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ABSTRACT In this paper, we propose two different methods for time-domain finite-difference analysis of
uniform temporally and spatially dispersive metasurfaces using their zero-thickness sheet representations
using the Generalized Sheet Transition Conditions (GSTCs). Metasurfaces are described here using their
effective surface susceptibilities which are assumed to exhibit Lorentzian temporal dispersion characteristics.
For both methods, the spatial dispersion of the surface susceptibilities (i.e., their dependence on the angle
of incidence) are represented using the extended GSTCs presented in Rahmeier et al. (2023), Smy et al.
(2023), and Dugan et al. (2023). However, the first method takes advantage of a polynomial expansion
of the angle-dependent surface susceptibilities in terms of the transverse wavevector to implement spatial
derivatives of the electric and magnetic polarization as well as the average field on the surface, leading to a
coupled set of field equations encompassing the entire surface. Limitations for this method are presented
in terms of poor conditioning for a coupled system of equations and an inconvenient extension to the
higher-order expansion of the susceptibility terms. The second method lifts these limitations by solving the
spatial dispersion problem in the spatial frequency domain at every time step. Both methods are validated
for custom Lorentzian models and two canonical physical cells while comparing their transmission and
reflection coefficients with analytical results.

INDEX TERMS Electromagnetic metasurfaces, electromagnetic propagation, finite-difference time-
domain, generalized sheet transition conditions (GSTCs), Lorentz oscillator model, spatial dispersion, spatial
frequency domain, surface susceptibility tensors.

I. INTRODUCTION
More recently, metasurfaces, which are arrays of sub-
wavelength arrays of resonating structures, have received
a lot of attention since they are capable of presenting
electromagnetic characteristics not available from simple
material interfaces and surfaces [4]. Therefore enabling the
design of exotic functionalities like electromagnetic cloaking
and holography [5], [6], besides being used for beam shaping
and improving the performance of antenna designs [7],
among others. The broadband scattered field computation and
analysis of resonant metasurfaces is a multi-scale problem as
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the resonant structures themselves are sub-wavelength, while
the overall metasurface is typically orders of wavelength in
size. To reduce the computational complexity of brute-force
simulations of metasurfaces, a compact zero-thickness sheet
model based on Generalized Sheet Transition Conditions
(GSTCs) has recently become popular, where themetasurface
is instead described in terms of their constitutive parameters
using their homogenized effective surface susceptibilities,
¯̄χ . By sacrificing the microscopic field characteristics, the
zero-thickness sheet model greatly simplifies the computa-
tion of macroscopic scattered fields.

Due to resonant characteristics of the underlying res-
onators forming the surface, typical metasurfaces are intrin-
sically temporally dispersive, i.e., ¯̄χ (ω). Moreover, for a
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general metasurface, these effective surface susceptibilities
may also be spatially dispersive (or non-local), where their
constitutive parameters are also functions of the angle
of plane-wave incidences (related to the transverse wave-
vector k∥), i.e. ¯̄χ (ω, k∥). Therefore, due to the interaction
of broadband incident signals with dispersive metasurfaces,
the scattered time-domain waveforms are distorted in both
time and space, and these interactions are thus natu-
rally captured using time-domain analysis, typically imple-
mented using the Finite-Difference Time-Domain (FDTD)
technique.

Finite-Difference Time-Domain (FDTD) is a widely used
numerical technique for simulating electromagnetic wave
propagation and interactions in various media [8]. FDTD
discretizes both the spatial and temporal domains of the elec-
tromagnetic field equations into finite differences, allowing
for the efficient and accurate simulation of complex wave
phenomena. By discretizing space and time with the Yee
cell, the FDTD method becomes a versatile tool for solving
Maxwell’s equations without the need for complex meshes
or grid structures. Despite its advantages, the Yee cell does
have limitations, particularly in dealing with structures that
involve small geometric features compared to thewavelength,
where the Yee cell resolution may become impractically
large. Nevertheless, over the years, various extensions and
adaptations of the original FDTD method, such as the
introduction of higher-order Yee cells or hybrid approaches
with other numerical techniques, have been developed to
address these challenges and further expand the method’s
applicability to a wide array of electromagnetic problems [9],
[10], [11].

Several works have been reported in the literature on
FDTD analysis if metasurfaces, particularly using their
zero-thickness sheet representation via the GSTCs. In [13],
the GSTCs were introduced to the FDTD scheme via
electric current densities source terms in the curl equations
for non-dispersive real-valued electric susceptibilities. Other
non-dispersive implementations are presented in [14], [15],
and [16]. In [17], Smy and Gupta introduced an explicit
time-dispersive model where the electric and magnetic
surface susceptibilities were described using the Lorentz
model to take into account the temporal dispersion charac-
teristics of the metasurface unit cell. In [18], authors used
a rational polynomial in the temporal frequency domain to
represent temporal dispersion of the surface susceptibilities
and then incorporated that representation in a piece-wise
linear recursive convolution method. They evaluate the
surface polarizations inside an explicit method to solve the
GSTCs within a regular Yee-cell-based FDTD solver. More
recently, an explicit Drude dispersive model was presented
in [19] and an implicit Lorentz model in [12] that was later
extended for time-modulated metasurfaces in [20]. Authors
in [21] presented a vector fitting procedure to represent a
multi-Lorentz susceptibility form in an explicit GSTC-FDTD
solver.

However, all these recent works only modeled the tempo-
rally dispersive nature of the resonating structures composing
the metasurfaces, while assuming a local response, point
by point, along the surface, i.e. non-spatially dispersive
metasurface. In such a description, the surface susceptibilities
terms are functions of the temporal frequency but represent
a delta function in terms of the spatial frequency domain
and are implicitly independent of the angle of incidence of
the exciting fields. These approaches may be sufficient only
if the resonator unit cells of the metasurfaces are deeply
sub-wavelength and can be represented by angle-independent
effective surface susceptibilities.

More recently, the works presented in [1], [2], and [3]
showed that the constitutive parameters of the resonating cells
can also change with respect to the transverse wavevector,
k∥ i.e., the angle of incidence of the interacting fields at
the surface, especially in cases where the periodicity of the
cell is not deep sub-wavelength (> λ/5, as a current rule
of thumb) and close to the diffraction limit of λ/2. Thus,
the surface susceptibilities ended up being dependent on the
spatial frequency, which corresponds to a general non-local
response of the cell. As part of those works, a Boundary
Element method (BEM)was developed for frequency domain
analysis of uniform and non-uniform, periodic and finite,
flat and curved spatially dispersive metasurfaces. However,
to the best of our knowledge, no GSTC-FDTD method in the
literature models spatially dispersive metasurfaces.

Therefore, in this work, we present, for the first time,
a GSTC-FDTD-SD framework that can simultaneously
incorporate both time- and space-dispersive (i.e., TD and SD)
susceptibilities. We start describing the GSTC-FDTD-TDSD
method for a uniform mono-anisotropic metasurface with
electric and magnetic tangential susceptibilities under TE
incidence, for simplicity and base the framework on the time-
dispersive tight-asymmetric cell of [12] and the extended
GSTCs of [1]. We validate the methodology by comparing
the reflection and transmission phases and magnitudes with
their analytical solution for a custom temporally and spatially
dispersive electric and magnetic Lorentzian response. Then,
we present a few limitations of this method and proceed with
an improved mixed Finite-Difference Time-Domain/Spatial-
Frequency-Domain (Mixed GSTC-FDTD-TDSD) method
that solves the GSTC implicit problem in the spatial
frequency domain at each time step. This version of the
method shows improved accuracy and amore straightforward
form to incorporate higher-order terms in the polynomial
expansion of the Lorentz parameters with respect to the
transverse wavevector. Finally, the methodology is further
validated using data extracted from two practical unit cell
structures: the wire dipole cell and the dielectric puck
Huygens’ unit cell presented in [1].

II. STANDARD 2D-FDTD METHOD
Initially, we define the system setup of a standard Yee cell
2D-FDTD region and a coordinate system. Propagation will
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FIGURE 1. Definition of (a) the simulation setup, (b) field nodes in the regular Yee cell, and (c) field nodes in the tight asymmetric cell from [12]. Ey
components are represented by the red circles, Hx by the blue circles, and Hz by the green circles. Index i and k correspond to the x and z location of
the Yee cells. The index ks corresponds to the placement of the surface between Hx nodes at ks and the Ey node at ks + 1. Virtual nodes are created
for Ey at the left of the surface (s−) and Hx on the right of the surface (s+).

happen in the x−z planewith the angle of incidence, θ defined
with respect to the z-axis. At the edges of the z-axis, we have
convolutional perfectly matched layers (CPML) as absorbing
boundary conditions, and at the edges of the x-axis, we have
periodic boundary conditions (PBC). The overall simulation
setup can be seen in Fig. 1(a).
The 2D-FDTD method is developed in Matlab using the

standard FDTD equations and boundary conditions provided
in [22] and [23]. For a solution in 2D with TE excitation,
we are going to consider Hx , Ey, and Hz field components
with no variation along the y direction, for simplicity. Hence,
Maxwell’s curl equations in free space with no impressed
current sources are

∂Ey
∂t

=
1
ϵ0

(
∂Hx
∂z

−
∂Hz
∂x

)
(1a)

∂Hx
∂t

=
1
µ0

∂Ey
∂z

(1b)

∂Hz
∂t

= −
1
µ0

∂Ey
∂x

. (1c)

This set of equations can be discretized using regular
Yee-cells shown in Fig. 1(b) whose finite difference form
using Forward Euler for time derivatives and space deriva-
tives in E and Backward Euler for space derivatives in H , as

Ey|
n+1
i,k = Ey|ni,k +

1t
ϵ01z

(
Hx |

n+ 1
2

i,k − Hx |
n+ 1

2
i,k−1

)
−

1t
ϵ01x

(
Hz|

n+ 1
2

i,k − Hz|
n+ 1

2
i−1,k

)
(2a)

Hx |
n+ 1

2
i,k = Hx |

n− 1
2

i,k +
1t
µ01z

(
Ey|ni,k+1 − Ey|ni,k

)
(2b)

Hz|
n+ 1

2
i,k = Hz|

n− 1
2

i,k +
1t
µ01x

(
Ey|ni+1,k − Ey|ni,k

)
, (2c)

where ϵ0 is the free space permittivity, µ0 is the free space
permeability,1t is the time step, and1x and1z are the space
steps along the x and z directions, respectively, while the
space indices i and k are used to index the respective Yee-cells

while keeping the physical half space step different between
E andH field. Using the leap-frog approach, the fields can be
updated by first computing H values at half-time steps with
past values of E and then proceeding with E field calculations
at integer time steps using past values of H .

III. TIME-DOMAIN GENERALIZED SHEET TRANSITION
CONDITIONS
The generalized sheet transition conditions (GSTC) rely
on the zero thickness model presented by Idemen in [24].
Assuming the surface normal to be n̂ = ẑ, parallel directions
x̂ and ŷ and the transverse gradient operator as ∇∥ =

[ ∂
∂x ,

∂
∂y , 0], we can then, write the GSTC’s as follows:

ẑ ×1H =
∂P∥

∂t
− ẑ × ∇∥Mz (3a)

ẑ ×1E = −µ0
∂M∥

∂t
− ẑ × ∇∥

(
Pz
ϵ0

)
, (3b)

where E = [Ex , Ey, Ez]T and H = [Hx , Hy, Hz]T are the
fields interacting with the surface, P = [Px , Py, Pz]T and
M = [Mx , My, Mz]T are the surface electric and magnetic
polarizations, and 1ψ = ψt − ψi − ψr is the difference
operator with ψ ∈ {E,H} and {i, t, r} corresponding to
the incident, reflect and transmitted field at the surface,
respectively. Evaluation of (3), leads to

[
−1Hy
1Hx

]
=


∂Px
∂t

+
∂Mz

∂y
∂Py
∂t

−
∂Mz

∂x

 (4a)

[
−1Ey
1Ex

]
=

−µ0
∂Mx

∂t
+
∂

∂y

(
Pz
ϵ0

)
−µ0

∂My

∂t
−
∂

∂x

(
Pz
ϵ0

)
 , (4b)

which represents the GSTCs in the time domain, relating the
difference in the transverse fields with time-derivatives of the

VOLUME 12, 2024 22559



J. G. N. Rahmeier et al.: Time-Domain Analysis of Temporally and Spatially Dispersive Metasurfaces

tangential surface polarization and transverse spatial deriva-
tives of the normal components of the surface polarizations.
Moreover, the surface polarization terms at the surface for a
non-local, temporally and spatially dispersive response can be
related to the average fields on the surface using the following
convolutional constitutive relations [1],

P = ϵ0χee ∗ Eav +
1
c0
χem ∗ Hav

M = χmm ∗ Hav +
1
η0
χme ∗ Eav,

where ψav = (ψi + ψr + ψt )/2 is the average fields on the
surface and χab with {a, b} ∈ (e,m) correspond to the surface
susceptibility tensors,

χee =

χxxee χ
xy
ee χxzee

χ
yx
ee χ

yy
ee χ

yz
ee

χ zxee χ
zy
ee χ zzee

 ,

χem =

χxxem χ
xy
em χxzem

χ
yx
em χ

yy
em χ

yz
em

χ zxem χ
zy
em χ zzem


χmm =

χxxmm χ
xy
mm χxzmm

χ
yx
mm χ

yy
mm χ

yz
mm

χ zxmm χ
zy
mm χ zzmm

 ,

χme =

χxxme χ
xy
me χxzme

χ
yx
me χ

yy
me χ

yz
em

χ zxme χ
zy
me χ zzme

 .

For simplicity and without loss of generality in the
upcoming derivations and methods, we are going to consider
the case of a monoanistropic surface with no normal
components under TE excitation. Therefore, simplifying the
GSTCs and constitutive relations to the following

1Ey = µ0
∂Mx

∂t
, Mx = χxxmm ∗ Hx,av

1Hx =
∂Py
∂t
, Py = ϵ0χ

yy
ee ∗ Ey,av.

Consider now that this zero-thickness surface is placed
between nodes ks and ks + 1 in the Yee-cell, as shown in
Fig. 1(c). Following the tight-asymmetric (TA) cell scheme
in [12], virtual surface nodes, Ey|i,s− , Hx |i,s+ and Hz|i,s−
are inserted right before and after the surface so that
Maxwell’s curl equations can be evaluated for bulk field
nodes interacting with the surface field nodes. Following
this discretization scheme, difference and average fields are
defined as

1Ey → Ey|i,ks+1 − Ey|i,s−

1Hy→ Hx |i,s+ − Hx |i,ks

Ey,av →
Ey|i,ks+1 + Ey|i,s−

2

Hx,av→
Hx |i,s+ + Hx |i,ks

2
.

For the case of a monoanisotropic metasurface, under
TE oblique incidence, the tangential electric and magnetic

susceptibilities can be obtained from full-wave simulation
according to [25],

χ̃ee(kx = k0 sin θ ) =
2j cos θ
k0

(
R+ T − 1
T +R+ 1

)
(5a)

χ̃mm(kx = k0 sin θ ) =
2j

k0 cos θ

(
R− T + 1
R− T − 1

)
. (5b)

where k0 is the free space wavenumber and R and T
are the reflection and transmission coefficients for a given
frequency and angle of incidence. From (5), we can
obtain the reflection and transmission as a function of the
susceptibilities according to,

R =
2jk0{cos θ2χxxmm − χ

yy
ee }

{jk0χ
yy
ee + 2 cos θ}{jk0 cos θχxxmm + 2}

(6a)

T =
cos θ [4 + k20χ

xx
mmχ

yy
ee ]

{jk0χ
yy
ee + 2 cos θ}{jk0 cos θχxxmm + 2}

. (6b)

Thus, completing the set of equations that form the
background required for constructing temporal and spatial
dispersion in the GSTC-FDTD methods in the subsequent
sections.

IV. LORENTZIAN TEMPORAL AND SPATIAL DISPERSION
METHOD (GSTC-FDTD-TDSD)
A. METHOD FORMULATION
Let us start with the implicit method in the time and
space domain, referred to in this work as GSTC-FDTD-
TDSD. The polarization at the metasurface can be described
as a summation of polarization components based on the
susceptibilities excited. For instance, the tangentialPy andMx
components can be described as

Py = Pyxee + Pyyee + Pyzee + Pyxem + Pyyem + Pyzem
Mx = M xx

mm +M xy
mm +M xz

mm +M xx
me +M xy

me +M xz
me.

Time and spatial dispersion can be incorporated for each
one of these terms using the extended Lorentz model [1],

∂2Pyy
ee

∂t2
+ γ (kx)

∂Pyy
ee

∂t
+ ω2

0(kx)P
yy
ee = ϵ0ω

2
p(kx)Ey,av, (7)

where kx is the transverse wavenumber and

γ = α0 + α1kx + α2k2x + O(knx ) (8a)

ω2
p = β20 + β1kx + β2k2x + O(knx ) (8b)

ω2
0 = ζ 20 + ζ1kx + ζ2k2x + O(knx ), (8c)

is the polynomial expansion of the Lorentz parameters in the
spatial frequency domain, referred to as the extended Lorentz
parameters.

Let us now consider the uniform monoanisotropic TE case
with only tangential electric and magnetic polarization terms
Pyyee and M xx

mm described by tangential electric and magnetic
susceptibilities χyyee and χxxmm, respectively. For a compact
notation, let us write Pyyee → Py andM xx

mm → Mx .
Assuming without loss of generality, a symmetric spatial

response in (8) (even powers of kx) for terms up to second-
order. We obtain for the description of an extended Lorentz
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oscillator model associated with, for example, the electric
polarization in the time and space domain as,

∂2Py
∂t2

+

(
α0,e − α2,e

∂2

∂x2

)
∂Py
∂t

+

(
ζ 20,e − ζ2,e

∂2

∂x2

)
Py

= ϵ0

(
β20,e − β2,e

∂2

∂x2

)
Ey,av. (9)

where the second subscript ‘‘e’’ on the Lorentz parameters
specifies values associated with the electric polarization.

Next, for improved numerical accuracy let us consider
first-order time and space derivatives only, by adding
auxiliary differential equations (ADEs). Considering the
tight-asymmetric (TA) cell with the TEGSTCs and tangential
susceptibility only, the resulting system of equations is then
comprised of: 1) a set of equations describing the electric
polarization from (9) using a first order construction,

∂Pt
′

y

∂t
+ α0,ePt

′

y − α2,e
∂

∂x
Pt

′x ′

y + ζ 20,ePy (10a)

−ζ2,e
∂

∂x
Px

′

y = ϵ0

(
β20,eEy,av − β2,e

∂

∂x
Ex

′

y,av

)
,

Pt
′

y −
∂Py
∂t

= 0, Pt
′x ′

y −
∂Pt

′

y

∂x
= 0 (10b)

Px
′

y −
∂Py
∂x

= 0, Ex
′

y,av −
∂Ey,av
∂x

= 0; (10c)

2) a complimentary set of equations for the magnetic
polarization,

∂M t ′
x

∂t
+ α0,mM t ′

x − α2,m
∂

∂x
M t ′x ′

x + ζ 20,mMx (10d)

−ζ2,m
∂

∂x
M x ′

x = ϵ0

(
β20,mHx,av − β2,m

∂

∂x
H x ′

x,av

)
M t ′
x −

∂Mx

∂t
= 0, M t ′x ′

x −
∂M t ′

x

∂x
= 0 (10e)

M x ′

x −
∂Mx

∂x
= 0, H x ′

x,av −
∂Hx,av
∂x

= 0; (10f)

and, finally, 3) four equations describing the field updates for
the special cells and the GSTCs,

−1Ey = −
∂Mx

∂t
,

∂Ey
∂t

=
1
ϵ0

(
∂Hx
∂z

−
∂Hz
∂x

)
(10g)

1Hx =
∂Py
∂t
,

∂Hx
∂t

=
1
µ0

∂Ey
∂z
. (10h)

One important difference compared to the temporal-
dispersive-only case in [12] is that now, due to spatial
dispersion, we have to solve a coupled system of equations,
where all points along the surface must be solved at the
same time self-consistently. A second consideration about the
system of equations in (10) is that the number of additional
ADEs (unknowns) is equal to nd − 1 for each of the
polynomials in (8), where nd is the highest-order derivative in
each of the extended Lorentz terms. In the current example,
since all the terms are expanded up to the second order, there
are three additional ADEs (variables) for each polarization
term.

TABLE 1. Case 1: Custom TDSD Electric Susceptibility Parameters.

TABLE 2. Case 2: Custom TDSD Electric and Magnetic Susceptibility
Parameters.

Discretizing (10) using Forward-Euler for time deriva-
tives and spatial Forward-Euler for E and P and spatial
Backward-Euler for H and M terms results in the system of
equations (S1) in Supplementary Material S1. Equation (S1)
is defined for a given cell i along the surface, where boxed
terms correspond to unknowns to be determined and are
summarized in the following X vector

X|
n+1
i =

[
Ey|

n+1
i,ks+1 Ey|

n+1
i,s− Hx |

n+ 1
2

i,s+ Hx |
n+ 1

2
i,ks

Pt
′

y |
n+1
i Py|

n+1
i Pt

′x ′

y |
n+1
i Px

′

y |
n+1
i

Ex
′

y,av|
n+1
i M t ′

x |
n+ 1

2
i Mx |

n+ 1
2

i

M t ′x ′

x |
n+ 1

2
i M x ′

x |
n+ 1

2
i H x ′

x,av|
n+ 1

2
i

]T
.

(11)

Moreover, for each cell, the complete set of equations,
considering the spatial coupling due to spatial dispersion,
is represented as

[
A|

n+1
i,i−1 A|

n+1
i A|

n+1
i,i+1

] X|
n+1
i−1

X|
n+1
i

X|
n+1
i+1


=

[
B|

n
i,i−1 B|

n
i B|

n
i,i+1

] X|
n
i−1

X|
n
i

X|
n
i+1

 + C|
n
i , (12)

where A are the coefficient matrices, B are the forcing
term matrices that depend on past values of the unknowns
in X, and C matrices are forcing terms that depend on
field terms not part of the unknowns. Each entry within
these matrices is presented in Supplementary Material S2 in
equations (S2-S8).

After these matrices have been computed for every point
on the surface, they need to be assembled in the coupled
system of equations for a consistent solution. The final
coupled system of equations takes the matrix form shown
in (14), bottom of page 7, assuming periodic boundary
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FIGURE 2. (a) Analytical comparison of transmission and reflection magnitudes (dB) and phases (deg) for a uniform metasurface made of a
custom electric susceptibility function defined by the parameters in Tab 1. The top panels show the analytical data for time dispersive
susceptibility (χ(ω)), and the bottom panels show data for a time and space dispersive scenario (χ(ω, kx )). (b) Transmission and reflection
where solid lines are analytical data obtained from (6), and marked dot-dashed lines are the results obtained from the GSTC-FDTD-TDSD
algorithm. Line markers denote the angle of incidence. Arrow insets show the maximum absolute error. (c) The amplitude of the real part of
the electric field over time. Image panels show field snapshots over the simulation region for three different angles of incidence and three
different time instants. The insets show the source plane location (white solid line), the metasurface location (white dashed line), and the
location of the reflection and transmission point monitors (white ‘x’ markers).

conditions at the end of the surface along the x-direction, with
special attention to C|

n
1 and C|

n
nx+1 regarding the periodic

boundary conditions, as shown in Eq. (13), bottom of the next
page.
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The solution at each time step n1t is obtained through the
following steps:

1) Update bulk H nodes using regular Yee-cell update
equations;

2) Solve for the unknowns in (14);
3) Update the remaining bulk E nodes using regular Yee

cell update equations.

B. NUMERICAL DEMONSTRATIONS
For testing the proposed method, we present two simulation
cases inside the simulation setup of Fig. 1(a). The first one
consists of a single tangential TDSD electric susceptibility
case with no magnetic response, and the second case is
that of both electric and magnetic surface susceptibility
in a Huygens’ configuration. For simplicity, these choices
of susceptibilities attempt to approximate a single dipole
dispersive cell and a Huygens structure that, as shown in [1],
may require terms up to the sixth-order in k∥. A more
practical scenario will be presented in Sec. V with a more
robust implementation of the GSTC-FDTD method that
easily supports higher-order terms.

The extended Lorentz parameters for the first case are
presented in Tab. 1, consisting of terms up to the second-order
in the polynomial representation of (8).
The simulation setup consists of a 2.5 × 2.5 µm region

with the metasurface placed at z = 1.25 µm. The region
is terminated with CPMLs along the z direction and PBCs
along the x direction. Simulation parameters are: 1x =

1z = 12.5 nm (λ0/98), 1t = 14.74 as (Courant stability
factor of 1/2) running for a total of 700 fs. The source is
a Gaussian pulsed plane wave, centered at 245 THz, with

a bandwidth of 10 THz and angle of incidence varying
from 0◦ to 60◦, and placed at z = 0.75 µm. The angle
is limited to up to 60◦ to avoid disturbances caused by the
constant phase shift imposed by the PBCs. The reflected and
transmitted fields are measured at 21z away from the source,
in free space, within bulk Yee-cells, and their spectrum is
de-embedded to the face of the metasurface. Time monitors
in the reflection region measure both incident and reflected
fields.

Results for Case 1 are shown in Fig. 2. Figure 2 (a) shows
two rows of panels representing analytical transmission
and reflection data for a case of time dispersion only
(top row), where the susceptibility is taken to be constant
(kx = 0) across different angles of incidence (θ) and a
second case, with time and space dispersion (TDSD), where
now the electric susceptibility is varying according to the
coefficients shown in 1. It is clear that for this custom
case, SD becomes important for the correct description of
T and R. Moreover, Fig. 2 (b) compares the results of
the GSTC-FDTD-TDSD method with analytical analytical
results obtained from (6). One of the clear characteristics is
the location of the deep minimum in transmission shifting
from 240 THz to 250 THz as ζ2 up-shifts the location of
the Lorentz resonance as the angle of incidence increases.
Insets show maximum absolute errors of 1.53 dB and 7.4◦

for magnitude and phase, respectively. Figure 2(c) shows
snapshots of the real part of the electric field for different
angles of incidence over the simulation region, and the
corresponding temporal waveforms in the transmission and
reflection regions, showing strong temporal distortion and
broadening.
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Case 2 consists of a case where both tangential TDSD
electric and magnetic susceptibility parameters are equal
at all angles, resembling a Huygens cell characterized
by co-located orthogonal electric and magnetic resonance
responses [7], [26], [27]. The parameters are presented in
Tab. 2. The simulation setup is the same as that of Case 1,
and results are shown in Fig. 3. Figure 3(a) shows the
comparison between constant susceptibilities across angles
of incidence in the top row and their SD counterpart in
the bottom row. The effects of SD are clearly depicted
by the huge differences in the T and R profiles compared
to the time-dispersive-only case. In Fig. 3(b), we observe a
good match between the GSTC-FDTD-TDSD method and
the analytical results from (6) for various incidence angles.
Insets show maximum absolute errors of 1.6 dB and 17◦

for magnitude and phase, respectively, closer to the edges
of the characterization bandwidth. In this case, the surface
becomes more transmissive (or better matched) at oblique
angles due to optimum interactions of collocated electric and
magnetic resonances. However, the response still presents
a spatially dispersive profile controlled by the higher-order
terms in kx and manifesting as variation with the angle of
incidence. This phenomenon is also depicted in the field plots
over time and angle of Fig. 3(c), where the transmitted fields
present a lower amplitude at 20◦ compared to higher angles.
These two examples thus successfully illustrate the proposed
GSTC-FDTD platform with TD-SD incorporated, along with
the importance of including SD in the analysis compared to a
purely non-SD case.

So far, the cases analyzed were limited to second-order
terms in kx , which produces second-order derivatives in (9).
General metasurface unit cells may require higher order
dependence of surface susceptibilities on the incidence angles
or equivalently on kx . In those cases, a need for higher-
order terms would require the extension of the system of
coupled equations. This is a main drawback of this method;
if higher-order terms are required, the whole system of
equations becomes larger, new ADEs must be added, and
the condition of the matrix A in (14) (a measurement of
how sensitive the matrix is to changes in the input data and
roundoff errors in the solution process [28]), increases by
several orders of magnitude, even after performing matrix
scaling and permutation [29], [30]. This can lead to close
to singular matrices or even cases where solutions might
diverge. As an approach to solve this limitation and make the
method easier to expand for higher-order terms in kx , in the
next section, we propose a Mixed GSTC-FDTD-TDSD that
solves (10) in the spatial frequency domain at each time-step.

V. MIXED FINITE-DIFFERENCES
SPATIAL-FREQUENCY/TIME-DOMAIN METHOD
As mentioned in the previous section, for the solution of (10)
for higher-order terms in kx and even larger surfaces, it was
observed that A in (14) can become badly conditioned,
making the solution unstable, and very sensitive to small
changes in the Lorentz parameters and roundoff errors

during the solution process. As an attempt to improve
these issues, we present in this section a mixed finite
differences spatial-frequency/time-domain method (Mixed
GSTC-FDTD-TDSD) that solves the surface equations (10)
in the spatial frequency domain at every time step.

We start by converting (10) to the spatial frequency domain
using the spatial Fourier transform along the surface direction
(i.e., x dimension). The spatial derivatives are no longer
needed explicitly as they can be replaced in the spatial
frequency domain by a kx factor. We thus obtain a reduced
set of equations defining the polarizations,

∂M′
x

∂t
+ γm(kx)M′

x + ω2
0,m(kx)Mx

= µ0ω
2
p,m(kx)Hx,av

∂P ′
y

∂t
+ γe(kx)P ′

y + ω2
0,e(kx)Py

= ϵ0ω
2
p.e(kx)Ey,av

P ′
y −

∂Py
∂t

= 0, M′
x −

∂Mx

∂t
= 0, (15a)

and the GSTCs and surface fields,

−1Ey = −
∂Mx

∂t
,

∂Ey
∂t

=
1
ϵ0

(
∂Hx

∂z
− jkxHz

)
1Hx =

∂Py
∂t
,

∂Hx

∂t
=

1
µ0

∂Ey
∂z
, (15b)

where calligraphic quantities correspond to the spatial
frequency representatives of their spatial field counterparts
(i.e., E → E). Equation (16), as shown at the bottom
of page 10, is the discretized version of (15) using FE for
time derivatives, BE for z-space derivatives onHx and FE for
z-space derivatives on Ey.
The physical cells in [1] contain constant electric polariza-

tion terms, Py,0 andMx,0 that are independent of the Lorentz
oscillator model and can be added using superposition to the
total polarization terms, Py and Mx ,

Py = Py,L + Py,0
Mx = Mx,L +Mx,0.

The two non-dispersive terms are then related to the average
fields on the surface using standard constitutive relations,

Py,0 = ϵ0χ
yy
ee,0Ey,av

Mx,0 = µ0χ
xx
mm,0Hx,av,

which conforms to the following discretized scheme:

Py,0|n+1
i = ϵ0χ

yy
ee,0

Ey|n+1
i,ks+1 + Ey|n+1

i,s−

2

Mx,0|
n+ 1

2
i = µ0χ

xx
mm,0

Hx |
n+ 1

2
i,s+ + Hx |

n+ 1
2

i,ks

2
.

It is worth noting that the overall susceptibility description
across frequency and all angles of incidence must still
follow Kramers-Kronig relations for a stable causal response.
Furthermore, we can incorporate all these equations in and
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FIGURE 3. (a) Analytical comparison of transmission and reflection magnitudes (dB) and phases (deg) for a uniform metasurface made of
custom electric and magnetic susceptibility functions defined by the parameters in Tab 2. The top panels show the analytical data for time
dispersive susceptibilities (χ(ω)), and the bottom panels show data for a time and space dispersive scenario (χ(ω, kx )). (b) Transmission
and reflection where solid lines are analytical data obtained from (6), and marked dot-dashed lines are the results obtained from the
GSTC-FDTD-TDSD algorithm. Line markers denote the angle of incidence. Arrow insets show the maximum absolute error. (c) The amplitude
of the real part of the electric field over time. Image panels show field snapshots over the simulation region for three different angles of
incidence and three different time instants. The insets show the source plane location (white solid line), the metasurface location (white
dashed line), and the location of the reflection and transmission point monitors (white ‘x’ markers).

write their final matrix form as shown in (17), bottom of the
next page.

It is worth mentioning that in this particular system of
equations, the index i refers to the discrete values of kx,i in
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the spatial frequency domain, defined as

kx =
[
· · · kx,i · · ·

]
= 2π

[
−

1
2dx · · ·

1/dx−1/2
nx,MS−1 · · ·

1
2dx −

1
2

]
, (18)

where nx,MS is the number of sample points along the
surface, 1/dx is the spatial sampling frequency, and (1/dx −

1/2)/(nx,MS − 1) is the size of the spatial frequency bin. For
a scenario where the surface length and space-step provide
a coarse value of kx,i, the spatial frequency bins in the kx
domain become large, and spectral leakage occurs. In this
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TABLE 3. Short Electric Dipole: Lorentz Resonator Properties.

TABLE 4. Dielectric Puck: Single Lorentz Resonators’ Properties.

case, spectral power goes to a spectral bin that does not
precisely correspond to the kx value where the field is,
in fact, incident, leading to two problems: wrong evaluation
of the susceptibility transfer function and leakage of the
spectral power to a spatial frequency bin that is outside the
propagation range (−k0, k0).
A solution adopted in this work is to take advantage of

the periodic boundary conditions imposed at the edges of the
metasurface and, at each time step, and replicate the whole
fields along the surface by NFFT times. Thus, increasing the
resolution in the spatial frequency domain, as in (18) the new
number of samples becomes nx,MS → NFFTnx,MS. Therefore,
reducing the size of the spatial frequency bins and preventing
both problems while overall improving the accuracy of the
solution once the resulting fields are converted back to the
space domain via the inverse spatial FFT and further used
by regular Yee-cell update equations for appropriate field
propagation.

Finally, the solution at each time step n1t is obtained with
the following steps:

1) Update bulk H nodes using regular Yee-cell update
equations;

2) Compute the spatial Fourier transform of Hx |
n+ 1

2
ks+1,

Ey|nks+1 and Hz|
n+ 1

2
ks+1 after replicating them by NFFT

times;
3) Solve for the unknowns in (17) for −k0 ≤ kx ≤ k0;
4) Compute the inverse spatial Fourier transform of

Hx |
n+ 1

2
ks , Ey|n+1

ks+1;
5) Update the remaining bulk E nodes using regular Yee

cell update equations.

The secondmethod, therefore, generalizes the SD response
of the surface beyond 2nd order spatial derivatives at the
expense of performing Fast Fourier Transforms of the surface
fields at each time step.

A. NUMERICAL DEMONSTRATIONS
The Mixed GSTC-FDTD-TDSD method will be vali-
dated using analytical transmission and reflection equations
from (6). The examples discussed use the surface suscep-
tibilities data extracted from physical cells in [1] for the
electric dipole unit cell and the Huygens’ unit cell. The
overall simulation setup is depicted in Fig. 1(a).

The electric dipole data is shown in Tab. 3 with the
non-spatially dispersive magnetic polarization term, χxxmm
modeled with a temporally dispersive Drude model, with
ωp = 4.9119 × 109 rad/s and γ = 0.98 × 109 rad/s.
The frequency ranges from 50 to 65 GHz, and the angle
of incidence spans from 0◦ to 50◦ in steps of 10◦. Again,
the angle is limited to up to 50◦ to avoid disturbances
caused by the constant phase shift imposed by the PBCs.
Fields are monitored two cells away from the surface, within
the regular Yee-cell propagation region, then reflection and
transmission coefficients are calculated and dembedded to
the faces of the zero-thickness surface. The simulation region
spans over a 12.5 mm × 12.5 mm, the surface is placed
in the middle, and it is composed of approximately 6 unit
cells. Simulation parameters are 1t = 63.4 fs, 1x =

1z = 53.75 µm (3x/40, λ0/97), the simulation runs over
750 ps, and the excitation is a Gaussian pulsed plane wave
of amplitude 1 V/m and bandwidth of 15 GHz, centered
at 57.5 GHz, and NFFT = 100. Figure 4(a) shows the
transmission and reflection magnitudes and phases between
TD-only and TDSD cases. The importance of SD is clear
when looking at the transmission depth profile shifting
from 60GHz to 55 GHz. Moreover, Fig. 4(b) shows a
good agreement between the analytical data from (6) and
the Mixed GSTC-FDTD-TDSD proposed method. Insets
show maximum absolute errors of 2.54 dB and 8.25◦ for
magnitude and phase, respectively, closer to the edges of the
characterization bandwidth.

The Huygens’ metasurface data is presented in Tab. 4 and
this time includes terms up to the sixth order in kx along with
constant susceptibility terms for both electric and magnetic,
and is, therefore, a good candidate to test the capabilities
of the proposed method. The dimensions of the simulation
region are the same as that of the dipole structure, and the
simulation parameters are 1t = 39.15 fs, 1x = 52.5 µm
(3x/40, λ0/90),1z = 26.25µm (λ0/180) and NFFT = 100.
The simulation runs over 2 ns, and the excitation is a Gaussian
pulsed plane wave of amplitude 1 V/m and bandwidth
of 5 GHz, centered at 63.5 GHz, therefore spanning over both
electric and magnetic susceptibilities temporal resonances.
Figure 5(a) presents the results for transmission and reflection
coefficient across frequency and different angles of incidence
for time dispersion only (top row, kx = 0) and the case where
both time and space dispersion are present. Again, these plots
show the importance of including SD for cases of oblique
incidence. Furthermore, Fig. 5(b) shows a good agreement
between analytical results and the proposed Mixed GSTC-
FDTD-TDSDmethod. Insets show maximum absolute errors
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FIGURE 4. (a) Analytical comparison of transmission and reflection magnitudes (dB) and phases (deg) for a uniform metasurface made
of electric dipole cells with susceptibilities defined by the parameters in Tab 3 and a magnetic susceptibility modeled using a
temporally-dispersive-only Drude model with ωp = 4.9119 × 109 rad/s and γ = 0.98 × 109 rad/s. The top panels show the analytical
data for time dispersive susceptibilities (χ(ω)), and the bottom panels show data for a time and space dispersive scenario (χ(ω, kx )).
(b) Transmission and reflection where solid lines are analytical data obtained from (6), and marked dot-dashed lines are the results
obtained from the Mixed GSTC-FDTD-TDSD algorithm. Line markers denote the angle of incidence. Arrow insets show the maximum
absolute error. (c) The amplitude of the real part of the electric field over time. Image panels show field snapshots over the simulation
region for three different angles of incidence and three different time instants. The insets show the source plane location (white solid
line), the metasurface location (white dashed line), and the location of the reflection and transmission point monitors (white ‘x’
markers).

of 4.93 dB and 20◦ for magnitude and phase, respectively,
closer to the edges of the characterization bandwidth.

Deviations start to occur as the angles approximate 50◦ where
the propagation angle of the incidence field starts to be

22568 VOLUME 12, 2024



J. G. N. Rahmeier et al.: Time-Domain Analysis of Temporally and Spatially Dispersive Metasurfaces

FIGURE 5. (a) Analytical comparison of transmission and reflection magnitudes (dB) and phases (deg) for a uniform metasurface
composed of Huygens’ all-dielectric cells with susceptibilities defined by the parameters in Tab 4. The top panels show the analytical data
for time dispersive susceptibilities (χ(ω)), and the bottom panels show data for a time and space dispersive scenario (χ(ω, kx )).
(b) Transmission and reflection where solid lines are analytical data obtained from (6), and marked dot-dashed lines are the results
obtained from the Mixed GSTC-FDTD-TDSD algorithm. Line markers denote the angle of incidence. Arrow insets show the maximum
absolute error. (c) The amplitude of the real part of the electric field over time. Image panels show field snapshots over the simulation
region for three different angles of incidence and three different time instants. The insets show the source plane location (white solid line),
the metasurface location (white dashed line), and the location of the reflection and transmission point monitors (white ‘x’ markers).

disturbed by the constant phase shift of the center frequency
imposed by the periodic boundary conditions.

The image panels in Figures 4(c) and 5(c) show the real
part of Ey over the simulation region for three different
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time instants and angles of incidence. The annotations show
the locations of the source injection plane, the location of
the metasurface, and the location of the point monitors for
reflection and transmission fields that are depicted over
time in the last plots to the right. Within the reflection
region between the source and the metasurface, we can
see a standing wave pattern caused by the interference of
the source forward traveling wave, and the metasurface
reflected backward traveling wave. Also, more pronounced
in the transmission region, we see an intricate pattern that,
due to the particular phase profile at different angles and
frequencies, causes several plane waves to superimpose
and not form the regular plane-wave profile that would be
seen for a single plane wave excitation in a non-dispersive
case.

The limitation in the angular resolution for the presented
results is related to the type of soft source implemented in the
algorithm and periodic boundary conditions (PBC). As the
PBC contains a fixed transverse phase-shift determined by
the center frequency (kx = k0 sin θ ), the condition k20 = k2x +

k2z will force lower frequencies to propagate at a higher angle
while higher frequencies will propagate at a lower angle [31].
For instance, Fig. 6 shows the error in the propagation angle
for the incident signal in the wire dipole simulation, with up
to ±4◦ compared to the propagation of the center frequency
at 57.5 GHz. Therefore justifying the angle limitations in the
FDTD simulations presented in this work.

Overall, the analytical data presented in both metasurfaces
take into account the propagation angle dictated by the PBC,
but numerically, in the FDTD algorithm, those frequencies
are injected at a specified angle and then converted to a
different propagation direction as they propagate and reach
the PBC edges. Therefore, deteriorating the solution at the
edges of the bandwidth and at higher excitation angles where
the results tend to be less accurate.

Possible solutions to this problem rely on using the Total-
Field Scattered-Field source approach [22], [23], [32], [33],
[34], or the split-field method, sometimes referred to as
Broadband Fixed Angle Source Technique (BFAST) [35],
[36]. The former relies on the study of finite metasurfaces
within the total-field region and subsequent edge effects that
might be related to the effective surface thickness within the
FDTD framework. It does not solve the case of periodic
boundary conditions but allows the excitation at grazing
angles while the outer scattered region is surrounded by
absorbing boundary conditions. The latter requires a different
formulation of the regular Yee-cells, which would need to be
extended to the GSTCs as well. Both are not part of the scope
of this work and are left as future work.

A preliminary analysis of the code for the examples
presented showed that the solution improves with a finer time
and space step. Accurate results were obtainedwith time steps
based on a Courant factor of 1/2, which is slightly lower
than the stability condition of

√
2 reported in the literature

for a standard 2D-FDTD solver [22], and space steps below

FIGURE 6. Propagation angle error compared to the propagation angle of
the center frequency for the wire dipole surface. Different colors
correspond to different plane wave incidence angles.

λ0/50, which agrees with results reported in [12]. The value
of NFFT determines the accuracy of the solution in terms of
angular resolution in the kx domain. As stated before, due
to the fixed phase shift of the PBCs, different frequencies
will propagate at different angles, and this contributes to the
spreading of the spectrum across discrete bins in the Fourier
domain. Higher values of NFFT will then improve the angular
resolution, improving the evaluation of the interacting fields
with the susceptibilities transfer functions.

Overall, this method is more memory efficient than the
previous one, when the Lorentz coefficients order is greater
than 2 (nd > 2). In terms of CPU time, it is slower
due to the extra FFT computations required at each time
step. However, this performance can be boosted by solving
multiple propagating wavenumbers in parallel, which is not
possible in the case of the GSTC-FDTD-TDSD method
where the coupled system of equations has to be solved all
together. Section S3 of the Supplementary Material provides
more details about the performance comparison.

VI. CONCLUSION
For the first time, a zero-thickness model of temporally
and spatially dispersive metasurfaces was integrated into a
finite-difference time-domain model. The proposed method
extended the implicit Lorentzian model for a tight asymmet-
rical Yee cell in [12] to accommodate the spatial derivatives
of the polarization terms and average fields on the surface
via the polynomial expansion of the Lorentz parameters
with respect to the transverse wavevector. The results were
validated for oblique plane-wave incidence under a synthetic
spatial dispersion response for both electric and magnetic
tangential susceptibilities. Limitations in the extension of the
method to higher-order expansion terms for the extended
Lorentz model and poor conditioning of the characteristic
matrix led to the development of a mixed finite-difference
spatial-frequency-domain/time-domain method that solves
the unknowns in the surface in the spatial frequency
domain at every time step. This method was then validated
by replicating the results for the spatiotemporal physical
dispersive cells: the wire dipole and dielectric puck from [1].
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This method contemplates constant polarization terms and
is easily extendable to higher-order terms in the polynomial
expansion of the Lorentz terms with respect to the transverse
wavevector. Furthermore, the proposed method can be easily
integrated into the standard FDTD solver since there is
minimal disruption to the regular update equations for a Yee-
cell-based solver.

An interesting path to follow in the future, and where the
GSTC-FDTD framework becomes essential, is the analysis of
spatiotemporal modulated surfaces similar to time modulated
ones in [20], except that now the extended polynomial
parameters of the Lorentz model can be functions of space
for nonuniform surfaces, transverse wavevector for a spatial
non-local response and also time due to the time modulation
feature of the metasurface. This will, in practice, represent a
linear time and space-variant (LTSV) system. In this matter,
an FDTD framework will show even more importance when
analyzing transient responses as the spatial dispersion of the
surface changes over time.

Finally, the whole analysis performed in this work and
its previous parts [2], [3], [37] can be applied to a general
angular response in a 3D framework for finite-sized surfaces,
both flat and conformal, where, assuming the propagation
along z direction, the surface spatial dispersion would
be characterized in terms of the transverse wave vector
components kx and ky.
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