
Received 15 January 2024, accepted 30 January 2024, date of publication 8 February 2024, date of current version 16 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3364384

Efficient Hardware Realization of SC
Polar Decoders Using Compound
Pipelined Processing Units and
Auxiliary Registers
YASIR ALI 1,2, YUANQING XIA 3,1, (Fellow, IEEE), TAYYAB MANZOOR 4, SHAHZAD ALI 1,
MOHAMED ABOUHAWWASH 5, S. S. ASKAR 6, AMIT KRISHAN KUMAR 7,8, (Member, IEEE),
AND RUIFENG MA 1
1School of Automation, Beijing Institute of Technology, Beijing 100081, China
2Department of Telecommunication and Teleinformatics, Joint Doctoral School, Silesian University of Technology, 44-100 Gliwice, Poland
3Zhongyuan University of Technology, Zhengzhou 450007, China
4School of Automation and Electrical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
5Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
6Department of Statistics and Operations Research, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
7Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
8Faculty of Electrical-Electronic Engineering, Duy Tan University, Da Nang 550000, Vietnam

Corresponding author: Yuanqing Xia (xia_yuanqing@bit.edu.cn)

This project is funded by King Saud University, Riyadh, Saudi Arabia. Researchers Supporting Project number (RSP2024R167).

ABSTRACT Polar codes have garnered substantial research attention due to their impressive performance
characteristics and have found applications in recent technologies, including 5G New Radio (NR) systems,
Internet of Things (IoT) communications, and cyber-physical systems that utilize sensor and actuator
networks. However, the existing SC decoders suffer from lengthy processing latencies due to their sequential
processing steps, thereby restricting the practical applicability of polar codes. To address this latency
issue, this paper introduces a Compound Pipeline Processing Unit (CPPU) and its simplified counterpart,
a crucial step in realizing tree-level compound pipelining. In contrast to sequential circuitry, the previously
described combinational architecture lacks internal storage elements, with the clock period defined by the
longest path delay. This strategy conserves hardware resources by avoiding memory usage, but it inevitably
decelerates the decoder’s performance. Notably, implementation results underline the efficiency of the
proposed CPPU-based SC polar decoder using a fully unrolled encoder and decoder on the targeted platform
of a Virtex UltraScale - XCVU190 Field Programmable Gate Array (FPGA), using a parametric approach
in the Very High-Speed Integrated Circuit Hardware Description Language (VHDL). The assessment of
error-correction performance involves examining various combinations of integral and fractional bits in LLR
quantized representations. This approach achieves a throughput of about 2672 Mbps, accompanied by a
substantial reduction of 17% in Lookup Table (LUT) usage. Furthermore, the decoder’s speed is enhanced
by approximately 17.34% for a code length of 128 bits and LLR quantization of 5 bits.

INDEX TERMS Polar codes implementations, compound-logic pipeline processing, latency reduction,
simplified non-statistical LLR metric.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zesong Fei .

I. INTRODUCTION
After Arikan’s pioneering work [1], significant research
efforts have been focused on exploring polar codes, driven
by their remarkable performance. Consequently, this has
resulted in their integration into modern applications like

23808

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0003-3998-9218
https://orcid.org/0000-0002-5977-4911
https://orcid.org/0000-0003-3932-0506
https://orcid.org/0000-0002-1923-8380
https://orcid.org/0000-0003-2846-4707
https://orcid.org/0000-0002-1167-2430
https://orcid.org/0000-0002-0173-2081
https://orcid.org/0000-0001-8937-9122
https://orcid.org/0000-0002-7576-625X

Y. Ali et al.: Efficient Hardware Realization of SC Polar Decoders

5G New Radio (NR) systems [2], Internet of Things (IoT)
communications [2], and smart sensor networks in cyber-
physical systems [3], [4].

For decoding transmitted polar codewords, the Successive
Cancellation (SC) algorithm is commonly the initial choice
due to its efficient error correction and computational
simplicity [5], [6]. However, the traditional SC decoding
method is known to experience prolonged processing delays
stemming from the serial nature of internal decoding
orders [1]. This leads to increased overall decoding latency
when employed in SC decoding techniques that aim to
enhance error correction further [3], [7]. Hence, it becomes
essential to create viable low-latency SC decoding strategies
to achieve economical SC decoders suitable for lightweight
communication protocols [8]. These strategies can also serve
as rapid foundational architectures for SC decoders within
5G NR solutions [9]. However, all the prior methodologies
have derived from the basic decoding tree structure, following
a sequential node processing approach. These methods tend
to be hindered by the serialized steps inherent in such
an approach, which ultimately leads to increased decoding
latency. Recognizing this limitation, recent cutting-edge
advancements have put forth the concept of tree-level paral-
lelism by leveraging the pipelining operation. This involves
breaking down the primary decoding tree into smaller sub-
trees, theoretically enabling simultaneous parallel decoding
operations [10].

This paper introduces a range of optimization techniques
designed to achieve a low-latency combinational pipelined
processing SC polar decoder. In the context of a generalized
pipelined decoder architecture, we define augmentation of
the mother code, which we call compound-logic pipelined
codes producing leaf-level patterns of merged sub-trees. Each
of these functions offers a dedicated processing path for
a specific sub-tree pattern, thereby shortening the critical
path in comparison to prior approaches, which often use a
single merging function to handle numerous patterns [10].
Significantly, concise segmented polar codes have been put
to practical use as the effective error correction code for
the improved mobile broadband control channel within 5G
networks [11], [12]. This paper’s primary aim is to delve
into the design and implementation of a latency-efficient
polar code encoder and SC decoder system on an FPGA
platform. This implementation employs both fully unrolled
and combinational architecture, enabling the processing of
an entire codeword in a single clock cycle, which offers
significant advantages in terms of achieving high throughput.
In alignment with the recent 5G NR specification [8],
we conduct a comprehensive case study involving a pipelined
polar decoder realized on a Virtex UltraScale - XCVU190
FPGA platform. Through rigorous testing, our decoder
demonstrates an impressive approximately 17.34% increase
in throughput compared to the reference combinational
implementations for N = 128 [13], [14], [15]. At the core
of our decoder lies our proposed Compound-Logic Pipelined
Processing Unit (CPPU) and its simplified counterpart,

a foundational component that reduces resource demands
for the widely used 5-bit Log Likelihood Ratio (LLR)
quantization. Simultaneously, it mitigates decoder latency
by pre-computing results, setting it apart from reference
designs [13], [14], [15]. This innovation contributes to
improved performance and efficiency, making our decoder
implementation a valuable asset in modern communication
systems. The primary contribution of this research endeavor
can be summarized as follows:

• To introduce a Compound Pipeline Processing Unit
(CPPU) integrated with auxiliary registers, which
plays a crucial role in achieving tree-level compound
pipelining for SC decoders. By incorporating this novel
architecture, the paper addresses the issue of lengthy
processing latencies associated with sequential SC
decoders, thereby improving the practical applicability
of polar codes in various applications.

• Instead of using individual units for each LLR input,
the paper introduces a modification that simplifies
the relationships within the decoder and improves its
efficiency compared to the basic decoder, enhancing the
overall decoding process.

• The paper contributes to the hardware implementation
of polar codes by demonstrating the efficiency of the
proposed CPPU-based SC polar decoder. The decoder is
implemented on a Virtex UltraScale - XCVU190 FPGA
using a parametric approach in VHDL. This hardware
implementation achieves a substantial throughput of
approximately 2672 Mbps, while also reducing the
Lookup Tables (LUTs) usage by 17%. By utilizing
the proposed S-CPPU-based architecture, the paper
achieves a significant speed improvement of approxi-
mately 17.34% for a code length of 128 bits and LLR
quantization of 5 bits.

The paper’s subsequent sections are organized in this manner:
Section II covers polar code encoding and SC decoding
algorithms, emphasizing hardware-friendly simplifications.
Section III discusses the hardware implementation back-
ground and overview of the related work done. Section IV
discusses the proposed CPPU architecture, our parametric
design, and encoder implementation. It also introduces
decoder components for N = 8 and LLR representation
considerations. Section V details the Simplified CPPU
(S-CPPU), and explains our basic N = 4 decoder
implementation with simplified relationships. Section VI
presents hardware implementations on FPGA to go through
the synthesis outcomes, comparing our designs with refer-
ences. It includes throughput and frequency analysis, BER
performance based on quantization representation, and a
simplified non-statistical metric. Section VII concludes the
paper with a discussion of the results.

II. PRELIMINARIES
A. SC POLAR CODE
A polar code with a configuration of (N ,K) is characterized
as a linear block code consisting of N transmitted bits,

VOLUME 12, 2024 23809

Y. Ali et al.: Efficient Hardware Realization of SC Polar Decoders

out of which K are information bits. Prior to the encoding
process, the message vector u = [u0, u1, . . . , uN−1] is
formed by allocating the K information bits to the K most
reliable channels among the N channels, as determined
by the channel polarization process. The remaining bits,
known as frozen bits, are then assigned predetermined values
recognized by both the encoder and decoder, often set
to all zeros [11]. Following the approach detailed in [1],
the encoding procedure of a polar code is mathematically
represented as the product of a 1 × N message vector u and
an N × N generator matrix G⊗n, denoted as x = uG⊗n.

Here, n = log2 N , G =

[
1 0
1 1

]
, and G⊗n represents the

n-th Kronecker power of the polarizing matrix G.
Following the passage of the codeword vector x through

a channel affected by noise, the polar decoder receives the
1 × N vector y and then proceeds to compute the message
bits û = [û0, û1, . . . , ûN−1]. For a length N polar code,
the conventional SC decoding algorithm’s processing steps
can be represented as a binary decoding tree with a depth
of log2 N [16], and the tree structure can be represented as
a graph with N

(
1 + log2 N

)
nodes. Fig. 1 illustrates the SC

decoding tree’s conceptual diagram for a (16, 8) polar code,
where blue, white, and grey nodes correspond to nodes with
information, frozen, and mixed leaves, respectively.

For a comprehensive illustration of the SC decoding
process, let’s view γi,j as the j-th node within the i-th stage
of the decoding tree, where Li = 2n−i denotes the number
of leaf nodes. At node γi,j, a soft-value vector Ai,j =

[αi,j0 , α
i,j
1 , . . . , α

i,j
Li−1] is received from its parent node, and

the node then produces an estimated hard-value vector Bi,j =

[β i,j0 , β
i,j
1 , . . . , β

i,j
Li−1].

The initial assignment of the soft computation vector A0,0
for the root node γ0,0 is performed by utilizing the received
vector y in the subsequent manner:

α
0,0
l = log

(
Pr (yl | xl = 0)
Pr (yl | xl = 1)

)
, 0 ≤ l ≤ N − 1. (1)

The LLR is a crucial parameter used in the decoding pro-
cess of polar codes to make decisions about the transmitted
bits based on received observations. The LLR on the node γi,j
is defined in [16] as:

α
i,j
l = ln

Pr
(
y, û1, û2, . . . , ûj−1 | uj = 0

)
Pr
(
y, û1, û2, . . . , ûj−1 | uj = 1

) , 0 ≤ l ≤ N − 1,

(2)

where, αi,jl refers to the LLR value for the j-th bit in the i-th
level of the polar code;
P(y, û1, û2, . . . , ûj−1 | uj = 0) represents the conditional
probability of receiving the sequence of observations y, along
with the estimated values û1, û2, . . . , ûj−1, given that the j-th
bit (uj) in the polar code is set to 0;
P(y, û1, û2, . . . , ûj−1 | uj = 1) represents the conditional
probability of receiving the same sequence of observations
and estimated values, but with the j-th bit (uj) set to 1.

Within the SC decoding algorithm, node γi,j sends
computed soft-value vectors, Ai+1,2j and Ai+1,2j+1, to its
left and right child nodes correspondingly. The individual
elements of the soft-value vectors are computed as follows:

α
i+1,2j
l = f

(
α
i,j
l , α

i,j
l+Li+1

)
,

α
i+1,2j+1
l = g

(
α
i,j
l , α

i,j
l+Li+1

, β
i+1,2j
l

)
, (3)

where l represents the vector index (0 ≤ l ≤ Li+1 − 1).
It is worth noting that while the encoder can be easily
implemented with Boolean logic, the decoder involves soft
decision propagation through these circuits. The formulations
for the decoder functions can be expressed from [17],

f
(
α
i,j
l , α

i,j
l+Li+1

)
=2 tanh−1

tanh

(
α
i,j
l

2

)
tanh

α
i,j
l+Li+1

2

 ,

g
(
α
i,j
l ,α

i,j
l+Li+1

,β
i+1,2j
l

)
=α

i,j
l (−1)ŝ+α

i,j
l+Li+1

.

(4)

where ŝ = 1 if β
i+1,2j
l > 0 and ŝ = 0 otherwise. Using

LLRs, function g can be easily implemented through adder
and subtractor circuits. Proceeding towards the hardware-
friendly approximation, f and g are defined in [18] as,

f (x, y) ≈ sgn(x) sgn(y) min(|x|, |y|),

g(x, y, u) = (−1)ux + y, (5)

where sgn(x) is 1 for x ≥ 0 and -1 in other cases. When
given the hard-value vectors Bi+1,2j and Bi+1,2j+1 from the
left and right child nodes respectively, node γi,j produces a
hard-value vectorBi,j realized as partial sum in our text, using
the following process:

β
i,j
l = β

i+1,2j
l ⊕ β

i+1,2j+1
l ,

β
i,j
l+Li+1

= β
i+1,2j+1
l . (6)

At the j-th leaf node γm,j, the hard-value vector Bm,j

corresponds to an estimated bit, Bm,j =

[
β
m,j
0

]
=

[
ûj
]
,

computed as

ûj = β
m,j
0 =


0, if j ∈ Ac

0, if α
m,j
0 ≥ 0

1, otherwise,

(7)

where Ac represents the set of indices corresponding to
frozen bit locations. The standard SC decoding process
concludes its cycle when the rightmost leaf node γm,N−1
computes the final hard-decision estimate, resulting in the
decoded output û = [βm,0

0 , β
m,1
0 , . . . , β

m,N−1
0].

Since the operation g at γi,j node depends on partial
sums obtained from previously estimated bits, denoted as
the vector Bi+1,2j, the traditional SC decoding procedure
frequently experiences significant processing latencies due
to its sequential decoding sequence. To tackle this issue
of latency, methods such as those explored in [13], [19],
[20], [21], [22], and [23] present pruning-based algorithms

23810 VOLUME 12, 2024

Y. Ali et al.: Efficient Hardware Realization of SC Polar Decoders

FIGURE 1. Illustrating the structure of the successive cancellation (SC) decoding tree designed for a (16,8) polar code, showcasing the hierarchical
arrangement and interconnections of nodes involved in the decoding process.

for SC decoding. The pipelined decoding technique out-
lined in [24] employs a segmentation pruning approach
for distinct patterns of consecutive leaf nodes. Enhancing
this hardware implementation could involve incorporating
auxiliary registers to facilitate overlapped pruning in the
decoder, as demonstrated in Fig. 2. Nonetheless, despite
the advancements of these pruning-based strategies, they
still adhere to the original SC decoding tree structure,
thus retaining inherent latency constraints arising from the
sequential processing sequence.

III. RELATE WORK AND ARCHITECTURE
CONSIDERATIONS
As previously discussed, the hardware development of SC
decoders has presented notable difficulties. To alleviate the
intricacies of SC decoding, Arikan [25] presented pipelined
architectures incorporating identical reusable modules. This
design approach enables recursive implementations with
reduced complexity. Leroux et al. [17] demonstrated that SC
decoders can be constructed usingO(N) processing elements,
denoted as configurable units capable of executing either
the f or g functions. In their subsequent publication [16],
they introduced a semi-parallel architecture characterized by
remarkably low processing complexity. Additionally, they
proposed an alternative approach based on encoding, inspired
by the framework introduced in [26], and put forward a fully
parallel module for computing partial sums. Sarkis et al. [21]
implemented a simplified version of the SC algorithm incor-
porating components codes [27]. Berhault et al. [28], [29]
developed an effective module for partial sum computation
that could also function as an encoder utilizing a linear
feedback shift register. In a subsequent study [30], they
introduced an innovative approach for storing intermediate
results using computational logic. Giard et al. [31] introduced
a novel FPGA architecture characterized by full unrolling
and deep pipelining at the expense of increased memory

requirements. They subsequently explored the landscape
of polar decoders in [22] and [32], introducing unrolled
architectures specifically tailored for quantized polar codes.

An outline of an SC flip decoder that features
decreased memory demands and demonstrates enhanced
Frame Error Rates (FERs) was presented in the work by
Afisiadis et al. [33]. In [34], they exhibited both software
and hardware realizations of adaptable polar decoders.
Oommen and colleagues introduced a resource-efficient
hardware design in their study [35], which incorporates
stack SC principles [36] within an FPGA environment. In a
significant breakthrough, Dizdar and Ar?kan [8] introduced
an innovative design for an SC decoder acclaimed for its
exceptional throughput and energy efficiency. Although the
incorporation of lists to improve decoding performance
results in elevated hardware complexity and latency, as noted
by [37], contemporary hardware realizations have prioritized
enhancing throughput and reducing area utilization by means
of component enhancements [38], [39], the utilization of
segmentation strategies [40], advancements in path metric
processing [41], and the adoption of constituent decoding
techniques [42].

In this study, we investigated methods for representing
sequential patterns that rely on both the length of the
code denoted as N and the quantization bit quantity Q
assigned to LLR values. We chose to develop a high-speed
decoder using a combinational approach, similar to Dizdar’s
concept [8]. However, we innovatively devised a CPPU
based on algorithmic considerations for handling addition
and subtraction in Sign-Magnitude (SM) representation,
accounting for possible overflow and saturation scenarios
in the output. Furthermore, we presented a less complex
iteration of this CPPU and provided synthesis results for
both variations. As a result, we introduce a more efficient
decoder for N = 4, utilizing a combination of two
CPPUs, two comparators, and a small number of additional

VOLUME 12, 2024 23811

Y. Ali et al.: Efficient Hardware Realization of SC Polar Decoders

FIGURE 2. Illustration of SC decoder integration with Compound Pipeline Processing Unit (CPPU) to enable concurrent pruning within the decoder.

logic gates. This simplification significantly decreases the
decoding delay and preserves hardware assets.

A. ENCODER ARCHITECTURE CONSIDERATIONS
Arikan in [25] introduced hardware adaptable architectures
for polar codes that can be applied to any power-of-2 code
length, denoted as N . These structures are constructed using
reusable components, allowing for pipelining and providing
a consistent graphical denotation of theG⊗n implementation.
Within this array of architectures, one particular design
incorporates a reverse-shuffle operator, which reorganizes
an even-length input vector vN1 with N components into
a rearranged sequence (v1, v3, . . . , vN−1, v2, v4, . . . , vN).
This architecture also employs bitwise XOR (⊕) opera-
tions, which transform binary vectors vN1 of even length
into (v1 ⊕ v2, v2, v3 ⊕ v4, v4, . . . , vN−1 ⊕ vN , vN), where ⊕

denotes modulus 2 addition. When implementing an SC
polar encoder on an FPGA, several considerations must be
taken into account. First, the complex recursive nature of
SC encoding requires careful pipelining and scheduling to

ensure efficient hardware resource utilization and minimal
latency. Efficient memory management is essential to store
intermediate values and manage recursive computations.
The choice of architectural parameters, such as the degree
of parallelism and the depth of the processing pipeline,
significantly impacts the throughput and latency of the
encoder. Additionally, mapping the intricate polar code
structure onto FPGA logic elements requires careful consid-
eration of resource allocation, including LUTs, flip-flops, and
DSP blocks. Leveraging dedicated high-speed interfaces and
memory banks and registers can optimize data throughput
and alleviate potential bottlenecks. As FPGA technology
evolves, leveraging newer features like heterogeneous archi-
tectures, custom IP cores, and partial reconfiguration can
further enhance the encoding performance. Thus, achieving
an efficient SC polar encoder implementation on FPGA
demands a careful balance of architectural, algorithmic, and
resource management considerations. Fig. 3 illustrates the
graph tree of the conventional encoder diagram for N =

8, serving as the basis for this architecture. Within this

23812 VOLUME 12, 2024

Y. Ali et al.: Efficient Hardware Realization of SC Polar Decoders

depiction, a vector u undergoes three stages of transformation
to yield a codeword x, entailing the interconnection of
modulus 2 adders.

B. DECODER ARCHITECTURE CONSIDERATIONS
The architecture of SC decoder can be realized using
combinational logic due to it does not operate any loops.
This design permits the decoding of one codeword in
each clock cycle, resulting in reduced power consumption
when compared to synchronous decoding methods [8].
Streamlined versions of the SC algorithm [21], [27] also
enable the creation of high-throughput decoders, yet they lack
the flexibility to adapt to varying code rates. Nevertheless,
the inherent recursive nature of polar codes simplifies their
implementation. Specifically, the construction of a polar
code with a length of N involves concatenating two polar
codes of length N/2. This inherent property streamlines the
development of decoders for codes with a length of N based
on decoders designed for polar code of length N/2 [8].

In our design approach, we introduce a register transfer
level schematic for a combinational decoder architecture
designed for length N = 16, employing the recursive
algorithm. The architecture, depicted in Fig. 4, comprises
several fundamental components: a register dedicated to
preserving frozen bits, encoders for generating partial sums,
and elementary decoders responsible for computing the f
and g functions. As the foundational case of the recursive
structure, the decoder blocks for N = 4 establish the basis
from which the overall decoder layout for any length can be
extrapolated. The register is employed to hold the frozen bit
indicator vector, wherein ‘‘0’’ signifies frozen bits while ‘‘1’’
designates information bits.

In contrast to sequential circuits, the previously explained
combinational architecture doesn’t necessitate any internal
storage components. The clock period in such a circuit is
determined by the longest path delay. This design choice
conserves hardware resources by eliminating the need for
memory at the cost of slowing down the decoding process.
In our work, we introduce compound logic pipelining to
enhance throughput, even if it requires additional hardware
utilization. The outputs of the initial decoder block are used
by the encoder to compute partial sums. For this reason,
it’s crucial for this decoder to retain its outputs once the
respective beliefs are computed. However, the pipeline nature
allows it to initiate the decoding process for another codeword
as long as the associated partial sums, together with the
pertinent channel observation LLRs, are stored and made
available to the next decoding block for parallel processing.
Incorporating auxiliary register blocks at strategic locations
within the decoder’s architecture facilitates the realization of
parallel decoding and improves the decoding latency.

Within the decoder segment encompassing LLRs from
l0 to l7, a recursive approach similar to the initial decoder’s
structure is maintained through the utilization of two
elementary decoders having length N = 4 and an encoder of
identical length. A CPPU generator block, adaptable through

parameters, is introduced to facilitate combined-processing
decoder blocks totaling N/2 = 4, responsible for the
implementation of the f and g functions.

The underlined decoder integrates combinational encoders
designed for various code lengths, serving the purpose
of generating partial sums. These encoders uphold the
bit-reverse reordering pattern, segmenting the encoding
process at the transmission end. The foundational partial
sum generator is instantiated as an XOR gate, operating as a
pivotal component within the segmented decoder framework.
When recursion comes into play, a decoder tailored for a
particular code length N is formulated, and the pertinent
partial sum generator for this context takes the form of an
encoder with a length of N/2.
As an example, an 8-bit decoder requires the utilization of

2×e2+1×e4 encoders. In addition, the decoder architecture
encompasses three registers: a (N×1) bit register for holding
frozen bit positions, a (N×Q) bit register for storing the initial
LLR values received from the channel, and another (N × 1)
bit register responsible for storing the decoded message bits
produced at the decoder’s output.

Highlighting a crucial aspect, it’s essential to stress that
translating the f and g functions into hardware requires
quantifying LLRs using a predetermined bit quantity denoted
as Q. The selection of this bit-width detonation can influence
the outcome of the decoder as opposed to the use of floating-
point representations. Through the simulation of the SC
decoding for varying Q values, it becomes evident that a 6-
bit binary representation produces nearly indistinguishable
performance compared to that of a floating-point represen-
tation. While a choice of Q = 5 leads to marginally inferior
performance, it offers a reasonable compromise that helps in
reducing hardware demands. Hardware implementations of
polar codes frequently opt for fixed-point quantization, such
as Sign-Magnitude (SM) representations, which allocate 1 bit
for the sign and Q − 1 bits for representing the magnitude.
The SM deployment, in particular, can mitigate hardware
complexity, thus emerging as a recommended preference for
the quantized operation.

IV. COMPOUND-LOGIC PIPELINED PROCESSING UNIT
(CPPU)
This section introduces a distinct CPPU SC decoder
architecture for polar codes step by step, namely the
combinational decoder, the pipelined combinational decoder,
the compound-logic pipeline processing decoder, and the
simplified CPPU decoder. The recursive nature of the SC
decoder enables the combinational decoder, initially designed
for N = 4, as depicted in 5. This logic-based decoder
serves as the basic building block for larger-scale decoders,
elaborated upon in the subsequent subsection.

A. BASIC COMBINATIONAL-LOGIC IMPLEMENTATION
In a combinational SC decoder, the decoder outputs are
directly determined by the inputs without any intervening
memory units or registers. The implementation of this

VOLUME 12, 2024 23813

Y. Ali et al.: Efficient Hardware Realization of SC Polar Decoders

FIGURE 3. Diagram illustrating the polar encoder for the case of N = 8.

FIGURE 4. Register transfer level schematic depicting the combinational decoder for N = 16 and K = 8.

decoder, utilizing only comparators and adders, is depicted
in Fig. 5. This design adopts a sign-magnitude representation,
similar to the approach in [16], which alleviates the need for

frequent representation conversions. Throughout the decoder,
both channel observation LLRs and calculations are carried
out using Q bits. The computation of the function g from (5)

23814 VOLUME 12, 2024

Y. Ali et al.: Efficient Hardware Realization of SC Polar Decoders

follows the latency-reduction technique proposed in [39].
In Fig. 5, we showcase the combinational logic decoder for a
size of N = 4, while Fig. 6 illustrates its signal flow graph
alongside the decoding expressions.

B. COMBINATIONAL SC DECODER
Illustrated in the Register Transfer Level (RTL) schematic
in Fig. 4, the combinational decoder architecture for N =

16 could be extended to any block length N , employing
the recursive nature of the SC decoding. This design
integrates two combinational decoders with dimensions of
N/2, supported by input/output registers and bit indicator
resistors. The sub-modules of size 4 within the decoder
remain consistent with those in Fig. 5. The encoder with a
size of 4 employs a combinational circuit constructed using
XOR gates. The components within a combinational decoder
are directly interconnected, bypassing any intermediate
synchronous logic elements. This design choice not only
saves time and power by eliminating memory read/write
operations but also simplifies the complexity of the hardware.
In each clock cycle, a fresh channel observation LLR vector
is extracted from input registers, and a decision vector is
written into output registers. The duration of each clock
cycle aligns with the overall delay of the combinational
circuit, effectively determining the decoder’s throughput.
To distinguish between frozen and data bits, AND gates
are utilized, leveraging frozen bit indicators denoted as ai.
At the commencement of each decoding process, the frozen
bit indicator vector can be modified, allowing for real-time
adjustments to the code configuration.

Combinational decoders exhibit a recurring recursive
structure composed of multiple essential components. The
architecture of the 16-bit decoder is established by inter-
connecting 2 × 2 × 4-bit decoders, creating links through
a 16-bit input-output register block. This concept can be
extended further; for example, a decoder targeting N =

1024 requires 64 CPPU units in conjunction with 1 × 4-bit
encoders for each CPPU.

C. PIPLINED COMBINATIONAL DECODER
In contrast to sequential circuitry, the previously described
combinational architecture lacks internal storage elements,
with the clock period defined by the most extended path
delay. This strategy saves hardware resources by avoiding
memory usage but inevitably decelerates the decoder’s
performance. The present subsection introduces pipelining
to enhance throughput at the cost of introducing additional
hardware complexity in auxiliary registers.

As emphasized in Fig. 4, the outputs of the initial decoder
block are utilized by the encoder to compute partial sums.
For this reason, it’s crucial for this decoder to retain its
outputs once it completes the pruning of the decoding tree.
However, the pipeline nature allows it to initiate the decoding
process for another codeword as long as the associated
partial sums, together with the pertinent channel observation
LLRs, are stored and made available to the second decoder

block for parallel processing. Incorporating auxiliary register
blocks at strategic locations within the decoder’s architecture
facilitates the realization of pipelined decoding. In the exiting
designs [8], [12], [24], [25] employing synchronous logic
with pipelining, shared resources at specific decoding stages
necessitate duplication to avoid calculation conflicts when
processing multiple codewords concurrently. The number of
repetitions and placement depends on the number of code-
words processed simultaneously. Usually, in combinational
decoder principles, resource sharing becomes unnecessary,
eliminating the need for resource duplication. Instead,
pipelined combinational decoders aim to maximize existing
resources. This is achieved by incorporating storage elements
to capture outputs from smaller combinational decoder
components, and these stored outputs are then repurposed in
decoding subsequent codewords.

As demonstrated in Fig. 4, each block presents a pipelined
combinational decoder, where channel observation LLR
vectors (û1, û2, û3, û4) are saved in the memory units of the
auxiliary registers upon completion of the f -function pruning,
until the time the decoding block completes the second half
(û4, û5, û6, û7) LLR pruning. The decoding schedule for this
pipelined combinational decoder is outlined in Fig. 7.
The decoding expressions for N = 8 are formulated using

the connection of the trellis of the butterfly tree. Suppose in
Fig. 6:

l ′0 = f (l0, l1) , l ′1 = f (l2, l3) ,

l ′2 = f (l4, l5) , l ′3 = f (l6, l7) ,

l ′′4 = g
(
l0, l1, û0 ⊕ û1

)
,

l ′′5 = g
(
l2, l3, û1

)
,

l ′′6 = g
(
l4, l5, û2 ⊕ û3

)
,

l ′′7 = g
(
l6, l7, û3

)
.

The outputs are:

û0 = s
[
f
(
f
(
l ′0, l

′

1
)
, f
(
l ′2, l

′

3
))]

· a0,

û1 = s
[
g
(
f
(
l ′0, l

′

1
)
, f
(
l ′2, l

′

3
)
, û0

)]
· a1,

û2 = s
[
f
(
g
(
l ′0, l

′

1
)
, g
(
l ′2, l

′

3
))]

· a2,

û3 = s
[
g
(
g
(
l ′0, l

′

1
)
, g
(
l ′2, l

′

3
)
, û2

)]
· a3,

û4 = s
[
f
(
f
(
l ′′4 , l ′′5

)
, f
(
l ′′6 , l ′′7

))]
· a4,

û5 = s
[
g
(
f
(
l ′′4 , l ′′5

)
, f
(
l ′′6 , l ′′7

)
, û4

)]
· a5,

û6 = s
[
f
(
g
(
l ′′4 , l ′′5

)
, g
(
l ′′6 , l ′′7

))]
· a6,

û7 = s
[
g
(
g
(
l ′′4 , l ′′5

)
, g
(
l ′′6 , l ′′7

)
, û6

)]
· a7.

When analyzing the scheduling of the butterfly-based
SC decoder for N = 8 shown in Fig. 7, it becomes
evident that pipelined combinational decoders, much like
their non-pipelined counterparts, undertake the decoding
of one codeword within each clock cycle. However, it’s
worth noting that the maximum path delay for a pipelined
combinational decoder with a block length of N is roughly
comparable to the delay of a combinational decoder with a
block length ofN/2. Consequently, the single-stage pipelined

VOLUME 12, 2024 23815

Y. Ali et al.: Efficient Hardware Realization of SC Polar Decoders

FIGURE 5. Implementation of the basic combinational decoder for N=4.

FIGURE 6. Butterfly tree for the decoder of length N = 8.

combinational decoder illustrated in Fig. 6 achieves nearly
twice the throughput of a combinational decoder with an
equivalent block length. However, this increase in throughput
comes at the cost of heightened power consumption and

an upswing in hardware utilization due to the inclusion
of storage elements and the subsequent rise in operational
frequency. The potential to elevate throughput further lies
in expanding the number of pipelining stages and applying

23816 VOLUME 12, 2024

Y. Ali et al.: Efficient Hardware Realization of SC Polar Decoders

similar pipelining techniques to the two combinational
decoders of size N/2.

D. COMPOUND-LOGIC PIPELINED PROCESSING UNIT
In this section, we introduce an architecture that compounds
both synchronous and combinational decoders to execute
decoding operations for constituent codes. In the conven-
tional sequential SC decoding process for polar codes, the
decoder’s speed diminishes as it nears the decision level. This
level involves sequential decision-making and a reduction
in parallel calculations. The compound-logic SC decoder
accelerates on the inherent structure known as Generalized
Concatenated Code (GCC) present in polar codes. This
approach incorporates combinational decoding close to the
decision level, effectively enhancing the efficiency of the SC
decoder. The GCC structure is depicted in Fig. 6, where a
polar code P with a length of N = 8 is composed of two
polar codes, P1 and P2, each having a length of P ′

= N/2.
The dashed boxes within the encoder diagram depict the

component codes P1 and P2 derived from the parent code
P . Input bits for the first and second component codes are
denoted as (u0, u1, u2, u3) and (u4, u5, u6, u7), respectively.
The encoding procedure for P encompasses encoding the
two groups separately using encoders configured for a block
length of 4. This yields coded outputs (x0, x1, x2, x3) and
(x4, x5, x6, x7), correspondingly. In the case of a polar code
with a block length of 8 and a code rate of R = 1/2,
the frozen bits are u0, u1, u2, and u4. Consequently, 3 input
bits of P1 and 1 input bit of P2 are frozen. This results in
P1 being a code with R = 3/4 and frozen bits u0, u1, u2,
while P2 becomes a code with R = 1/4 and frozen bit u0.
The decoding procedure of P follows a reverse path to

its encoding. Fig. 6 provides a depiction of the decoding
tree graph for the block length N = 8. To decode the
component codes P1 and P2, two separate decoding sessions
for block length 4 are required. The LLRs for the input of
the component codes are represented as

(
l ′0, l

′

1, l
′

2, l
′

3

)
and(

l
′′

4 , l
′′

5 , l
′′

6 , l
′′

7

)
. These inputs are computed via operations

at stage 0. The frozen bit indicator vector for P is
a = (0, 0, 0, 1, 0, 1, 1, 1), while for the first and second
component codes, the vectors are (0, 0, 0, 1) and (0, 1, 1, 1),
respectively. Notably, the input to the second decoder block(
l
′′

4 , l
′′

5 , l
′′

6 , l
′′

7

)
is dependent on the decoded outputs ofP1, as g

functions are employed to compute the output based on input
LLRs in conjunction with them.

The dashed boxes depicted in Fig. 6 encompass operations
carried out by a combinational decoder for P ′

= 4, whereas
operations situated outside these boxes are conducted by a
synchronous decoder.

The operational sequence of this integrated logic decoder
works in this manner: Initially, a synchronous decoder
employs channel observation LLRs to calculate intermediate
LLRs at stage 0 without the need for partial sums. Once the
synchronous decoder concludes the calculations for stage 0,
the derived intermediate LLRs are fed into a combinational

decoder designed for block length 4 each. This particular
decoder produces û0, . . . , û3 (representing the decoded bits
of the first component code), prompting the synchronous
decoder to pause for a duration equivalent to the maximum
path delay of the combinational decoder. After this interval,
the deciphered bits are conveyed back to the synchronous
decoder for incorporation into partial sums (û0⊕ û1⊕ û2⊕ û3,
û1 ⊕ û3, û2 ⊕ û3, and û3). Using these partial sums alongside
channel observation LLRs, the synchronous decoder com-
putes intermediate LLRs, forwarding the calculated LLRs
to the combinational decoder. In the combinational decoder,
these LLRs contribute to the decoding of û4, . . . , û7 (decoded
bits of the second component code). The versatility of
the introduced combinational decoder architecture allows
adaptation to various code sets through the utilization of the
frozen bit indicator vector input. This adaptability ensures
that a sole combinational decoder proves adequate for the
comprehensive task of decoding all bits.

While the combinational decoder is operational, the
synchronous decoder remains idle for a duration of TP ′ × fop
clock cycles. Here, fop denotes the operating frequency of
the synchronous decoder, and TP ′ represents the delay of a
combinational decoder for blockP1. The approximate reduc-
tion in latency achieved by the compound-logic decoder,
compared to the corresponding synchronous decoder, can be
estimated as follows:

let LS (P) denote the latency of a synchronous decoder for
block length P . The latency reduction in a single iteration
for a component code of length P1 is given by Lr (P ′) =

LS (P ′) −
(
TP ′ × fop

)
. The latency reduction factor can then

be approximated as

g(P,P ′) ≈
LS (P)

LS (P) −

(
P
P ′

)
× Lr (P ′)

(8)

This latency reduction factor is applied to the throughput
of the synchronous decoder, yielding.

T .put(CL)
(P,P ′) = g(P,P ′) × T .put(S)

(P),

where T .put(S)
(P) and T .put(CL)

(P) represent the throughputs
of the synchronous and compound-logic decoders, respec-
tively.

V. SIMPLIFIED CPPU ARCHITECTURE
A. CPPU BASED DECODER
The architecture of the basic decoder depicted in Fig. 8 is
a basic combinational decoder specifically defined for the
case N = 4. In the aforementioned design framework, the
f and g functions involve operations of sign detection of
LLR from the preceding stage and comparisons of values to
sign detection of LLR at the final stage. Consequently, the
need for additions, subtractions, and auxiliary processes at
the decision stage is eliminated. These modifications resulted
in increasing throughput and more efficient utilization of
hardware resources. In the subsequent sections, we introduce
a refined architecture for the f and g function simplifications

VOLUME 12, 2024 23817

Y. Ali et al.: Efficient Hardware Realization of SC Polar Decoders

FIGURE 7. Scheduling for the butterfly-based SC decoder with N = 8.

within the CPPU framework, employing logic gates to
enhance the efficiency of addition and subtraction operations.

Instead of employing only four individual units for each
LLR input, as illustrated in the basic decoder shown in Fig. 5,
we present a design that introduces twoCPPUs in conjunction
with two comparators and several supplementary logic gates.
To achieve this proposed modification, we can analyze the
fundamental decoder to uncover simplified relationships.
In this context, a(i) signifies the frozen bit at position i
in the array a, s represents the sign function, and f ′ as
well as g′ denote the outcomes of the f and g functions,
respectively. Referring to the expression defined for the basic
combinational decoder, the output of û0 is formulated as
follows:

û0 = s [f (f (l0, l1) , f (l2, l3))] · a(0)

û0 = s [f (s (l0) s (l1)min (|l0| , |l1|) ,

s (l2) s (l3)min (|l2| , |l3|))] · a(0)

û0 = [(s (l0) ⊕ s (l1)) ⊕ (s (l2) ⊕ s (l3))] · a(0)

Taking advantage of the associative property of the XOR
operation, we get,

û0 =
(
s
(
f ′

01
)
⊕ s

(
f ′

23
))

· a(0), (9)

where, s
(
f ′

01

)
= (s (l0) ⊕ s (l3)), and, s

(
f ′

23

)
= (s (l2) ⊕

s (l1)) .

Similarly for û1,

û1 = s
[
g
(
f (l0, l1) , f (l2, l3) , û0

)]
· a(1)

û1 = s [s (l2) s (l3)min (|l2| , |l3|)

+ (−1)û0 · s (l0) s (l1)min (|l0| , |l1|)] · a(1)

û1 = s
(
g
(
f ′

01, f
′

23, û0
))

· a(1)

û1 = s
(
f ′

23 + (−1)û0 · f ′

01

)
· a(1) (10)

A comparator is deployed to compute the smallest
magnitude among

∣∣f ′

01

∣∣ and ∣∣f ′

23

∣∣. Then we received the signal
from comparator S, which is set high when

∣∣f ′

01

∣∣ >
∣∣f ′

23

∣∣.
Taking into account all conceivable combinations:

û1 =

{
s
(
f ′

23
)
· a(1), if S = 0(

û0 ⊕ s
(
f ′

01
))

· a(1), if S = 1

Similarly for û2,

û2 = s
[
f
(
g
(
l0, l1, û0 ⊕ û1

)
, g

(
l2, l3, û1

))]
· a(2)

û2 =
[
s
(
g′

01
(
û0, û1

))
⊕ s

(
g′

23
(
û1
))]

· a(2)

Now,

û3 = s
[
g
(
g
(
l0, l1, û0 ⊕ û1

)
, g

(
l2, l3, û1

)
, û2

)]
· a(3)

To ascertain the sign of this expression, a comparison
between

∣∣g′

01

∣∣ and ∣∣g′

23

∣∣ is required. For this purpose, the
signal S ′ is generated:

û3 =

{
s
(
g′

23
(
û1
))

· a(3), if S ′
= 0[

û2 ⊕ s
(
g′

01
(
û0, û1

))]
· a(3), if S ′

= 1

These simplifications entail manipulation of the LLR’s
sign coming from the preceding operation and utilizing a
comparator to determine the signs of the values at the decision
level. This approach effectively eliminates the requirement
for addition/subtraction operations at the final stage, as well
as their related auxiliary processes. As a result of these
simplifications, decoder latency is reduced, and hardware
resources are better used. In each example, the last stage
combines an AND operation with the associated frozen bit.

B. SIMPLIFIED CPPU
To optimize the hardware efficiency of the CPPU while
accepting a slight extension in the functional path of the g
function, we can simplify the output stages of the CPPU

23818 VOLUME 12, 2024

Y. Ali et al.: Efficient Hardware Realization of SC Polar Decoders

FIGURE 8. Demonstration of the simplified compound pipeline processing decoder for N=4, based on CPPU.

and subsequently implement it with the proposed auxiliary
registers. The streamlined CPPU architecture illustrated in
Fig. 9 comprises four key components: the Comparator
module, Sign Detector, Adder/Subtractor unit, and Saturator.
The role of the Comparator module is to ascertain the
smaller magnitude among two input LLRs and provide it
as Max = max(|X |, |Y |) and Min = min(|X |, |Y |) to the
Adder/Subtractor unit. Additionally, this element computes
the magnitude of the f function, corresponding to the
minimum magnitude between the inputs. It also generates
an internal indicator for the Sign Detector module, signaling
the need for input swapping in situations where the smaller
magnitude is detected. Thus, Sg = S(Y) is valid when |Y | >

|X |, otherwise Sg = S(X). The binary sign function S for LLR
l is S(l) = 0 when, l ≥ 0 and S(l) = 0 otherwise.
The Sign Detector module derives the sign values of

the two potential outcomes of the g function, denoted as
Sg, based on partial sum ŝ. Determination of the sign g
involves considering all feasible combinations of input signs,
magnitudes, and accurate outputs. If S(Y) represents the sign
of the upper CPPU input, S(X) represents the sign of the lower
CPPU input, and Ag is the flag produced by the Comparator
module, Sg is expressed as follows:

Sg = AgS(X) + AgS(Y)

S ′
g = AgS(X) + AgS(Y)

These formulations can be realized using twomultiplexers,
and due to the operation of S ′

g = Sg⊕Ag, one of them can be

replaced with a separate XOR gate, simplifying the hardware
complexity without affecting the effective path of the CPPU.

The g function’s output is determined using a dual set
of multiplexers in a two-step process. These multiplexers
possess two inputs and one output, enabling the selection
of the appropriate computed output value. In the initial
step, a pair of multiplexers with a bit-size of (Q − 1) are
utilized, and their choice signal relies on the signs of the
input LLRs. The ultimate multiplexer, which is Q bits wide,
employs the partial sum ŝ as its selector. For enhanced
hardware design efficiency, these three multiplexers can
be merged into a single stage of simplified multiplexers
within the architecture of a Simplified CPPU (S-CPPU),
as illustrated in Fig. 9. Within this arrangement, the two
multiplexers having (Q − 1) bit quantization, responsible
for determining the magnitude of the g function’s outcome,
are substituted by a solitary multiplexer of (Q − 1) bit
quantization. The connection between the selector signal of
this newly suggested multiplexer and the output of the partial
sum ŝ is forwarded in the form of ŝ ⊕ df . Introducing this
selector signal requires including an XOR gate, which is a
less complex element when contrasted with the multiplexer
it substitutes, even slightly extending the decoding path.
Steering the output’s magnitude is overseen by a multiplexer
of Q bit quantization, whereas in the original CPPU, the
sign is exchanged for a straightforward multiplexer of one-
bit quantization, within the S-CPPU, where this multiplexer
utilizes ŝ as its selector, efficiently providing the precise sign
for the function g.

VOLUME 12, 2024 23819

Y. Ali et al.: Efficient Hardware Realization of SC Polar Decoders

By adopting these simplifications, we have the opportunity
to substitute the multiplexer having quantization of Q bit
& two (Q − 1) bit in the initial CPPU set-up with just a
single multiplexer of (Q − 1) bit, a 1-bit multiplexer, and an
XOR gate within the S-CPPU. However, the S-CPPU brings
about efficiency improvements for decoder implementations
constrained by hardware limitations.

VI. HARDWARE IMPLEMENTATIONS ON FPGA
The hardware realization and synthesis of the proposed
decoder were conducted using the targeted platform of
the Virtex UltraScale - XCVU190 Field Programmable
Gate Array (FPGA). The Virtex UltraScale XCVU190 is
a high-end FPGA manufactured by Xilinx, known for its
high performance and capabilities, and is often used in
applications that require significant parallelism, low latency,
rich resources such as logic elements, and DSP blocks.
The device utilizes a maximum of 5.5 million system
logic cells, employing a 20nm process technology with a
2nd generation 3D integrated circuit design. This design
includes integrated cores for both 100G Ethernet MAC and
150G Interlaken communication protocols. Due to its higher
processing power and parallelism, the Virtex UltraScale
XCVU190 FPGA is likely to exhibit lower latency in polar
code decoding compared to the Intel DE10-Standard used
in [15]. The VHDL language is used, and the decoder was
constructed through a recursive programming approach [43].
The placing and routing are performed by placing logic
elements such as Lookup Tables (LUTs), Flip-Flops (FFs),
and memory blocks onto the target XCVU190 FPGA
and establishing the necessary connections between these
elements to create a functional and efficient digital circuit.
Afterward, synthesis outcomes were obtained using Xilinx
Vivado 2022.2. A demonstration of the implementation
outline of the proposed CPPU-based decoder on the targeted
platform is illustrated in Fig. VI.
In the context of combinational decoders, FFs are

employed tomanage simple logic circuits and retrieve outputs
from memory storage. In the scenario of pipelined decoders,
FFs also play a role in retaining input LLRs and partial
sums that play a crucial part in the decoding process of the
second constituent code. It is evident that the operational
capacity of combinational decoders experiences a substantial
decline in throughput during FPGA implementation. This
reduction is attributable to the significant delays introduced
by routing complexities inherent in the FPGA realization
of combinational decoders, contributing to a substantial
proportion, potentially up to 90%, of the overall delay.
Pipelined combinational decoders can achieve data transfer
rates in the magnitude of gigabits per second, with the
trade-off of employing a greater number of FFs. By intro-
ducing additional pipeline stages, it’s possible to enhance the
throughput, although this comes at the expense of using more
FFs.

The synthesis outcomes for combinational encoder with
different code lengths are presented in Table 1. Resource

TABLE 1. Synthesis outcomes for the encoder on the Xilinx XCVU190
FPGA with varying code lengths N ., where Rgtrs are the registers, and
T .put is the throughput.

consumption is quantified in terms of the necessary Adaptive
Logic Modules (ALMs) and LUTs. The expansion of ALMs
and LUTs follows a nearly linear pattern as the code lengths
increase. The count of 1-bit registers is directly linked to the
input/output storage demands of the encoder. As the hardware
intricacy grows, the highest achievable operational frequency
declines, yet the throughput gets better due to the balancing
impact of larger values of N .

Table 2 displays the synthesis outcomes for the combina-
tional CPPU and its simplified version of CPPU, utilizing
different quantization lengths Q-bits for LLR. Additionally,
in the next column, the table showcases the results of the
CPPUs we designed. This enhancement is attributed to the
synthesis tool’s more effective utilization of available LUTs
within the ALMs when organizing the logic of our designs
for that specific quantization Q, employing functions with
more inputs. The disparity in the count of LUTs between
the original and simplified CPPUs is minimal. However, the
number of ALMs changes based on the chosen Q value.
The throughput results demonstrate negligible differences
when considering maximum frequency values. Notably, it’s
crucial to mention that the logic within the adder and
subtractor block is entirely executed using LUTs. Outcomes
of S-CPPU don’t consistently display resource reductions
compared to the standard design due to the synthesis
procedure and the FPGA’s ALMs and LUTs. Nevertheless,
more favorable outcomes might be anticipated when focusing
on ASICs, where the translation of logic to hardware is more
straightforward.

As detailed in the above sections, the enhancement of a
combinational decoder’s throughput is achievable bymerging
it with a synchronous decoder, leading to an augmentation of
magnitude denoted by g

(
P,P ′

)
as articulated in equation (8).

Within this segment, we deliver analytical computations for
evaluating the throughput of a compound-logic decoder.

Table 3 presents a comparison of the outcomes from the
placing and routing process for the proposed decoder in
comparison with the referred design featuring identical com-
binational architectures. These alternative designs employ the
SM notation for LLRs with quantization kept at 5 bits [13],
[14], [15]. The throughput values we have calculated are

23820 VOLUME 12, 2024

Y. Ali et al.: Efficient Hardware Realization of SC Polar Decoders

FIGURE 9. Simplified compound pipeline processing decoder for N = 2.

FIGURE 10. Implementation outline of the proposed CPPU-based decoder on the targeted platform of Virtex Ultra Scale -
XCVU190 FPGA.

obtained based on the maximum predicted frequencies.
Additionally, it becomes evident that the multiplicative
enhancement escalates proportionally with the growth of the
combinational decoder’s size. The degree of this escalation is
contingent upon the parameter P , as it defines the decoding
stage where the count of constituent computations reduces
below the available hardware resources, instigating a bottle-
neck in throughput. Importantly, it should be emphasized that
the extent of this gain might be more restrained for decoders
that consume fewer clock cycles during the concluding
phases of the decoding trellis. Notably, S-CPPU decoders
demonstrate notable utility, particularly in the context of short
codewords decoding, where a combinational architecture’s

hardware utilization is substantial, and synchronous decoders
entail heightened latency.

A. ASSESSMENT OF THE BIT ERROR RATE
Following the successful implementation of the decoder,
a series of tests were executed to validate the system’s
BER efficiency. Frozen bits were determined based on a
specific signal-to-noise ratio (SNR) relevant to the Additive
White Gaussian Noise (AWGN) channel. These compu-
tations utilized the sequential algorithm and were guided
by the Bhattacharyya parameter in the context of these
tests. Messages were subjected to examination using the
Monte Carlo technique along with Binary Phase Shift Keying

VOLUME 12, 2024 23821

Y. Ali et al.: Efficient Hardware Realization of SC Polar Decoders

TABLE 2. The synthesis outcomes for combinational decoders utilizing
Compound-Logic and S-CPPUs at N = 16 on the designated Xilinx
XCVU190 FPGA platform are compared across various LLR quantization
bit values Q.

(BPSK) modulation. Each received sample, denoted as yi,
underwent a processing procedure to determine the LLRs
obtained from the AWGN channel. This computation was
carried out using the following expressions:

rk = −(2xk − 1) + wk

where, rk represents the received signal sample at time k , xk
is the transmitted bit of the code word at time k . It’s a binary
value (0 or 1) indicating the transmitted symbol. The term
2xk − 1 is a mapping from binary values to −1 or 1, where
2xk − 1 = −1 when xk = 0 and 2xk − 1 = 1 when xk =

1. wk is the noise component added to the received signal.
It represents the effect of noise in the channel.

wk = σ ×∇k

wk is the noise component at time k , σ is the standard
deviation of the noise. It is calculated using the parameters
of the communication system, ∇k is a randomness. This
randomness simulates the noise in the communication
channel.

σ =
1√

2 × R×

(
Eb
N0

) (11)

R is the code rate, Eb/N0 is the per-bit energy to noise
power spectral density ratio. It’s a measure of signal quality.
Finally,

lk (rk) =
2rk
σ 2 = 4rkRc10

SNR
10 (12)

lk (rk) is the LLR associated with the received signal rk ,
essentially comparing the received signal with the expected
noise level.

The SM quantization within S-CPPU utilizing Q = 5 bits
introduces an upper limit to the representation range, leading
to an investigation into performance outcomes for different
bit configurations of the integer i and decimal f in the Qi,f
values. It’s worth noting that when maintaining a constant
Q value, augmenting the integer bits enhances the saturation
limit’s magnitude at the expense of reduced precision. Fig. 11
presents the BER curve for a configuration of N = 128 and
K = 64 within the devised system. This performance

FIGURE 11. Assessing the BER for N = 128 while varying Q(i, f), where Q
comprises an integer component i and a fractional part f .

is compared with software simulations utilizing fixed-point
representations. Optimal quantization is realized through
Q3,1 selection, as it diminishes the likelihood of saturation
occurrences and curtails the potential for LLR saturation as
SNR escalates. On the other hand, if LLR magnitudes are
high, quantifying the integer part with more bits, even at the
cost of resolution, becomes important.

Fig. 12 and Fig. 13 illustrate the BER and FER outcomes
for distinct quantized fixed-point representations, employing
both methods to calculate LLRs. Notably, the conventional
LLR strategy with Q1,3 demonstrates poor performance,
while the BER for the Q3,1 curve closely approximates that
of the estimation of LLR in S-CPPU. The LLR estimation
in S-CPPU is simplified in hardware by obviating the
requirements for measuring channel noise levels. Addition-
ally, a comparison of Equations (11) and (12) reveals that
excluding SNR and code rate from the equation reduces the
computational complexity of this simplified LLR calculation.

Moreover, the integration of the simplified LLR S-CPPU
approach with the Q1,3 representation demonstrates the most
optimal BER performance. Considering that the LLR in
S-CPPU involves a simple multiplication of received samples
by a fixed n for 2n, there is a possibility to significantly reduce
the computational requirements for LLR calculations in both
software and hardware. The enhancements seen in scenarios
with elevated SNR values stem from the insignificance
of noise, thereby favouring heightened resolution over an
extended dynamic range in such contexts.

B. TESTING AND ANALYSIS
For the implementation of the encoder/decoder system and
simulating communication over channels, we utilized the
resource-rich platform of Virtex UltraScale XCVU190. The
FPGA board can then operate autonomously at high speed,
storing results in a file and providing feedback through simple

23822 VOLUME 12, 2024

Y. Ali et al.: Efficient Hardware Realization of SC Polar Decoders

TABLE 3. Comparing the synthesis outcomes for the decoder on the Xilinx XCVU190 FPGA with different FPGAs across various code lengths N and
referencing the relevant works at Q = 5.

FIGURE 12. FER evaluations for N = 128 is examined in relation to
Q(i, f), with Q consists of an integer part i and a decimal part f , and
keeping information bits to 64.

peripherals like LEDs. The processor’s operating frequency
of up to 1GHz and 14,490 Kb of maximum distributed RAM
using the 20nm process technology, encompassing high serial
I/O bandwidth and logic capacity.

When contrasted with the average test cycle duration
per message, which amounts to 300 µs, the encoding
duration of 11.5 ns holds minimal significance. Concerning
the decoder, the effective operational frequency surpasses
the delay estimate of the synthesis tool by nearly twice the
amount. Consequently, the actual throughput achieved by the
decoder exceeds the performance of the comparative study
delineated in Table 3. Moreover, it’s worth emphasizing that
roughly 71% of the designated area resources are utilized for
the encoder and decoder modules, leaving 29% allocated for
the FPGA interfaces and indispensable control logic.

In order to carry out the experimentation, the setup
was tested in a mode where the upper limit of the count
was established through switches available in physical
form, functioning as a frequency splitter. This count was
systematically decreased until instances of decoding errors
became apparent. The testing process was executed under
optimal channel conditions, simulating a high signal-to-
noise ratio (SNR) scenario in an Additive White Gaussian

FIGURE 13. BER evaluations for N = 128 is examined in relation to
Q(i, f), with Q consists of an integer part i and a decimal part f , and
keeping information bits to 64.

Noise (AWGN) channel. By operating the decoder at
lower frequencies, the error correction performance was
assessed across various SNR levels. The outcomes of these
experiments were recorded, revealing a strong alignment
with the simulation results. The frequency divider was then
configured to the maximum clock frequency. The decoder’s
error-correcting performance was tested and graphed against
the maximum frequency to confirm its nominal operation.
When compared to the reference combinational decoder,
the experimentally realized decoder throughput was much
higher, by roughly 17.34%.

To demonstrate the impact of our tree-level CPPU
proposed, we assessed the achieved decoding latency in
terms of processing cycles in Fig. 13. For a fair evaluation,
we employed the proposed pipelined decoder architecture to
assess different decoding strategies. This architecture com-
prises 16 decoding blocks, each equipped with 64 CPPUs,
configured to 1024-bit polar codes. It’s worth noting that
the introduced tree-level CPPU, coupled with single-cycle
CPPU units, significantly contributes to achieving low
latency in SC decoding across various code rates. This
improvement is particularly notable when compared to
serialized algorithms [9] and [15]. The S-CPPU-based design

VOLUME 12, 2024 23823

Y. Ali et al.: Efficient Hardware Realization of SC Polar Decoders

FIGURE 14. Assessments of latency for various SC decoding algorithms
within the pipelined decoder framework, featuring 16 decoding blocks
and 64 CPPUs for N = 1024 length code.

FIGURE 15. Latency Improvement Analysis: Assessing the latency gain
achieved by the proposed decoding algorithms within the pipelined
decoder framework, comparing them with conventional SC decoding,
as well as other referenced parallel and merged decoding methodologies.

goes a step further in reducing decoding cycles by enabling
the concurrent update of partial-sum registers within a single
clock cycle. Consequently, the fully optimized parallel SC
decoder requires only 143 clock cycles to decode a 0.5-rate
1024-bit. This represents a speedup of 17.34 and 1.32 times
compared to conventional SC decoding [15] and our [9],
respectively.

A similar illustration is also depicted in Fig. VI-B,
when compared to the reference combinational decoder, the
experimentally realized decoder throughput has improved by
17.34% compared to work [16].

VII. CONCLUSION
This paper proposes a compound logic and its sim-
plified counterpart SC encoder and decoder architecture
designs. These architectures combine a combinational SC
decoder with a synchronous SC decoder and demon-
strate notable advantages over the conventional sequential
decoding algorithm in terms of low latency and resource
consumption. The proposed approach is implemented on a
designated Xilinx XCVU190 FPGA platform. The synthesis
results reveal that the simplified combinational architectures
are capable of achieving a throughput of approximately

2672 Mbps for a code rate of 24. The architecture’s flexibility
is highlighted as it can incorporate additional pipelining
stages at varying depths to enhance throughput along with
the auxiliary registers. The simplified counterpart reduces
resource requirements for specific LLR quantization, even
with slightly extended latencies, with a notable 17% reduc-
tion in LUTs consumption, particularly significant for the
commonly used 5-bit LLR quantization. Within this com-
pound structure, the combinational part acts as an accelerator
for the synchronous decoder, effectively boosting throughput
while keeping complexity manageable. Compared to the
reference designs, our decoder improves speed by about
17.34% for a 128-bit code length. Resource allocation within
the system is distributed approximately 71% to the encoding
and decoding blocks, with the remaining 29% allocated to the
processor interface and control logic. Experiments evaluating
error-correcting performance emphasize the importance of
LLR quantization and bit arrangements in both conventional
and simplified computational cases.

A prospective avenue for further exploration in our
proposed approach involves the practical implementation of
both the CPPU-based decoder and its simplified counterpart
in a detailed case study application.

REFERENCES
[1] E. Arikan, ‘‘Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels,’’ IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[2] Y. Ren, A. T. Kristensen, Y. Shen, A. Balatsoukas-Stimming, C. Zhang,
and A. Burg, ‘‘A sequence repetition node-based successive cancellation
list decoder for 5G polar codes: Algorithm and implementation,’’ IEEE
Trans. Signal Process., vol. 70, pp. 5592–5607, 2022.

[3] Z. Liu, R. Liu, and H. Zhang, ‘‘High-throughput adaptive list decoding
architecture for polar codes onGPU,’’ IEEE Trans. Signal Process., vol. 70,
pp. 878–889, 2022.

[4] Y. Ali, Y. Xia, L. Ma, and A. Hammad, ‘‘Secure design for cloud
control system against distributed denial of service attack,’’Control Theory
Technol., vol. 16, pp. 14–24, Feb. 2018.

[5] C. Yan, Y. Cui, K. Chen, B. Wu, and W. Liu, ‘‘Hardware efficient
successive-cancellation polar decoders using approximate computing,’’
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 13, no. 1, pp. 189–200,
Mar. 2023.

[6] A. Ç. Arli and O. Gazi, ‘‘A survey on belief propagation decoding of polar
codes,’’ China Commun., vol. 18, no. 8, pp. 133–168, Aug. 2021.

[7] H. Rezaei, N. Rajatheva, and M. Latva-Aho, ‘‘High-throughput rate-
flexible combinational decoders for multi-kernel polar codes,’’ 2023,
arXiv:2301.10445.

[8] O. Dizdar and E. Arikan, ‘‘A high-throughput energy-efficient imple-
mentation of successive cancellation decoder for polar codes using
combinational logic,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63,
no. 3, pp. 436–447, Mar. 2016.

[9] F. Ercan, T. Tonnellier, and W. J. Gross, ‘‘Energy-efficient hardware
architectures for fast polar decoders,’’ IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 67, no. 1, pp. 322–335, Jan. 2020.

[10] C. Xiong, J. Lin, and Z. Yan, ‘‘A multimode area-efficient SCL polar
decoder,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 12,
pp. 3499–3512, Dec. 2016.

[11] I. Tal and A. Vardy, ‘‘List decoding of polar codes,’’ in Proc. IEEE Int.
Symp. Inf. Theory, Jul. 2011, pp. 1–5.

[12] V. Bioglio, C. Condo, and I. Land, ‘‘Design of polar codes in 5G
new radio,’’ IEEE Commun. Surveys Tuts., vol. 23, no. 1, pp. 29–40,
1st Quart., 2021.

[13] S. P. Badar and K. Khanchandani, ‘‘Successive cancellation polar decoder
implementation using processing elements,’’ in Proc. IEEE Region 10
Symp. (TENSYMP), Jul. 2022, pp. 1–6.

23824 VOLUME 12, 2024

Y. Ali et al.: Efficient Hardware Realization of SC Polar Decoders

[14] Y. Fan and C.-y. Tsui, ‘‘An efficient partial-sum network architecture for
semi-parallel polar codes decoder implementation,’’ IEEE Trans. Signal
Process., vol. 62, no. 12, pp. 3165–3179, Jun. 2014.

[15] F. G. Krasser,M. C. Liberatori, L. Coppolillo, L. Arnone, and J. C.Moreira,
‘‘Fast and efficient FPGA implementation of polar codes and soc test
bench,’’Microprocessors Microsyst., vol. 84, Jul. 2021, Art. no. 104264.

[16] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, ‘‘A semi-parallel
successive-cancellation decoder for polar codes,’’ IEEE Trans. Signal
Process., vol. 61, no. 2, pp. 289–299, Jan. 2013.

[17] C. Leroux, A. J. Raymond, G. Sarkis, I. Tal, A. Vardy, and W. J. Gross,
‘‘Hardware implementation of successive-cancellation decoders for polar
codes,’’ J. Signal Process. Syst., vol. 69, pp. 305–315, Dec. 2012.

[18] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, ‘‘Hardware architectures for
successive cancellation decoding of polar codes,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., May 2011, pp. 1665–1668.

[19] B. Yuan and K. K. Parhi, ‘‘Low-latency successive-cancellation polar
decoder architectures using 2-bit decoding,’’ IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 61, no. 4, pp. 1241–1254, Apr. 2014.

[20] G. Sarkis and W. J. Gross, ‘‘Increasing the throughput of polar decoders,’’
IEEE Commun. Lett., vol. 17, no. 4, pp. 725–728, Apr. 2013.

[21] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, ‘‘Fast polar
decoders: Algorithm and implementation,’’ IEEE J. Sel. Areas Commun.,
vol. 32, no. 5, pp. 946–957, May 2014.

[22] P. Giard, A. Balatsoukas-Stimming, G. Sarkis, C. Thibeault, and
W. J. Gross, ‘‘Fast low-complexity decoders for low-rate polar codes,’’
J. Signal Process. Syst., vol. 90, no. 5, pp. 675–685, May 2018.

[23] M. Hanif and M. Ardakani, ‘‘Fast successive-cancellation decoding of
polar codes: Identification and decoding of new nodes,’’ IEEE Commun.
Lett., vol. 21, no. 11, pp. 2360–2363, Nov. 2017.

[24] C. Zhang, J. Yang, X. You, and S. Xu, ‘‘Pipelined implementations of polar
encoder and feed-back part for SC polar decoder,’’ inProc. IEEE Int. Symp.
Circuits Syst. (ISCAS), May 2015, pp. 3032–3035.

[25] E. Arıkan, ‘‘Polar codes: A pipelined implementation,’’ in Proc. 4th Int.
Symp. Broad. Commun. (ISBC), 2010, pp. 11–14.

[26] C. Zhang, B. Yuan, and K. K. Parhi, ‘‘Reduced-latency SC polar decoder
architectures,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2012,
pp. 3471–3475.

[27] A. Alamdar-Yazdi and F. R. Kschischang, ‘‘A simplified successive
cancellation decoder for polar codes,’’ IEEECommun. Lett., vol. 15, no. 12,
pp. 1378–1380, Dec. 2011.

[28] G. Berhault, C. Leroux, C. Jego, and D. Dallet, ‘‘Partial sums generation
architecture for successive cancellation decoding of polar codes,’’ in Proc.
SiPS, Taipei, Taiwan, Oct. 2013, pp. 407–412.

[29] G. Berhault, C. Leroux, C. Jego, and D. Dallet, ‘‘Partial sums computation
in polar codes decoding,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2015, pp. 826–829.

[30] G. Berhault, C. Leorux, and C. Jego, ‘‘Memory requirement reduction
method for successive cancellation decoding of polar codes,’’ J. Signal
Process. Syst., vol. 88, no. 3, pp. 425–438, 2016.

[31] P. Giard, G. Sarkis, and C. Thibeault, ‘‘A 237Gbps unrolled hardware polar
decoder,’’ Electron. Lett., vol. 51, no. 10, pp. 762–763, 2014.

[32] P. Giard, G. Sarkis, and C. Thibeault, ‘‘Multi-mode unrolled hardware
architectures for polar decoders,’’ IEEE Trans. Circuits Syst., vol. 63, no. 9,
pp. 1443–1453, Aug. 2016.

[33] O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, ‘‘A low-complexity
improved successive cancellation decoder for polar codes,’’ in Proc. 48th
Asilomar Conf. Signals, Syst. Comput., Nov. 2014, pp. 2116–2120.

[34] G. Sarkis, I. Tal, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross,
‘‘Flexible and low-complexity encoding and decoding of systematic polar
codes,’’ IEEE Trans. Commun., vol. 64, no. 7, pp. 2732–2745, Jul. 2016.

[35] M. S. Oommen and S. Ravishankar, ‘‘FPGA implementation of an
advanced encoding and decoding architecture of polar codes,’’ in Proc. Int.
Conf. VLSI Syst., Archit., Technol. Appl. (VLSI-SATA), Bangalore, India,
Jan. 2015, pp. 1–6.

[36] K. Niu and K. Chen, ‘‘Stack decoding of polar codes,’’ Electron. Lett.,
vol. 48, no. 12, pp. 695–697, Jun. 2012.

[37] Z. Piao, C.-M. Kim, and J.-G. Chung, ‘‘An efficient list successive
cancellation decoder for polar codes,’’ J. Semiconductor Technol. Sci.,
vol. 16, no. 5, pp. 550–556, Oct. 2016.

[38] C. Xia, J. Chen, Y. Fan, C.-Y. Tsui, J. Jin, H. Shen, and B. Li, ‘‘A high-
throughput architecture of list successive cancellation polar codes decoder
with large list size,’’ IEEE Trans. Signal Process., vol. 66, no. 14,
pp. 3859–3874, Jul. 2018.

[39] B. Le Gal, Y. Delomier, C. Leroux, and C. Jégo, ‘‘Low-latency sorter
architecture for polar codes successive-cancellation-list decoding,’’ in
Proc. IEEE Workshop Signal Process. Syst. (SiPS), Oct. 2020, pp. 1–5.

[40] S. A. Hashemi, M. Mondelli, S. H. Hassani, C. Condo, R. L. Urbanke,
and W. J. Gross, ‘‘Decoder partitioning: Towards practical list decoding
of polar codes,’’ IEEE Trans. Commun., vol. 66, no. 9, pp. 3749–3759,
Sep. 2018.

[41] D. Kim and I.-C. Park, ‘‘A fast successive cancellation list decoder for
polar codes with an early stopping criterion,’’ IEEE Trans. Signal Process.,
vol. 66, no. 18, pp. 4971–4979, Sep. 2018.

[42] X. Dong, R. Liu, and Z. Huang, ‘‘Fast simplified multi-bit successive-
cancellation list decoding of polar codes and implementation,’’ in
Proc. IEEE Int. Symp. Broadband Multimedia Syst. Broadcast. (BMSB),
Jun. 2019, pp. 1–5.

[43] P. Ashenden, ‘‘Recursive and repetitive hardware models in VHDL,’’ Dept.
Elect. Eng. Comput. Sci., Cincinnati Univ., Tech. Rep. TR160/12/93/ECE,
1993.

YASIR ALI received the B.Sc. degree in electrical
engineering (communication) from the Univer-
sity of Engineering and Technology, Peshawar,
Pakistan, and the M.S. degree in control science
and engineering from the School of Automation,
Beijing Institute of Technology, China. He is
currently pursuing the Ph.D. degree in secure and
efficient implementation of the polar decoder. His
current research interests include polar decoding,
cyber-physical system security, and unmanned

aerial vehicles. He received the Best Paper Award 2019 from the Control
Theory and Technology journal (Springer).

YUANQING XIA (Fellow, IEEE) received the
Ph.D. degree in control theory and control
engineering from Beihang University (previously
known as Beijing University of Aeronautics and
Astronautics), Beijing, China, in 2001.

He was a Research Fellow in several academic
institutions, from 2002 to 2008, including the
National University of Singapore and the Uni-
versity of Glamorgan, U.K. Since 2004, he has
been with the Beijing Institute of Technology,

China, where he is currently a Full Professor. He is also the President of
the Zhongyuan University of Technology. His research interests include
cloud control systems, networked control systems, robust control and signal
processing, active disturbance rejection control, and flight control. He is
the Director of the specialized committee on cloud control and decision
of the Chinese Institute of Command and Control (CICC), a member of
the 8th Disciplinary Review Group of the Academic Degrees Committee
of the State Council, a member of the Big Data Expert Committee of the
Chinese Computer Society, and the Vice Chairperson of the Internet of
Things Working Committee of the Chinese Institute of Instrumentation.
He is a Deputy Editor of the Journal of Beijing Institute of Technology,
an Associate Editor of Acta Automatica Sinica, International Journal of
Automation and Computing, Gyroscopy and Navigation, and IET Control
Theory and Applications.

VOLUME 12, 2024 23825

Y. Ali et al.: Efficient Hardware Realization of SC Polar Decoders

TAYYAB MANZOOR received the M.S. degree in
control and signal processing from the University
of Leicester, Leicester, U.K., in 2011, and the
Ph.D. degree in control science and engineering
from the Beijing Institute of Technology, China,
in 2021. From 2011 to 2016, he was a Lecturer
and an Assistant Professor with the University of
South Asia, Lahore, Pakistan, and the Imperial
College of Business Studies. From June 2021 to
December 2023, he was a Postdoctoral Fellow

with the School of Automation Science and Engineering, South China
University of Technology, Guangzhou, China, where his project was directly
funded by the Ministry of Science and Technology of China under the
Foreign Young Talent Program (2022 National Foreign Expert Project). He is
currently a Faculty Member with the School of Automation and Electrical
Engineering, Zhongyuan University of Technology, Zhengzhou, China. His
current research interests include model predictive control, machine learning
techniques, and their applications.

SHAHZAD ALI received the master’s degree in
control theory and control engineering from North
China Electric Power University, Beijing, China,
in 2019. He is currently pursuing the Ph.D. degree
in control science and engineering with the Beijing
Institute of Technology, Beijing. His research
interests include machine learning, load frequency
control, and control algorithms.

MOHAMED ABOUHAWWASH received the
B.Sc. and M.Sc. degrees in statistics and computer
science from Mansoura University, Mansoura,
Egypt, in 2005 and 2011, respectively, and the
joint Ph.D. degree in statistics and computer
science with the Channel Program betweenMichi-
gan State University, East Lansing, MI, USA,
and Mansoura University, in 2015. In 2018,
he was a Visiting Scholar with the Department
of Mathematics and Statistics, Faculty of Science,

Thompson Rivers University, Kamloops, BC, Canada. He is currently with
Michigan State University. He is also an Associate Professor with the
Department of Mathematics, Faculty of Science, Mansoura University. His
current research interests include evolutionary algorithms, machine learning,
image reconstruction, and mathematical optimization. He was a recipient of
the Best Master’s and Ph.D. Thesis Awards from Mansoura University in
2012 and 2018, respectively.

S. S. ASKAR received the B.Sc. degree in
mathematics and the M.Sc. degree in applied
mathematics from Mansoura University, Egypt, in
1998 and 2004, respectively, and the Ph.D. degree
in operation research from Cranfield University,
U.K., in 2011. In 2012, he joined King Saud
University, where he is currently a Professor
with the Department of Statistics and Operation
Research. Since 2016, he has been an Associate
Professor with Mansoura University. His research

interests include game theory and its applications, including mathematical
economy, dynamical systems, and network analysis.

AMIT KRISHAN KUMAR (Member, IEEE)
received the Ph.D. degree in control science
and engineering from the Beijing Institute of
Technology, Beijing, China, and the M.Sc. degree
in engineering from The University of the South
Pacific, Suva, Fiji. His research interests include
pattern recognition, clustering, computer vision,
respiratory systems modeling, quantum theories,
cymatics, and bimodal intelligent systems that
apply to health care, water purification, data

science, and system optimization.

RUIFENG MA received the B.S. degree from
Shandong University, in 2021. He is currently pur-
suing the M.S. degree with the Beijing Institute of
Technology. His research interests include cloud-
native technology, cloud resource management,
and machine-learning operations.

23826 VOLUME 12, 2024

