv, kv] [31], where
r⃗v signifies the current position vector, v⃗v the current speed,

FIGURE 3. The Frenet-Cartesian transformation relation.

a⃗v the current acceleration, θv the azimuth angle, and kv the
curvature of the vehicle’s position vector along the trajectory.
As illustrated in Figure 3, the vehicle’s position is denoted
by point M. When projecting the vehicle onto the reference
line, it results in the projection point N. In contrast, in the
Frenet coordinate system, the vehicle’s state of motion is
typically described as [s, ṡ, s̈, l, l̇, l̈, l ′, l ′′] [32]. Here, s rep-
resents the longitudinal displacement, ṡ the velocity in the
direction of the tangent to the reference line, s̈ the acceleration
in the direction of the tangent, l the transverse displacement,
l̇ the velocity in the direction of the normal to the refer-
ence line, l̈ the acceleration in the direction of the normal,
l ′ the first-order derivative of transverse displacement with
respect to longitudinal displacement, and l ′′ the second-order
derivative of transverse displacement concerning longitudinal
displacement.

Utilizing (x0, y0) as the origin for the reference line and
uniformly discretizing the reference line, the longitudinal
displacement, represented by s, is approximated through a
series of straight-line segments when the discretization points
are adequately dense.

s =

n∑
i=1

√
(xi − xi−1)

2
+ (yi − yi−1)

2 (7)

Referring to Figure 3, the transformation equation govern-
ing the vehicle’s motion state in both Cartesian and Frenet

VOLUME 12, 2024 24503



C. Zhang, W. Xu: Intelligent Vehicle Path Based on Discretized Sampling Points

coordinate systems can be derived [31].

l =

(
⇀
rv −

⇀
rr
)

·
⇀
nr

ṡ =

⇀
vv ·

⇀
τr

1 − kr l
l̇ =

⇀
vv ·

⇀
nr

s̈ =

⇀
av ·

⇀
τr +ṡ2kr l ′ +

(
k ′
r l + kr l ′

)
· ṡ2

1 − kr l
l̈ =

⇀
av ·

⇀
nr −ṡ2kr (1 − kr l)

l ′ =

⇀
vv ·

⇀
nr

⇀
vv ·

⇀
τr

(1 − kr l)

l ′′ =
l̈ − l ′s̈
ṡ2

(8)

In this context, r⃗r represents the position vector of the vehicle
at the projection point, n⃗r denotes the normal unit vector
of the position vector for the vehicle’s projection on the
reference line, τ⃗ r signifies the tangential unit vector of the
position vector for the vehicle’s projection on the reference
line, and kr represents the curvature of the position vector for
the vehicle’s projection on the reference line.

III. PATH PLANNING BASED ON QUADRATIC
PROGRAMMING OF SAMPLING POINTS
Vehicles must adhere to traffic regulations while travel-
ing safely and smoothly along their planned route [33].
To achieve this, the process begins by discretizing all driv-
able positions into a set of sampling points. Subsequently,
a heuristic search is conducted among these sampling points
to identify a preliminary obstacle avoidance path. This path
serves as the foundation for establishing a convex feasible
space, thereby transforming the path planning problem into
a convex problem. Quadratic programming is then applied
within this convex feasible space to define the cost function
and constraints, ensuring the path’s smoothness and stabil-
ity. The method presented in this paper generates sampling
points based on different driving conditions, as illustrated
in Figure 4, depicting the transition pattern between various
scenarios.

A. GENERATE SAMPLING POINTS
The sampling points result from discretizing all the drivable
locations of the vehicle. Two distinct methods for generat-
ing these sampling points are established, depending on the
environmental conditions in which the vehicle is operating.
The coordinates for generating these sampling points in the
designated area must satisfy the following conditions: sc = so + v0t +

1
2
aot2

lc = lo
(9)

where so and lo are the vehicle start coordinates, sc and lc are
coordinates of the sampling point, v0 is the vehicle’s starting
velocity, and a0 is the vehicle’s starting acceleration.

FIGURE 4. Conversion modes for various scenarios.

Generating sampling points should satisfy the following
equation:{
sci=su lim + 0.1i |su lim| ≤ sci ≤ |st lim| , i = 1, 2, · · · ,m
lcj= lu lim + 0.1j |lu lim| ≤ lcj ≤ |lt lim| , j = 1, 2, · · · , n

(10)

where sci and lcj are the coordinates of the sampling point, ltlim
and lulim are the topmost and bottom of the region, stlim and
sulim are the leftmost and rightmost of the region, respectively,
and stlim and sulim can be calculated by the following equation:

st lim = so + v0t +
1
2
at t2

su lim = so + v0t +
1
2
aut2

(11)

where at is the maximum limited acceleration, and au is the
minimum limited acceleration. In situations with no obsta-
cles, only a single sampling point is required. Therefore,
optimization is focused solely on selecting the optimal sam-
pling point for obstacle avoidance conditions, as indicated in
Figure 5.

B. CONVEX OPTIMIZATION
During vehicle travel, multiple options for overtaking a mov-
ing obstacle vehicle may lead to non-convex optimization
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FIGURE 5. Generate candidate sampling points in the driving area ahead.

FIGURE 6. Vehicle projection on S-L diagram.

challenges in trajectory planning. To address this issue and
make it manageable, we employ convexification. This pro-
cess transforms a control problem into a convex optimization
problem, determines the appropriate lane-changing side, and
identifies the optimal path for overtaking obstacles [34],
[35]. In this paper, our approach to road convex optimization
focuses on dynamic path planning in higher layers, rendering
previously non-convex driving areas amenable to efficient
problem-solving. Initially, we establish the Frenet coordinate
system, using the vehicle’s projection point on the reference
line as the coordinate origin. Subsequently, we create the S-L
diagram by projecting the vehicle and obstacles within the
Frenet coordinate system, as demonstrated in Figure 6.

C. DETERMINING THE STARTING POINT FOR PLANNING
Upon the conclusion of path planning, it is not always feasible
for the vehicle’s control to precisely align with the planned
path. As depicted in Figure 7, deviations from the ideal
position are evident after the vehicle’s trajectory tracking.
Therefore, the vehicle’s localization point is not used as the
starting point for subsequent path planning.

The process begins by projecting the vehicle’s position
onto the trajectory planned during the previous cycle, yielding
point P. Point P is then projected onto the reference line,
providing coordinates (s0, l0). These coordinates (s0, l0) are
subsequently used as the starting point for path planning, thus
contributing to the continuity and smoothness of the planned
trajectory.

FIGURE 7. Define the starting point for path planning.

D. VEHICLE TRAJECTORY CONSTRAINTS
To connect the sampling points effectively, a quintic spline
curve is chosen. This quintic spline curve plays a vital role
in ensuring that the path passes through the desired sam-
pling point while adhering to specific constraints at both the
starting and ending points. This approach results in a smooth
trajectory, mitigating abrupt changes in vehicle acceleration
and steering. Consequently, the trajectory closely aligns with
the requirements of the road’s curvature [36], [37]. In the
Frenet coordinate system, the vehicle’s trajectory information
can be expressed as l = f (s), where s denotes longitudinal
displacement, and l signifies lateral displacement. By estab-
lishing the vehicle’s initial position coordinates as (s0, l0), the
constraint at the starting point can be defined as: f (s0) =

l0, f ′(s0) = tan θ, f ′′(s0) = 0, where θ represents the vehi-
cle’s heading angle in the Cartesian coordinate system. As for
the other sampling points, they are constrained to f (sij) =

lij, f ′(sij) = 0, f ′′(sij) = 0. Since a quintic spline curve
is chosen, this introduces six unknown term coefficients,
resulting in their general form [38].

f (s) = a0 + a1s+ a2s2 + a3s3 + a4s4 + a5s5 (12)

therefore, for a specific target sampling point 0(sij, lij),
the coefficients can be determined based on the vehi-
cle’s state at the previous sampling point Ri−1,j−1 =

[f (si−1,j−1), f ′(si−1,j−1), f ′′(si−1,j−1)] and the state at the tar-
get sampling point Ri,j =

[
f (si,j), f ′(si,j), f ′′(si,j)

]
.

E. DESIGNING DYNAMIC PATH COST FUNCTIONS
Following the generation of a set of trajectories, the subse-
quent crucial step involves identifying the optimal trajectory
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among them. This necessitates the formulation of a suit-
able cost function for the dynamic path. The smoothness of
the trajectory is a paramount factor in assessing the quality
of the planning outcome and is instrumental in prevent-
ing deviations during the tracking process. We introduce
the path smoothing cost function, denoted as costsmooth =

ω1
∑n

i=1 f
′′ (si)2 +ω2

∑n
i=1 f

′′ (si)2 +ω3
∑n

i=1 f
′′′ (si)2. The

principle is straightforward: as the path becomes increasingly
linear, it also becomes smoother. In essence, the objec-

tive is to minimize
∫ √

1 + f ′ (s)2ds, which is equivalent

to minimizing
∫ √

f ′ (s)2ds with further refinement through
discretization via

∑n
i=1 f

′ (si)2. To achieve this, we sum the
second and third derivatives, f ′(si), f ′′(si), and f ′′′(si), which
represent the first, second, and third derivatives of transverse
displacement concerning longitudinal displacement within
the trajectory. A higher cumulative value of these derivatives
indicates a more pronounced longitudinal displacement in
relation to transverse displacement within the same trajectory,
resulting in decreased vehicle stability. Tomitigate the impact
of these components, we introduce cost weights denoted as
ω1, ω2, and ω3, for each of them. In instances where the
vehicle follows a straight path, the variable costsmooth is set
to zero. The terms ω1, ω2, and ω3 represent the cost weights
associated with their respective terms, with values of 2000, 2,
and 3.

In formulating obstacle cost functions to alleviate
collisions, diverse scenarios are considered. If there is a
substantial distance between the vehicle and obstacles, imply-
ing a negligible probability of collision, the collision cost
is assigned a value of zero. In instances where the vehicle
is in direct interaction with an obstacle, the collision cost is
elevated to an infinite value. In situations where a potential
collision between the vehicle and an obstacle is conceivable,
a linear function is employed to express the collision cost.
The computation of this cost function is outlined as follows:

costcollision = ωcollision

n∑
i=1

g
[
(si − s)2 + (li − l)2

]

g (x) =


0 x > m1

kx + b, m2 < x < m1

+∞ x < m2

(13)

where (si, li) represents the position coordinates of the vehi-
cle, (s, l) signifies the position coordinates of the obstacle,
and m1, m2 are the distances between the vehicle and the
obstacle. Additionally, ωcollision is the weight coefficient
assigned to the obstacle cost, holding a value of 106.
The vehicle is intended to closely adhere to the centerline

of the roadway to minimize potential interactions with vehi-
cles in adjacent lanes. Accordingly, a reference line distance
cost costref = ωref

∑n
i=1

(
li − lref

)2 is established. When the
vehicle aligns with the road’s centerline, the cost costref is set
to 0, where n represents the number of discrete points, li is the
lateral displacement of the vehicle in the Frenet coordinate

system, lref is the lateral coordinate of the reference line, and
ωref is the offset reference line cost weight, assigned a value
of 10.

The total cost is therefore calculated as follows:

cos tFunction = costsmooth + costcollsion + costref (14)

A segmented short trajectory is used to connect all sam-
pling points to form a minimally costly trajectory. Denote
cost

(
P0,Pij

)
as theminimum cost spent fromP0 toPij points,

from Figure 8, the minimum cost cost (P0,Pi2) from the
starting point to the second column of sampling points can
be calculated as: A segmented short trajectory is employed to
connect all sampling points, forming a trajectory with min-
imal cost. Denoting

(
P0,Pij

)
as the minimum cost incurred

from point P0 to point Pij, as shown in Figure 8, the mini-
mum cost cost (P0,Pi2) from the starting point to the second
column of sampling points can be calculated as:

cost (P0,P12) = min [cost (P0,Pi1) + cost (Pi1,P12)]
i = 1, 2, 3

cost (P0,P22) = min [cost (P0,Pi1) + cost (Pi1,P22)]
i = 1, 2, 3

cost (P0,P32) = min [cost (P0,Pi1) + cost (Pi1,P32)]
i = 1, 2, 3

(15)

The minimum cost cost
(
P0,Pij

)
from the initial point to the

designated sampling point is as follows:

cost
(
P0,Pij

)
= min


cost

(
P0,P1,J−1

)
+ cost

(
P1,j−1,Pi,j

)
,

cost
(
P0,P2,j−1

)
+ cost

(
P2,j−1,Pi,j

)
,

· · ·

cost
(
P0,Pi,j−1

)
+ cost

(
Pi,j−1,Pi,j

)
 (16)

The optimal dynamic planning path that satisfies the mini-
mum cost is finally obtained.

F. PATH QUADRATIC PROGRAMMING
After the preliminary trajectory planning stage, a convex fea-
sible space is established, grounded in the devised trajectory.
This space lays the groundwork for subsequent optimiza-
tion through quadratic programming, integrating constraints
derived from obstacle boundaries and jerk limitations. Intro-
ducing a dedicated cost function in this phase serves the
purpose of evaluating the trajectory’s quality, ensuring its
smoothness and stability, and refining its attributes. The result
of the quadratic programming solution ultimately represents
the optimal path.
As illustrated in Figure 9, the boundaries represented by

lmin 1, lmin 2, · · · , lminn and lmax 1, lmax 2, · · · , lmax n delineate
the convex solution space, within which the quadratic pro-
gramming algorithm aims to determine the optimal path.
Rigorous boundary conditions are introduced to enhance the
smoothness and reliability of the optimized path, mitigat-
ing the risk of collisions with obstacles. Additionally, the
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FIGURE 8. Obstacle avoidance least-cost path selection.

path planning procedure integrates the vehicle’s dimensions,
as depicted in Figure 10, to ensure efficient obstacle avoid-
ance.

In the provided equation, several key parameters are
defined. P1, P2, P3, and P4 correspond to the four vertices
of the vehicle. Additionally, we introduce d1, signifying the
distance from the center of mass to the vehicle’s front, and
d2, representing the distance from the center of mass to the
vehicle’s rear. The vehicle’s width is denoted as w, and θ

indicates the angle between the vehicle’s travel direction and
the reference line. Lastly, l represents the lateral distance
between the center of mass and the reference line. With
these parameters established, the calculation of the lateral
coordinates of the vehicle’s four vertices is as follows:

lP1 = l + d1 sin θ +
w
2
cos θ

lP2 = l + d1 sin θ −
w
2
cos θ

lP3 = l − d2 sin θ +
w
2
cos θ

lP4 = l − d2 sin θ −
w
2
cos θ

(17)

Considering that trigonometric functions are nonlinear, the
above equation is simplified by expressing sin θ ≈ tan θ ≈

l ′ and cos θ ≈ 1. The objective is to find the minimum
value of lmaxi in the interval (si-d2,si + d1), denoted as ubi,
such that lP1 , lP2 , lP3 , lP4 ≤ ubi, and to find the maximum
value of lmini in the same interval, denoted as lbi, such that
lP1 , lP2 , lP3 , lP4 ≥ lbi. Thus, the obtained constraints are
converted to matrix form as follows:

1 d1 0
1 d1 0
1 −d2 0
1 −d2 0

−1 −d1 0
−1 −d1 0
−1 d2 0
−1 d2 0



 li
l ′i
l ′′l

 ≤



ubi − w
2

ubi + w
2

ubi − w
2

ubi + w
2

−lbi + w
2

−lbi − w
2

−lbi + w
2

−lbi − w
2


(18)

denoted as Asub

 li
l ′i
l ′′i

 ≤ bsubi . So the collision constraint is:



Asub
0 0
0 0
0 0

· · · 0
· · · 0
· · · 0

0 0
...

...

0 0

. . .

0 0
...

...

0 0
0 · · ·

0 · · ·

0 · · ·

0 0
0 0
0 0

Asub


8n×3n



l1
l ′1
l ′′1
l2
l ′2
l ′′2
...

ln
l ′n
l ′′n


3n×1

≤


bsub1
bsub2

...

bsubn



(19)

To ensure the stability of the vehicle during path planning,
the imposition of jerk constraints becomes crucial to guar-
antee the continuity of the curvature, ultimately resulting in
a smoother and safer trajectory. Denote li = f (si), l ′i =

f ′ (si), l ′′i = f ′′ (si), and assume the third derivative of
the curve f (s) connecting li and li+1 is constant l′′i+1−l′′i

1s .
Additionally, set the fourth derivative and all higher-order
derivatives beyond the fourth to zero. The Taylor series
expansion of li+1 is carried out with li+1 = f (si + 1s) , li =

f (si), leading to the collapsed expansion results:

li+1 = li + l ′i1s+
1
2
l ′′i 1s

2
+

1
6

l ′′i+1 − l ′′i
1s

1s3 (20)

the derivation is written in matrix form as:

(
1 1s 1

31s
2

−1 0 1
61s

2

0 1 1
21s 0 −1 1

21s

)


li
l ′i
l ′′i
li+1
l ′i+1
l ′′i+1

 =

(
0
0

)
(21)

noting Aeq−sub =

(
1 1s 1

31s
2

−1 0 1
61s

2

0 1 1
21s 0 −1 1

21s

)
, and having

l1, l ′1, l ′′1, · · · , ln, l ′n, l ′′n to be optimized, the acceleration
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FIGURE 9. Generating Convex Spaces for Path Quadratic Programming.

FIGURE 10. Volume expansion of vehicles.

constraint is added as:


Aeq−sub 0 · · · · · · 0

0 Aeq−sub 0 · · · 0

0 0
. . . 0 0

0 · · · 0 Aeq−sub 0
0 · · · · · · 0 Aeq−sub


2n−2×3n



l1
l ′1
l ′′1
l2
l ′2
l ′′2
...

ln
l ′n
l ′′n



=


0
0
...

0
0


2n−2×1

(22)

Denoted as Aeqx = beq, and in consideration of the ride
comfort, we formulate the path smoothing cost function,

calculated as follows:

costcomf = ωdl

n∑
i=1

l ′2 + ωddl

n∑
i=1

l ′′2

+ ωdddl

n∑
i=1

(
l ′′i+1 − l ′′i

ds

)2

(23)

where l ′, l ′′, and l′′i+1−l′′i
ds represent the first derivative,

second derivative, and third derivative of the trajectory’s
transverse displacement concerning the longitudinal dis-
placement, respectively. The larger their sum, the more
extensive the transverse displacements under the same lon-
gitudinal displacements, which is less favorable for ride
comfort. ωdl , ωddl ,, and ωdddl denote the respective weights
assigned to these costs.

Vehicles are advised tomaintain proximity to the centerline
to minimize the impact of vehicles in adjacent lanes. The cost
associated with centerline distance in establishing a convex
space is calculated as follows:

costmid = ωmid

n∑
i=1

(
li −

lmax i + lmin i

2

)2

(24)

where n denotes the number of discrete points; li represents
the lateral displacement of the vehicle in the Frenet coordinate
system; lmaxi and lmini denote the lateral coordinates outlining
the boundaries of the convex space; and ωmid signifies the
weight coefficient for the offset convex space centerline cost.
The total cost function is defined as the sum of two distinct
cost functions.

cos tFunction = costcomf + costmid (25)

When li =
lmax i+lmin i

2 , the vehicle travels along the cen-
terline of the road, and at this point cos tFunction is 0.
Under the constraint of Aeqx = beq,Ax ≤ b, lb ≤

x ≤ ub, x = (l1, l ′1, l ′′1, · · · , ln, l ′n, l ′′n)
T , solve

l1, l ′1, l ′′1, · · · , ln, l ′n, l ′′n and s1, s2, · · · , sn to obtain the
optimal path under quadratic programming, as shown in
Figure 10. The green trajectory is the path after quadratic
programming.

24508 VOLUME 12, 2024



C. Zhang, W. Xu: Intelligent Vehicle Path Based on Discretized Sampling Points

FIGURE 11. Path quadratic programming in convex spaces.

IV. CONSTRAINT-BASED SPEED PLANNING
When formulating a speed plan for a vehicle, it is crucial
to consider both its smoothness and feasibility. This section
introduces an S-T diagram to characterize the spatial state of
obstacles and devise an optimal speed trajectory. The process
initiates with predicting future trajectories for surrounding
obstacles within a predefined time interval, denoted as t.
Subsequently, a search graph is constructed within the S-T
coordinate system, and the future positional data of these
obstacles is projected onto the S-T graph. Following this,
potential speed profiles within the search graph are examined,
a convex space for speed optimization is established based
on these profiles, and, ultimately, quadratic programming is
employed to derive the optimal speed curve.

A. GENERATE S-T DIAGRAM
The process of speed planning involves determining the opti-
mal speed for a vehicle as it traverses a predetermined path,
a pivotal factor inmeeting diverse criteria such as stability and
efficiency. This section employs speed constraints derived
from S-T plots to formulate the intended speed profile. The
S-axis and T-axis correspond to prediction time and location,
respectively. As depicted in Figure 12, the S-T diagram iden-
tifies obstacle objects within the blue region, with the obstacle
avoidance speed profile crafted in the adjacent white area.

B. VEHICLE SPEED OPTIMIZATION
In the S-T plot, the velocity curve is modeled as a mapping
function relative to both time and trajectory along the lane,
denoted as vi = f (ti, si), where ti and si represent time and
arc length along the path, respectively. To generate a fea-
sible speed curve considering various constraint conditions,
we propose a speed planning algorithm based on conditional
constraints. The algorithm aims to minimize the objective
functions related to the distance between the vehicle and
obstacles, the reference speed of the vehicle, the reference
acceleration, and the cost of the reference jerk. This is math-
ematically expressed by the following equation.

cos tFunction = costobs + costref−speel + costaccel + costjerk
(26)

the initial item denotes the distance cost between the vehicle
and obstacles, the second item signifies the recommended
speed cost of the vehicle, the third item indicates the accel-
eration cost of the vehicle, and the fourth item represents the
jerk cost of the vehicle.

In the computation of the distance cost between vehicles
and obstacles, it is imperative to sample the line connecting
each point on the vehicle to the obstacle. Subsequently, the
distance between each point and the obstacle is calculated,
and the cumulative result of all these calculations yields the
distance cost between the vehicle and the obstacle. Illustrated
in Figure 13, P denotes the point under calculation, and the
distance from the point to the line segment can only be one of
the values: d1, d2, or d3, where d1 = |v⃗1|, d2 = |v⃗1 + v⃗2|, and
d3 =

|v⃗1×v⃗2|
|v⃗2|

. It can be deduced that dmin = min (d1, d2)when
v⃗1 · v⃗2 and v⃗3 · v⃗2 share the same sign; otherwise, dmin = d3.
Therefore, the obstacle distance cost is computed as follows:

costobs = ωobsmin (d1, d2, d3) (27)

the weighting factor for the obstacle distance cost, denoted
as ωobs, is assigned a value of 107. Illustrated in Figure 14,
the starting point is defined as s = 0,T = 0, ṡ = |v⃗| , s̈ =

|a⃗|. For the first column of discrete points ṡ =
s1−0
t1−0 , s̈ =

ṡ1−|v⃗|
t1−0 , jerk1 =

s̈1−|a⃗|
t1−0 and the third column of discrete points

ṡ =
s3−s2
t3−t2

, s̈ =
ṡ3−ṡ2
t3−t2

, jerk3 =
s̈3−s̈2
t3−t2

, the speed, acceleration,
and jerk with the smallest cost obtained from the last planning
calculation are retained as the corresponding parameters for
the current point. Subsequently, the reference speed cost,
acceleration cost, and added jerk cost for connecting the two
points are calculated as follows:

costref−speed = ωref−speed
(
ṡij − vr

)2
costaccel = ωaccel s̈2ij
costjerk = ωjerks2ij

(28)

among these parameters, vr denotes the anticipated speed of
the vehicle, while ωref−speed , ωaccel , and ωjerk represent the
weighted coefficients associated with the cost of reference
speed, vehicle acceleration, and vehicle jerk for the afore-
mentioned vehicles. To modulate the degree of influence of
different variables on speed, the assigned values are 4000,
100, and 10, respectively.
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FIGURE 12. Projecting obstacles onto the S-T diagram.

FIGURE 13. Methodology for calculating collision cost.

FIGURE 14. Dynamic planning of obstacle avoidance speed.

The utilization of dynamic programming to tackle
velocity-related aspects streamlines the solution space of the
problem. Illustrated in Figure 15 is the updated S-T dia-
gram, an outcome derived from the dynamic programming
outcomes. The subsequent quadratic programming convex
space is formed utilizing these dynamic programming results,
and the resultant blue curve on the diagram represents the
velocity curve attained post-quadratic programming. In order
to adhere to kinematic criteria, constraints are defined for
speed, acceleration, and jerk at the nodes, as outlined below:

si ≤ si+1

0 ≤ ṡi ≤ vlim
amin ≤ s̈i ≤ amax

si ≤ jerkmax

(29)

FIGURE 15. Quadratic programming to obtain the optimal speed profile.

This necessitates that the longitudinal displacement, denoted
as s at each moment should not surpass that of the subsequent
moment. Here, jerkmax represents the maximum longitudinal
jerk, vlim stands for the velocity limit, while amin and amax cor-
respond to the minimum and maximum travel accelerations,
respectively.  vlim = min

(
vkappa, vroad

)
vkappa =

√
aymax

kappa
(30)

where vkappa and vroad represent the speed limits imposed
by road curvature and road regulations, respectively. The
variable kappa signifies the road curvature, and aymax denotes
the maximum transverse acceleration. By incorporating these
nonlinear constraints, the formulation is expressed as:

ming (ζ ) s.t.hi (ζ ) ≥ 0, i = 1, 2, · · · , n (31)

where ζ represents the variable to be optimized, hi (ζ ) is the
conditional constraint, and g (ζ ) is the objective function.
The optimization of the variable s = [s1, s2, · · · , sn]T is
computed as follows:

si+1 = si + ṡidt +
1
2
s̈idt2 +

1
6
s̈i+1 − s̈i

dt
dt3

ṡi+1 = ṡi + s̈idt +
1
2
s̈i+1 − s̈i

dt
dt2

(32)

The outcome of solving the cost function, which adheres to
all constraints, yields a continuous optimal velocity profile.

24510 VOLUME 12, 2024



C. Zhang, W. Xu: Intelligent Vehicle Path Based on Discretized Sampling Points

TABLE 1. Vehicle parameters and algorithm parameters.

The cost function is as follows:

cos tFunction =

n∑
i=1

ωv (ṡi − vr )2 +

n∑
i=1

ωas̈2i +

n∑
i=1

ωjs2i

(33)

within this context, vr is determined by the anticipated speed,
while ωv, ωa, and ωj represent the weight coefficients associ-
ated with the vehicle’s driving speed, acceleration, and jerk,
respectively. To modulate the degree of influence of different
variables on the optimal speed, the assigned values are 10,
50 and 500, respectively. When ṡi = vr , the vehicle speed
attains the optimal value, and the speed cost cos tFunction
becomes 0.

V. RESULTS
A. ANALOG PARAMETERS SETTING
To validate the viability of the method proposed in this paper,
we established a simulation platform usingMatlab/Simulink-
Prescan-Carsim. The Prescan platform provided the scenario
information, Matlab/Simulink housed the algorithms, and
Carsim accommodated the imported vehicle models for joint
simulation. The algorithm implementation occurred on a PC
equipped with an Intel Core i5-10400 CPU, operating at
2.90 GHz, and 16 GB RAM. The simulation framework
is depicted in Figure 16. Utilizing the described platform,
diverse road scenes were designed for validation purposes.
The tracking of the planned path involved employing an LQR
controller for the horizontal direction, a dual PID controller
for the vertical direction, and a bicycle model to represent the
vehicle’s dynamic response across various scenarios. Table 1
outlines the relevant parameters.

In Figures 17-20, the planning path is denoted by the blue
solid curve, while the lane boundary line and lane centerline
are represented by the black solid and dashed lines, respec-
tively. For a clearer assessment of the planning method’s
reliability, the positions of the self-vehicle and obstacle

vehicles are marked at intervals of 4.5 seconds. The straight-
away scenario, as shown in Figures 17-19, features a blue
rectangle indicating the self-vehicle and the remaining area
designating the obstacle vehicle. S1, F1, and L1 represent the
initial positions of the self-vehicle and the obstacle vehicle.
The curved scene, displayed in Figure 20, exhibits a blue
circle for the self-vehicle and the remaining area for the obsta-
cle vehicle. S, F, and L denote the starting locations of the
self-vehicle and the obstacle vehicle, respectively. Addition-
ally, we conduct a comparison of curvature and velocity with
the dynamic programming-based method [24] (Method I) in
the scenarios presented in Figures 17-20, aiming to further
elucidate the advantages of themethod proposed in this paper.

B. STRAIGHTAWAY SCENES
In Figure 17, there is an obstacle vehicle in the traveling lanes
and the adjacent lane, vehicle F1 in front of it is moving
forward at a velocity of 6 m/s from a location of XF1 = 80m,
and vehicle L1 in the adjacent lane is moving forward at a
velocity of 8 m/s from a location of XL1 = 120m. As shown
by the blue solid line in Figure 17(a), the vehicle travels
forward, detects the vehicle F1 in front of it, accelerates to
travel in the adjacent lane until it detects the vehicle L1,
then decelerates to the original lane, where it decelerates
to the target speed. The analysis of speed and curvature in
Figure 17 (b)(c) compared with Method I reveals that the
absence of robust speed smoothness control in Method I
results in abrupt speed fluctuations during the detection
of obstacle vehicles. Notably, when maneuvering to avoid
obstacles, the speed fluctuation becomes more pronounced,
leading to a slower completion of avoidance maneuvers and
reduced smoothness compared to the approach presented in
this study. Concerning curvature, the method proposed in
this paper demonstrates superior smoothness compared to
Method I.
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FIGURE 16. The platform framework of Matlab/Simulink-Prescan-Carsim.

FIGURE 17. Continuous obstacle avoidance on straight roads. (a) Vehicle location and planning path, (b) Velocity curve, (c) Curvature curve.

FIGURE 18. Direct lane change to avoid obstacles on straight roads. (a) Vehicle location and planning path, (b) Velocity curve, (c) Curvature
curve.

In Figure 18, an obstacle vehicle is positioned in each of
the traveling lanes and the adjacent lane. Vehicle F1, situated
ahead, is moving forward at a speed of 6 m/s from a position
of XF1 = 80m. In the adjacent lane, vehicle L1 is moving
forward at a speed of 12 m/s from a position of XL1 = 70m,
and the vehicle under observation is traveling on the road. The
blue solid line in Figure 18(a) depicts the vehicle’s forward
motion. It detects vehicle F1 in front, with a low obstacle dis-
tance cost from the vehicle in the adjacent lane, satisfying the
vehicle obstacle avoidance condition. Consequently, the vehi-
cle accelerates directly into the adjacent lane. An examination
of the speed and curvature in Figures 18 (b)(c), compared

with Method I, reveals significant distinctions. Method I
initiates a deceleration phase at the onset of a lane change
to avoid obstacle vehicle F1. Subsequently, it accelerates the
lane change, prolonging the temporal interaction with obsta-
cle vehicle F1, thereby heightening the risk of accidents. This
study introduces a velocity quadratic programming objec-
tive function to enhance the smoothness of speed transitions
compared to Method I. Moreover, the curvature in this inves-
tigation exhibits superior smoothness.

In Figure 19, obstacle vehicles are present in each of the
traveling lanes and the adjacent lane. Vehicle F1, positioned
in front, is moving forward at a speed of 6 m/s from a
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FIGURE 19. Slow down and change lanes to avoid obstacles on straight roads. (a) Vehicle location and planning path, (b) Velocity curve,
(c) Curvature curve.

FIGURE 20. Lane change avoidance on S-curve road. (a) Vehicle location and planning path, (b) Zoom in on the local path, (c) Velocity
curve, (d) Curvature curve.

location of XF1 = 80m. In the adjacent lane, vehicle L1
is moving forward at a speed of 12 m/s from a position of
XL1 = 30m, and the observed vehicle is in motion on the
road. Depicted by the blue solid line in Figure 19(a), the vehi-
cle advances and detects vehicle F1 ahead.When the adjacent

lane fails to meet the vehicle obstacle avoidance condition,
the vehicle initiates deceleration, continuing forward until the
distance to the obstacle in the adjacent lane is both costly and
low. Subsequently, the vehicle accelerates into the adjacent
lane. A comparative analysis of the speed and curvature in
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Figures 19 (b)(c), when contrasted with Method I, reveals
that Method I trails obstacle vehicle F1 for an extended dura-
tion, resulting in reduced operational efficiency. This study
introduces a collision objective function crafted to expedite
lane-changing maneuvers when conditions permit. Further-
more, the curvature of Method I is less smooth than that
achieved by the approach proposed in this paper.

C. S-CURVE SCENE
Figure 20 illustrates a driving scenario where a vehicle navi-
gates around a stationary vehicle in front of it, encountering
an obstacle vehicle on the S-curve road adjacent to the road.
In this scenario, both the travel lane and the adjacent lane
have obstacle vehicles, with Vehicle F ahead traveling at
speed 0 and Vehicle L in the adjacent lane traveling at 15 m/s.
Depicted by the blue solid line in Figure 20(a)(b), the vehicle
progresses, detecting Vehicle F in front when the adjacent
lane fails to meet the vehicle obstacle avoidance condition.
The vehicle initially decelerates and continues forward until
the distance to the obstacle in the adjacent lane becomes
both costly and low. Subsequently, the vehicle accelerates
into the adjacent lane. A comparative analysis of the speed
and curvature in Figures 20 (c)(d), as opposed to Method I,
reveals that Method I neglects the need to reduce the vehicle
speed during curve navigation, persisting at an elevated speed
post-obstacle avoidance. This oversight compromises vehi-
cle stability, escalating the risk of accidents. Furthermore,
in comparison with the methodology presented in this paper,
Method I demonstrates increased curvature variation and
diminished path stability.

VI. CONCLUSION
In this study, we propose a path planning methodology
grounded in discrete optimization of sampled points and
an enhanced cost function. The approach involves discretiz-
ing the obstacle avoidance space based on diverse driving
environments, establishing nonlinear constraints, defining a
convex space for vehicle obstacle avoidance, comprehen-
sively considering the spatial relationship between the vehicle
and obstacles, formulating an objective function, and deter-
mining the optimal obstacle avoidance path through quadratic
programming within the convex space. Concurrently, a veloc-
ity metric is devised to plan an optimal velocity profile along
the planned path, facilitating effective obstacle avoidance in
various road scenarios. Test results affirm the adaptability of
the approach to diverse driving environments and its ability
to generate smooth paths. While the method demonstrates
applicability to highways and urban roads, more intricate sce-
narios may necessitate the implementation of sophisticated
cost-function-based path planning methods.
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