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ABSTRACT This paper presents a data-driven approach to short-term wind turbine fault prediction and
conditionmonitoring based on a hybrid architecture of recurrent neural network and long short-termmemory.
The proposed architecture is established by utilizing time series data from the supervisory control and
data acquisition system and a Bladed model of a 5 MW wind turbine to predict faults occurring to the
wind generator. The recurrent neural network-long short-term memory training procedure is enhanced with
self-organizing maps and long short-term memory auto encoder so as to describe the complex interaction
between the mechanical system and unpredictable wind speed. To verify the performance of the proposed
scheme, we conduct in-depth numerical experiments by applying the hybrid architecture to the Bladed 5MW
wind turbine model with rated wind speed of 11.8 m/s. Experimental results confirm that the proposed
scheme has superior accuracy and practicality of fault prediction compared with eminent existing machine
learning algorithms such as extreme gradient boost and random forest regressor.

INDEX TERMS Extreme gradient boosting, fault prediction, long short-term memory autoencoder, random
forest regressor, self-organizing maps, wind turbine.

I. INTRODUCTION
Due to increasing concerns about climate change, wind
power, a representative renewable energy, has been widely
explored [1]. However, unpredictable nature of wind patterns
makes it difficult to harness wind energy effectively, which
necessitates reliable wind turbine monitoring. This technique
is also crucial to reducing costs and optimizing performance,
as maintenance accounts for up to 35% of overall wind farm
project costs [2]. Indeed, wind turbines are complex systems
with numerous components that must be maintained on-line
for sturdy operations [3].

A short-term prediction model for wind turbines aims
to predict the dynamic responses of the targeted wind
turbine in a time scale of several seconds to minutes [4].
As wind turbines are increasingly equipped with intelligent
real-time control logic and connected to smart grids, short-
term prediction of wind turbine responses becomes an
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indispensable part [5]. Predicting short-term wind turbine
responses is regarded more difficult than other time scale
predictions because of chaotic and stochastic characteristics
of turbulent flow [6]. Compared to traditional methodologies
based on physical-based models, machine learning and deep
learning have provided simpler and more effective solutions
to predictive maintenance without explicit programming
[7], [8].

A. OBJECTIVE AND MOTIVATION
In this article, we address a data-driven mechanism for
wind turbine condition monitoring by presenting a hybrid
deep learning model that combines recurrent neural network
(RNN) and long short-term memory (LSTM) networks.
In the proposed scheme, the self-organizing map (SOM)
and long short-term memory auto encoder (LSTM-AE) are
first employed for data cleaning and feature extraction.
We then utilize both supervisory control and data acquisition
(SCADA) and Bladed [9] simulation data to provide a
comprehensive learning model of the turbine behavior.

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 22465

https://orcid.org/0000-0003-1495-350X
https://orcid.org/0000-0002-9263-1584
https://orcid.org/0000-0003-1743-1061
https://orcid.org/0000-0002-3966-2584


V. S. B. Rama et al.: Short-Term Fault Prediction of Wind Turbines Based on Integrated RNN-LSTM

To evaluate the effectiveness of the proposed scheme,
we conduct numerical experiments on fault detection for
a 5 MW wind turbine regarding wind speed, generator speed
and output power. Comparative studies with other established
machine learning algorithms are also provided to demonstrate
the superiority of the proposed scheme.

The choice of the RNN-LSTM hybrid architecture over
conventional ones such as transformer-based models is rather
deliberate. The primary motivation is to strike a balance
between model complexity, computational efficiency, and
performance accuracy. In fault detection for real-time systems
like wind turbines, response time is critical. While highly
expressive and accurate, transformer-based models often
come with an increased computational overhead [10]. This
can potentially slow down the fault detection process,
especially when dealing with large volumes of SCADA data.
The RNN-LSTM fusion, on the other hand, can trade off its
performance, namely, harnessing the depth of time series data
without overburdening computational resources [11].

In recent years, deep learning models have demonstrated
significant promise in modeling sequential data [12] among
which LSTM networks have emerged as a favorite by
virtue of their ability to pinpoint long-range dependencies.
However, solely relying on LSTMs may not always be
optimal [13]. By contrast, hybrid models of RNN and LSTM
leverage the capability of the methods such as offering
better mitigation against the vanishing gradient problem [14].
Further, unlike existing approaches relying only on LSTM
models, the proposed method incorporates SOM and the
AE-based LSTM model to detect and remove outliers and
anomalies from the wind turbine data. This will result
in cleaner data, which is then applied to deriving the
RNN-LSTM integrated hybrid model emulating wind turbine
performance.

B. RELATED WORK
In the field of wind turbine condition monitoring using
time series data, several techniques have been reported in
recent years. In the realm of wind turbines, [15] introduces
a fault diagnosis approach for gearboxes using vibration
signal analysis, combining wavelet packet decomposition
and convolution neural networks (CNNs). For wind power
forecasting, [16] employs an echo state network-based
ensemble, focusing on improved accuracy through time series
analysis of wind power generation. Anomaly detection in
wind turbines is addressed [17] using LSTM-based stacked
denoising AEs and extreme gradient boosting (XGBoost),
utilizing SCADA data to enhance detection and diagnosis
accuracy. Adaptive kernel spectral clustering paired with
deep LSTM networks is used in [18] for early anomaly
detection and failure prediction in machinery, marking an
advancement in industrial health monitoring. Exploring
fault diagnosis in wind energy converters, [19] applies
PCA and HMM for effective feature extraction and precise
classification. Reference [20] similarly adopts adversarial
representation learning for intelligent condition monitoring,

focusing on operational data analysis in signal and latent
spaces. For fault diagnosis in wind turbine transmission
systems, [21] utilizes manifold learning and a Shannon
wavelet support vector machine, improving fault detection
accuracy by analyzing complex signal data. These diverse
approaches underscore the evolving landscape of machine
learning applications in wind turbine monitoring.

The proposed scheme integrating RNN and LSTM bears
some resemblance to existing methods for wind turbine
condition monitoring based on hybrid learning models.
[22] introduces a fault detection method for wind turbines
based on SCADA data, utilizing CNN and LSTM with an
attention mechanism. This method emphasizes the extraction
of dynamic changes from SCADA data, offering a refined
model for early anomaly detection and fault diagnosis.
Reference [23] presents a novel genetic LSTM model for
wind power forecasting, incorporating a genetic algorithm
to optimize LSTM parameters and enhance forecasting
accuracy. Reference [24] describes an innovative fault
diagnosis approach for reciprocating compressors using a
Bayesian optimized LSTM model, employing a time series
dimensionality reduction technique to process vibration
signal data efficiently. Finally [25] introduces a methodology
integrating temporal change information (CIL) with LSTM
for dynamic sequence modeling, focusing on capturing
abrupt and gradual changes in time series data.

Aside from single SOM and LSTM-AE, many methods
have been developed for detecting and removing outliers and
anomalies. Reference [26] provides a comprehensive survey
of clustering algorithms, offering insights into the effective-
ness of different algorithms in pattern recognition. Reference
[27] highlights the application of SOM in visualizing
high-dimensional data, demonstrating its ability to uncover
complex relationships where standard visualization falls
short. In the avenue of high-dimensional distribution support,
[28] discusses the intricate use of Support Vector Machines,
noting the need for careful optimization. Complementing
this, [29] examines the use of LSTM-AE in forecasting and
anomaly detection. This research emphasizes LSTM-AE’s
capacity for managing long-term dependencies in sequential
data, proving its effectiveness in anomaly detection scenarios.

C. CONTRIBUTIONS
In comparison with the prior work, this article has the
following contributions.

1) The proposed methodology advances the field by
leveraging an integrated approach of RNN and LSTM.
This hybrid model excels in handling complex time series
data specific to wind turbine operations, thereby enhancing
feature extraction and predictive capabilities. It sets a new
benchmark in understanding long-term data dependencies for
fault prediction accuracy, offering more refined predictions
than standard LSTM networks and existing models that
primarily focus on SCADA data alone.

2) Our research broadens the spectrum of utilized data
by incorporating outputs from Bladed simulators along with
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FIGURE 1. Flow chart of predictive maintenance for the wind turbine.

traditional data sources. This comprehensive approach offers
a deeper insight into wind turbine dynamics compared to
previous schemes that rely on a limited array of data sources.

3) The proposed hybrid model signifies an improvement in
term of computational burden over previous ones. It is distinct
in its reduced computational demands while maintaining high
accuracy in predictions. This streamlined design eliminates
complications such as the vanishing gradient problem and
overfitting that are common in other models.

4) The present study innovates in outlier and anomaly
detection by employing SOM and LSTM-AE. This method
contrasts with traditional techniques that often struggle with
high-dimensional data and require extensive fine-tuning.
Our approach uses SOM for efficient outlier management
in high-dimensional spaces and LSTM-AE for nuanced
anomaly detection in time series data. This dual strategy
simplifies the detection process and enhances the predictive
maintenance framework for wind turbines.

Wind speed in SCADA data is typically measured by an
anemometer. Despite its lower accuracy compared to high-
resolution sensors, its use is established in deep learning
research for wind turbine analysis (see, e.g., [30], [31]).
Furthermore, the rationale behind the use of SCADA data
with a power rating of 3.5 MW alongside Bladed simulator
data rated at a different power (5 MW) is multifaceted.
Primarily, tackling wind turbine data with heterogeneous
power ratings exemplifies the versatility of the proposed
methodology, similarly observed in previous studies [32].
Whereas there might be concerns about prediction errors
due to power rating discrepancy, the differential behaviors
introduced by these ratings are well captured by the proposed
hybrid model. Indeed, the operational configuration may
differ depending on the power rating. But we note that
the fundamental physics guiding their operations remains
invariant, allowing the comprehensive model processing as
done in this study.

The rest of this article is organized as follows. Section II
discusses the methodology for model processing and fault
detection in wind turbines. Section III details the data
cleaning process and development of the RNN-LSTM hybrid
model. Section IV introduces a fault detection algorithm on
generator speed and output power. Numerical experiments
and performance evaluation of the hybridmodel are presented
in Section V. Section VI concludes the article.

II. METHODOLOGY
Fig. 1 depicts the structured methodology that is segmented
into the following critical phases.

A. DATA PREPARATION
We first harness historical SCADA data of a 3.5 MW
wind turbine taken from a recognized dataset in northwest
Turkey [33], applying SOM and LSTM-AE for anomaly and
outlier detection. The processed data is then divided into
training, validation, and testing segments.

B. PREDICTIVE MODEL DESIGN AND EVALUATION
An advanced RNN-LSTM hybrid model is engineered using
the refined SCADA data, focusing on critical parameters
like wind speed and power output. The model undergoes
comprehensive training and validation to ensure precision and
reliability.

C. BLADED SIMULATOR DATA ANALYSIS AND
EXTRACTION
Switching to the 5 MW wind turbine data obtained
from Bladed simulator, we observe traces of opera-
tional discrepancies. This dataset enriches the proposed
algorithm’s versatility. We extract from this data pivotal
metrics including generator speed, wind speed, and power
output.
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FIGURE 2. Visualized wind conditions in the polar scatter plot.

FIGURE 3. Wind turbine power curve before data cleaning.

D. MODEL PREDICTIONS AND PERFORMANCE
EVALUATION
The RNN-LSTM model is fine-tuned for fault detection,
validated against the Bladed dataset, and evaluated using
R-squared (R2) and Mean Absolute Error (MAE) metrics.

E. FAULT DETECTION AND OPERATIONAL MONITORING
The validation phase utilizes Statistical Process Control
(SPC) charts with defined upper control limit (UCL) and
lower control limit (LCL) benchmarks. Deviations from
these limits trigger fault alarms, enabling proactive measures
against potential system anomalies or breakdowns.

III. MODEL PROCESSING
A. SCADA DATA ANALYSIS
Suppose that the wind turbine considered in this study uses
a SCADA system to record key operational parameters—
output power, wind speed, and generator speed—at a
10-minute sampling frequency wherein only the average
values of each parameter are retained to reduce data size
and processing time. The wind turbine has rated power of
3.5 MW, rotor diameter of 82 m, and hub height of 80 m.

Its cut-in, rated, and cut-out wind speed are 3.5 m/s, 9.2 m/s,
and 25 m/s, respectively. Note that the cut-in speed is the
minimum for power generation, the rated speed is its optimal
operational capacity, and the cut-out speed represents the
safety limit to prevent damage in high winds. As these
values determine real-time turbine performance, they must be
prescribed a priori for proceeding with model derivations.

The data cleaning process, particularly the removal of
outliers and anomalies, plays a critical role in our wind
turbine modeling study. Wind turbines are subject to a wide
range of operational and environmental variables that cause
stochastic and systematic errors to SCADA data. These errors
may manifest as transient deviations or consistent diver-
gences, potentially leading to inaccurate model predictions
and misinterpretations of the turbine’s operational status.

In Fig. 2, the polar scatter plot shows the distribution
of wind speeds, predominantly below 15 m/s, with some
between 15 and 25 m/s. This visualization not just stems
from frequency but also incorporates turbine specifications
and potential sources of outliers in SCADA data. While
Fig. 2 highlights data points with non-uniform distribution,
these are not immediately classified as outliers. Instead, they
are subject to further domain-specific analysis. Fig. 2 is
a preliminary tool for understanding data distribution and
patterns, aiding in the identification of outliers. In addition
to the polar scatter plot, the power curve of the wind
turbine depicted in Fig. 3 is instrumental in detecting outliers
and anomalies. This curve illustrates the turbine’s nominal
behavior and performance [36]. Fig. 3 reveals several points,
marked in red, which diverge from the typical output power
versus wind speed distribution, indicating potential outliers.
These points will be further scrutinized in our data cleaning
process.

B. OUTLIER REMOVAL BY SOM
Here, SOM [37] is utilized as a machine learning tool for
detecting and removing outliers. To this end, an SOM grid
is created and randomly initialized with a suitable number
of neurons for the size of the input data. The SOM is then
trained using the wind turbine data, where the weight vectors
are iteratively updated to minimize the distance between the
input data and corresponding neurons. The latter task is done
by the update rule

wj(t + 1) = wj(t) + η(t)h(j, t)(x(t) − wj(t)),

where wj(t) is the weight vector for neuron j at time t , η(t) is
the learning rate at time t , h(j, t) is the neighborhood function
that determines the influence of the input vector on the weight
vector of neuron j at time t , and x(t) is the wind turbine input
data vector at time t , corresponding to the sensor readings of
wind speed and power output. h(j, t) is defined in terms of a
Gaussian function

h(j, t) = exp

(
−

|rj − ri|2

2σ 2(t)

)
,
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FIGURE 4. Single layer LSTM cell.

where rj is the location of neuron j in the SOM grid, ri is the
location of the input vector x(t), and σ (t) is the neighborhood
width at time t . The neighborhood width decreases during the
training so as to gradually focus the SOM on the dominant
patterns in the input data. Once the SOM has been trained,
outliers in the wind turbine data are identified by calculating
the distance between each wind turbine data point and its
corresponding neuronweight vector described by the distance
metric equation

d(x,wj) = |x − wj|.

Data points far away from their corresponding neuron weight
vectors are likely to be outliers and are removed from the
wind data. The remaining data points will be used for further
modeling procedures.

C. ANOMALY DETECTION AND REMOVAL BY LSTM-AE
The LSTM-AE, a neural network architecture combining
AE with LSTM networks [38], serves to detect and remove
anomalies in the wind turbine SCADA data. Initially, wind
data undergoes preprocessing including normalization and
division into training and testing sets. Trained on this data,
the LSTM-AE generates a reconstructed output. Anomalies
are identified by comparing the input with its reconstruction,
with significant discrepancies indicating potential anomalies.
These anomalies are corrected in the dataset by substituting
them with the LSTM-AE’s reconstructed values.

Illustrated in Fig. 4, the LSTM unit has three gates—
forget, input, and output. First, the forget gate decides
which information to forget from the previous cell state by
considering both the previous hidden state and new sensor
readings. It incorporates weights and biases into the sigmoid
function and generates the forget gate value ft at time t such
that

ft = σ (Wf [Ht−1; xt ] + bf ),

where σ is the sigmoid activation function,Wf and bf are the
weight and bias of the forget gate,Ht−1 is the previous hidden
state, and xt is the current input.
Next, the input gate is responsible for selecting which new

information to store in the LSTM network’s memory and how
much of them to update. This task is important in wind data

analysis since it implies which of new wind speed and power
measurements are to be selected and stored. It is achieved by
generating the candidate memory updated value C̃t and the
input gate value it . C̃t has the form of

C̃t = tanh(Wc[Ht−1; xt ] + bc),

where Wc and bc are the weight and bias of the input gate.
Further, it is defined as

it = σ (Wi[Ht−1; xt ] + bi),

whereWi and bi are the weight and bias of the input gate. The
cell state Ct is then updated using ft , C̃t , and it as

Ct = ft ⊙ Ct−1 + it ⊙ C̃t ,

where ‘⊙’ denotes element-wise multiplication.
Finally, the output gate determines which information from

the long-term memory is relevant to the current state of the
wind data. The output gate value ot is given by

ot = σ (Wo[Ht−1; xt ] + bo),

where Wo and bo are the weight and bias of the output gate.
The new hidden state Ht is induced by applying ot to a
squished version of the cell state Ct as follows.

Ht = ot ⊙ tanh(Ct ).

This process is repeated for all time steps.
An AE includes the input layer, the output layer, and

multiple hidden layers. Fig. 5 shows the schematic diagram
of the LSTM-AE architecture for anomaly detection and
removal. Let us describe each component of the architecture.

1) INPUT SEQUENCE DATA
Thewind data is provided as a time sequence [S1, S2, . . . ; Sn].
Each Si is a fixed-length time window data [s1, s2, . . . ; st ]
where st ∈ Rm represents m features given at time t .
This sequence is reshaped into a two-dimensional (2D) array
where each row and column represents a sample and time
step, respectively.

2) LSTM ENCODER AND DECODER
The LSTM encoder contains a layer with 10 LSTM cells.
We first split the dataset of wind speed and output power into
the sequences of 10 samples, with each sequence representing
a fixed time window of 100 minutes. These sequences are
reshaped into a 2D array having 10 time-steps and two
features of the wind turbine. The 2D arrays are then fed to
the LSTM encoder. The output from the last LSTM cell will
be a 1×16 encoded feature vector containing the information
about all the relevant samples in the sequence. The encoded
feature vector provided by the LSTM encoder is passed to
the LSTM decoder for sequence reconstruction. The decoder
contains an LSTM layer with 10 cells. The output from the
decoder is reshaped into a 2D array of the same shape as the
input to the encoder to obtain the reconstructed sequence.
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FIGURE 5. LSTM-AE architecture for wind data anomaly detection and removal.

FIGURE 6. Impact of vanishing gradients: (a) stand-alone RNN (epoch 5)
and (b) stand-alone LSTM (epoch 1).

3) ANOMALY DETECTION
We then compare the original input sequence s with the
reconstructed one ŝ. If the difference between s and ŝ, termed
the reconstruction loss, exceeds a prescribed threshold,
we flag the corresponding time window as anomalous. In this
study, the reconstruction loss is defined as the average

absolute difference between the corresponding elements of
s and ŝ, i.e., (n is the number of samples)

L(s− ŝ) =
1
n

n∑
t=1

|ŝt − st |.

4) ANOMALY REMOVAL
Data points marked as anomalies due to significant recon-
struction loss are replaced with values regenerated by the
LSTM-AE. Rather than discarding anomalies, which would
potentially cause data gaps or analysis distortions, the
LSTM-AE infers normal conditions from its learned data
representation, producing fitting substitutes. This precise
correction by the LSTM-AE eradicates disruptive effects of
anomalies, while enhancing the dataset’s relevance to the
operational conditions of the turbine.
Remark 1: Note that our outlier and anomaly removal

scheme integrating SOM with LSTM-AE overcomes the
limitations of the stand-alone LSTM-AE model, which
records MAE of 0.0573 in wind speed prediction [34]. It can
be said that SOM’s strength in dimensionality reduction [35]
effectively complements the anomaly detection ability of
LSTM-AE. The combined approach significantly improves
data processing in the proposed RNN-LSTMmodel, resulting
in a lowered MAE of 0.049, a substantial improvement over
the stand-alone SOM and LSTM-AE models.

D. RNN-LSTM HYBRID MODEL
In a stand-alone RNN, the hidden state update equation plays
a crucial role in capturing temporal dependencies. This is
particularly important when dealing with time series data,
e.g., wind turbine data as in this study, where the sequence
of past observations influences the future predictions. The
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FIGURE 7. Integrated structure of RNN-LSTM.

equation for updating the hidden state at time t is given by

ht = σ (Whhht−1 +Wxhxt + bh), (1)

where ht is the hidden state at time t ,Whh andWxh are weight
matrices, and bh is the bias vector. By taking into account
the previous hidden state ht−1 and the current input xt , the
RNN captures the sequential dependencies and generates
predictions based on the wind turbine time series data.

Stand-alone RNNs have a drawback termed the vanishing
gradient problem [39] in which diminishing gradient flows
impede accurate learning performance. The sigmoid activa-
tion function with low maximum derivative value 0.25 is
known to cause the vanishing gradient problem since it gives
a dampening effect on gradients during backpropagation.
Stand-alone LSTM models also encounter the issue of
vanishing or exploding gradients. This problem invokes
instability in gradient updates, hindering learning steps [40].

For the sake of quantitative analysis, we obtain the
gradient flow of stand-alone RNN and LSTM by training
each model with respect to the wind turbine SCADA data.
One can observe from Fig. 6(a) that while the initial
gradient magnitude of the stand-alone RNN is relatively
high, it exponentially diminishes and declines to zero beyond
65 training steps. On the other hand, the gradient flow of
the stand-alone LSTM in Fig. 6(b) shows radically re-surging
fluctuations (136 to 181 time steps) after initial diminishing.
After the duration, however, it diminishes again like the case
of the stand-alone RNN. Fig. 6(b) corroborates that not only
stand-alone RNNs but also stand-alone LSTMs suffer the
vanishing gradient problem, albeit with lesser degree.

Fig. 7 illustrates the integrated structure of RNN-LSTM.
The RNN layer computes the hidden state by (1), and the
output of the RNN layer, denoted by Ot , is fed as the input
to the LSTM layer. As already mentioned, it , ft , ot and Ct
determine the amount of information to retain or discard from
the new input and previous state, as well as the amount of the
cell state to the output. The LSTM update equations for these

FIGURE 8. Comparison of gradient magnitudes between stand-alone RNN
and RNN-LSTM hybrid (epoch 10).

gates are now defined as

it = σ (WxiOt +Whiht−1 +WciCt−1 + bi),

ft = σ (WxfOt +Whf ht−1 +Wcf Ct−1 + bf ),

ot = σ (WxoOt +Whoht−1 +WcoCt + bo),

where Wxi, Whi, Wci, bi, Wxf , Whf , Wcf , bf , Wxo, Who, Wco,
and bo are the weight matrices. In association with the above
equations, the cell state Ct is updated by

Ct = ftCt−1 + it tanh(WxcOt +Whcht−1 + bc),

and the hidden state ht is by

ht = ot tanh(Ct ).

Finally, the predicted wind speed is generated by passing
ht through a fully connected layer having a single output node
and linear activation function described by

ŷ = WhyhT + by,

where Why and by are the weight matrix and bias vector for
the output layer, and ŷ is the vector denoting the predicted
wind speed and output power.

The proposed RNN-LSTM hybrid model has a significant
advantage over stand-alone RNN or LSTM in that it reduces
the vanishing gradient problem. In the course of backpropa-
gation, ft selectively forgets the information delivered from
the previous cell state by providing values between 0 and
1. If ft ≈ 0, the previous cell state is ignored; if ft ≈ 1,
it is retained. On the other hand, it selectively adds new
information to the cell state by providing values between
0 and 1. When it ≈ 0, the new information is ignored; when
it ≈ 1, it is retained. Finally, ot selectively gives the output
information from the cell state by yielding values between
0 and 1.With ot ≈ 0, the cell state is ignored and with ot ≈ 0,
the cell state is used to compute the output. In this way, the
LSTM layer selectively retains or discards the information,
thereby alleviating the vanishing gradient problem.

To validate the performance of reducing vanishing gradi-
ents, we plot in Fig. 8 gradient magnitudes of the stand-alone
RNN and RNN-LSTM hybrid model with respect to wind
turbine SCADA data. In stand-alone RNN, the gradient
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magnitude starts high but rapidly declines to almost zero,
indicating vanishing gradients. By contrast, the RNN-LSTM
hybrid model maintains larger gradient magnitudes with
notable peaks and troughs. This confirms better preservation
and reduced decay of gradients in the RNN-LSTM model.

IV. FAULT DETECTION
A. EVALUATION METRICS
To develop the fault detection scheme based on the trained
RNN-LSTM hybrid model, we utilize R2 and MAE metrics.
R2 measures the goodness of fit of the model to the data,
with values closer to 1 indicating a better fit [41]. Given total
number of observation n, R2 is defined as

R2 = 1 −

∑n
i=1(yi(t) − ŷi(t))2∑n
i=1(yi(t) − ȳ(t))2

,

where yi(t) and ŷi(t) are the ith actual and predicted value
and ȳ(t) is the mean of the actual values. On the other hand,
MAE quantifies the average absolute difference between the
predicted and actual values, i.e.,

MAE =
1
n

n∑
i=1

∣∣yi(t) − ŷi(t)
∣∣ .

In addition to these metrics, we employ a control chart
based on the moving range to assess the deviations between
measured and predicted values. The UCL and LCL in the
control chart indicate the acceptable boundaries of deviation
from the predicted values. Given a value di at index i in a
sequence and its previous value di−1, the standard deviation
σ and UCL and LCL are

σ =
|di − di−1|

1.128
UCL = 3σ, LCL = −3σ.

B. BLADED DATA AND COMPARISON TARGETS
We utilize Bladed simulator data from a 5 MW wind
turbine to validate the fault detection capability of our
hybrid model. Although the original Bladed data contains no
faults, we introduce synthetic faults between 163 and 210 s
in which output power and generator speed surpass their
normal values, setting the stage for real-time fault detection
assessment. For comparison, we evaluate our RNN-LSTM
model against three established methods XGBoost [42],
random forest regressor (RFR) [43], and CIL [25] which,
enhancing traditional LSTM, incorporates MAE and MSE to
capture temporal changes.

The training process of XGBoost involves minimizing an
objective function with regularization. The objective function
J (t) consists of the loss function and regularization term.
The loss function, denoted by l(yi(t), ŷi(t)), measures the
difference between the predicted value and the actual value
for each training sample. Let �(Rk ) denote the regularization
applied to an individual tree where Rk is an individual tree in

the ensemble. Then, J (t) is expressed as

J (t) =

n∑
i=1

l(yi(t), ŷi(t)) +

K∑
k=1

�(Rk ),

�(Rk ) = γT + 0.5λ
∑

v2,

where K is the total number of trees in the ensemble, T is the
number of leaves in a decision tree, v is the complexity and
vector scores of each leaf, γ is the regularization parameter
for complexity, and λ is the regularization parameters.
The XGBoost model takes wind speed and output power
observations as the input pair and passes them through
each decision tree in the ensemble. Each decision tree then
produces a prediction for wind speed and output power. The
final prediction ỹXGBoost(t) at time t is obtained by summing
the predictions of all the trees as described by

ỹXGBoost(t) =

K∑
k=1

Gk (x(t)),

where x(t) is the input data including time series information
on wind speed and output power observations, and Gk (x(t))
denotes the prediction made by the kth tree for x(t).
RFR is an ensemble machine-learning algorithm that

combines the predictions of multiple independent decision
trees to make accurate predictions. Here, each decision tree
in the ensemble is trained on a random subset of wind speed
and output power data. The final prediction ỹRFR(t) at time t
is obtained by averaging the predictions of all the trees, i.e.,

ỹRFR(t) =
1
K

K∑
k=1

Hk (x(t)),

whereHk (x(t)) represents the prediction made by the kth tree
of RFR for x(t).

The core of CIL’s approach is a hybrid function ZCIL(t)
that maximizes temporal accuracy in time series predictions.
In particular, it synthesizes MAE and MSE in the form of

ZCIL(t) = α × MAE + β × MSE,

where α and β are coefficients that determine the balance
between the contributions ofMAE andMSE.A defining char-
acteristic of CIL is its bespoke transformation mechanism to
circumvent challenges caused by the supersaturation zone.
Upon data intake, CIL processes temporal metrics, including
but not limited to measures like wind speed and power output.
This data undergoes interpretation by LSTM layers. The
culmination of this process is the prediction represented by

ŷCIL(t) = FLSTM(x(t), θ),

where x(t) is the specific input metrics, θ is model
parameters, and FLSTM is the prediction methodology of CIL.
Remark 2: While the integration of RNN and LSTM

for wind turbine fault prediction enhances time series
data analysis, it may encounter challenges in terms of
great computational demands depending on the data to be
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FIGURE 9. SOM on 2D grid.

FIGURE 10. Power curve without outliers.

TABLE 1. Summary of the resultant trained data set in LSTM-AE.

processed. Nevertheless, the present study is worthwhile
and may give a broad impact on fault prediction since it
succeeds in balancing between fault detection accuracy and
computational efficiency by combining RNN and LSTM.

V. NUMERICAL EXPERIMENTS
A. OUTLIERS AND ANOMALY REMOVAL
We implement an outlier removal module using the MiniSom
library in Python 3.8, along with TensorFlow version 2.10.

FIGURE 11. (a) Anomalies in wind speed data and reconstruction error
and (b) training and validation loss visualization.

TABLE 2. LSTM hidden layer configuration in LSTM-AE.

The SOM, configured with a 10 × 10 neuron grid, a neigh-
borhood radius of 1.0, and a learning rate of 0.5, is trained
over 100 iterations with random input samples. This process
involves updating neuron weights iteratively to identify the
best matching units (BMUs) based on Euclidean distance.
The training results, visualized in Fig. 9, demonstrate the
mean interneuron distance (MID) across the SOM grid.
Regions with cohesive clusters, indicated by darker colors
(smaller MID), confirm successful data organization based
on underlying patterns. Conversely, lighter colors signal
greater dissimilarity, highlighting potential outliers. From
this analysis, we identify and remove 224 outliers.

To assess the impact of outlier removal on the power curve,
we compare the original Fig. 3, and refined Fig. 10 power
curves. This comparison reveals a significant improvement
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FIGURE 12. Comparison of actual and predicted wind speed and output
power for the SCADA 3.5 MW wind turbine data using RNN-LSTM:
(a) actual and predicted wind speed and (b) actual and predicted output
power.

in data accuracy, validating the enhanced performance of the
RNN-LSTM hybrid model.

Next, we employ LSTM-AE for anomaly detection and
removal in the outlier-free wind data. Our LSTM-AE com-
prises two encoder layers with 64 and 32 units, respectively.
The decoder consists of three LSTM layers, with the first
layer expanding the compressed data, followed by two layers
with 64 and 32 units, and a final dense layer reconstructing
wind speed and output power. The AE is trained to minimize
the MAE between the input and reconstructed sequences,
using the Adam optimizer with a batch size of 32 across
100 epochs. Anomalies in the wind data are identified by
comparing reconstruction errors against a threshold set at the
99th percentile of error distribution. Time steps exceeding
this threshold are marked as anomalies. Details of the
LSTM-AE configuration and trained dataset are summarized
in Tables 1 and 2.

Fig. 11(a) displays the detected anomalies in the wind
turbine data over time, pinpointing deviations in wind speed
and output power from expected trends. The validation
plot in Fig. 11(b) affirms the LSTM-AE model’s ability to
reconstruct input data while avoiding overfitting. It turns out
that the LSTM-AE model measures MAE of 0.66 and R2 of
0.87 in anomaly detection. These performance metrics con-
firm the model’s capability to differentiate between normal
and abnormal data patterns, validating its effectiveness in
anomaly detection for wind turbine data.

FIGURE 13. Comparison of actual and predicted wind speed and output
power for the SCADA 3.5 MW wind turbine data using XGBoost: (a) actual
and predicted wind speed and (b) actual and predicted output power.

TABLE 3. Learning performances comparison with respect to SCADA
3.5 MW wind turbine data.

B. IMPLEMENTATION OF RNN-LSTM HYBRID MODEL
In this experiment, feature scaling via Min-MaxScaler from
scikit-learn is used to normalize data for the RNN-LSTM
hybrid model. The model comprises four RNN layers and
four LSTM layers, each with 50 units and a dropout rate of
0.2, leading to a final output layer with one unit. It is compiled
using the Adam optimizer and MSE function, and trained for
100 epochs with a batch size of 32, monitoring MSE loss for
training and validation.

The model’s performance, depicted in Fig. 12, shows
high accuracy in predicting wind speed and output power.
For wind speed, it attains R2 score of 0.9889, and MAE
of 0.049, indicating minimal deviation from actual val-
ues. Output power predictions yield R2 score of 0.9764,
with a slightly higher MAE of 0.538. These results as
summarized in Table 3 underscore the model’s proficiency
in accurately estimating both wind speed and output
power.
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FIGURE 14. Comparison of actual and predicted wind speed and output
power for the SCADA 3.5 MW wind turbine data using RFR: (a) actual and
predicted wind speed and (b) actual and predicted output power.

C. IMPLEMENTATION OF XGBOOST, RFR, AND CIL
We implement the XGBoost regressor with alpha and lambda
regularization parameters on SCADA 3.5 MW wind turbine
data, using L1 and L2 regularization to prevent overfitting.
The learning performance evaluated by R2 and MAE is
summarized in Table 3 and depicted in Fig. 13. For wind
speed, XGBoost achieves R2 = 0.94 and MAE = 0.630,
while for output power, it shows R2 = 0.9212 with a higher
MAE of 0.8534.

The RFR model, employing an ensemble of decision trees,
demonstrates a strong fit on the training data. As shown in
Table 3 and illustrated in Fig. 14, it achieves R2 = 0.95 and
MAE = 0.45 for wind speed, and R2 = 0.955 with an MAE
of 0.96 for output power.

CIL, which effectively balances MAE and MSE, aligns
closely with actual measurements as illustrated in Fig. 15.
It exhibits strong predictive capabilities for wind speed (R2 =

0.9667, MAE = 0.6053) and output power (R2 = 0.9758,
MAE = 0.654) as tabulated in Table 3.
It is evident that the RNN-LSTM hybrid model outper-

forms all of the XGBoost, RFR, and CIL model in terms
of prediction accuracy. While the CIL model shows robust
predictions with its R2 and MAE metrics in view of Table 3,
it registers a loss value of 0.0274. The RNN-LSTM model,
by contrast, demonstrates a remarkable loss of 0.0133 in
its initial epoch of training. This substantial difference
underscores RNN-LSTM’s enhanced prediction accuracy and
computational prowess during training phases. Overall, the

FIGURE 15. Comparison of actual and predicted wind speed and output
power for the SCADA 3.5 MW wind turbine data using CIL: (a) actual and
predicted wind speed and (b) actual and predicted output power.

TABLE 4. Training performance comparison with respect to Bladed 5 MW
data.

RNN-LSTM model achieves the highest R2 and the lowest
MAE, indicating a strong correlation between the predicted
and actual values of wind speed and output power. These
quantitative analyses prove that the RNN-LSTM hybrid
model is the most suitable choice among four models for
accurate wind speed and output power predictions in wind
turbine environments. This finding will precipitate accurate
fault detection to wind turbines.

D. COMPARATIVE STUDY WITH BLADED 5 MW WIND
TURBINE SIMULATOR
For evaluating the performance of fault detection, we apply
the RNN-LSTM hybrid model along with XGBoost, RFR,
and CIL to tackling the Bladed simulator 5 MW wind
turbine data containing faults. To ensure accurate analysis,
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TABLE 5. Evaluating model complexity and computational cost in the proposed integrated RNN-LSTM versus CIL.

FIGURE 16. Actual and predicted generator speed, wind speed, and
output power of the Bladed 5 MW wind turbine simulator and RNN-LSTM
hybrid model: (a) generator speed, (b) wind speed, and (c) output power.

we focus our concern on the time period between 10 and
210 s of the simulation in which a deliberate fault is set to
occur from 163 to 210 s as mentioned earlier. In real-world
scenarios, dummy faults can trigger control system faults,
disrupting wind turbine operation, leading to imbalances in
power generation and significant fluctuations in generator
speed and output power. To facilitate training and testing,
we divide the selected dataset into two portions: 70% for

training and 30% for testing purposes. Once the training
phase is completed, each method is incorporated into the
Bladed simulator data, while emulating the wind turbine
model with the aforementioned three parameters.

Table 4 elucidates the training performances of four
distinct methodologies. A careful inspection reveals the
competitive nature of the RNN-LSTM hybrid model. For the
generator speed parameter, the RNN-LSTM model shines
with an impressive R2 value of 0.96470, suggesting its
capability to elucidate 96.47% of the variability within the
dataset. Its MAE of 0.70542 also stands as testimony to
its prediction prowess. It is worth noting the commendable
performance of the CIL, achieving an R2 of 0.8048 and MAE
of 0.8737, which indicates its effectiveness despite being
marginally outperformed by RNN-LSTM. Delving into wind
speed, the RNN-LSTM model yet again sets a benchmark
with R2 = 0.92902 and MAE = 0.8485. As per the output
power parameter, on the other hand, the performance of CIL
is slightly better than that of RNN-LSTMmodel as it exhibits
the highest R2 of 0.9708 and lowest MAE of 0.8010. This
suggests that, in certain contexts, the CILmay offer incidental
advantages over its counterparts.

Table 5 indicates that the RNN-LSTMmodel offers a more
computationally efficient alternative to other complex archi-
tectures such as CIL. With reduced training and inference
times by up to 75% and 80%, respectively, the RNN-LSTM
model demonstrates its potential for rapid deployment
and real-time analytical performance. The model’s reduced
parameter number, a mere 15.4 % that of the CIL model,
not only simplifies the computational process but also
mitigates the risk of overfitting, thereby enhancing the
model’s predictive reliability. Moreover, the lower memory
footprint, averaging around 10% less across various tests,
ensures that the RNN-LSTM model can be implemented
within resource-constrained environments.

Fig. 16 shows a visual comparison between the actual and
predicted values of generator speed, wind speed, and output
power of the Bladed 5 MW wind turbine simulator and the
proposed RNN-LSTM hybrid model. At about 163 s, the
actual parameters exceed their respective UCL, indicating
a potential fault. Remarkably, our prediction algorithm
accurately captures this deviation and closely follows the
actual values during this period, demonstrating its ability
to respond to abrupt changes in the targeted parameters.
Moreover, the main impact of the fault is observed between
190 and 210 s, where a significant peak in the actual
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FIGURE 17. Comparison of actual and predicted generator speed, wind
speed, and output power between RNN-LSTM, XGBoost, RFR, and CIL:
(a) generator speed, (b) wind speed, and (c) output power.

values is evident. Our prediction algorithm also tracks this
peak accurately, predicting the main impact of the fault
within the short-term time frame. These results highlight the
effectiveness of the proposed algorithm in short-term fault
prediction for wind turbines. This early detection capability,
namely, to accurately capture the fault’s main impact at 190 s
and to closely track the values shortly before the fault at 163 s,
would play a crucial role in preventing significant damages
to various wind turbine components, including high-rated
generators, gearboxes, and blades.

Fig. 17 provides a comprehensive comparison of the actual
and predicted values of generator speed, wind speed, and
output power of the Bladed 5MWwind turbine simulator and
the RNN-LSTM, XGBoost, RFR, and CIL models. XGBoost
and RFR show variations in their performance, with each
model outperforming the other for specific parameters and
vice versa. The CIL model acts as a pivotal benchmark,
navigating the performance spectrum between the other
methods. On the other hand, the RNN-LSTM hybrid model

consistently surpasses not only the CIL but the other models
in terms of the overall performance, producing accurate
estimated parameter trajectories.

VI. CONCLUSION
This study has presented a promising approach for moni-
toring and detecting faults in wind turbines using SCADA
and Bladed simulator data and machine learning algorithms,
specifically, the integrated RNN-LSTM hybrid model. The
proposed method turns out to outperform XGBoost, RFR,
and CIL methodology in short-term fault detection. We have
highlighted the usefulness of the proposed scheme in
detecting faults in wind turbines having no failure logs,
which can be much beneficial to predictive maintenance
for preventing catastrophic damages by virtue of early
intervention. The proposed scheme can serve as a more
dynamic and cost-effective data-driven maintenance strategy
in comparison with current static time-based ones.

It is expected that the proposed learning model and fault
detection scheme can be extended to other energy systems.
As for high-voltage transformers and solar power plants,
especially, one can easily attain the models of their key
health indicators, such as temperature, electrical load, solar
irradiance, and power output. Not only do their operational
features bear resemblance to wind power plants, their
parameters have similar or identical characteristics to wind
turbines. Hence the proposed integrated RNN-LSTM hybrid
model will be able to capture these dynamics with little
modification. In this regard, the next study will be devoted
to applying the proposed maintenance monitoring scheme to
these energy conversion systems.
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