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ABSTRACT In recent years, there has been a growing interest in utilizing dependency parsing with graph
convolutional networks for aspect-based sentiment analysis. Dependency relations betweenwords are used to
construct graphs that integrate syntactic information into deep learning frameworks. However, most existing
methods fail to consider the impact of different relation types between content words, which makes it
difficult to distinguish important related words. Moreover, the semantic relationship between words can
enhance the text understanding ability, which has been largely neglected in previous works. To address these
limitations, in this paper, we propose a novel model named as SS-GCN. Our model automatically learns
syntactic weighted matrix and leverages semantic information to obtain the text semantic representation, and
an attention module is introduced to obtain the specific aspect-context hidden vectors. The model enhances
the text representation ability from syntactic and semantic graph convolutional networks. We conducted
comprehensive experiments on publicly available datasets to demonstrate its validity and effectiveness. The
experimental results demonstrate that our model outperforms strong baseline models.

INDEX TERMS Aspect-based sentiment analysis, automated syntactic dependency weighting, graph
convolutional network, semantic relation graph.

I. INTRODUCTION
Sentiment analysis refers to extract and understand public
opinion from the sentence or document level [1]. However,
the user-generated content usually contains many topics
or aspects, toward different target has different sentiment.
Aspect-based sentiment analysis (ABSA) is a fine-grained
task within sentiment analysis that aims to distinguish
sentiment polarities towards specific entities in a given
text [2]. For example, given the sentence ‘‘i liked the
atmosphere very much but the food was not worth the price.’’.

The associate editor coordinating the review of this manuscript and

approving it for publication was Arianna D’Ulizia .

There are two aspects ‘‘atmosphere’’ and ‘‘food’’, the user
holds positive polarity to ‘‘atmosphere’’, whereas negative
towards ‘‘food’’.

In recent years, ABSA has garnered significant attention
from both industry and research communities [3], [4]. Deep
learning methods have emerged as popular models for
ABSA task due to their ability to automatically extract
relevant features. Most early works exploited recurrent neural
network (RNN) and its variants, such as long short-term
memory (LSTM) and bidirectional long short-term memory
(Bi-LSTM), to obtain the aspect category from the context
and aspect hidden representation [5], [6], [7], [8]. Zhang et al.
[2] pointed out that it is important for modelling connection
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between context words and aspects. Attention mechanism [9]
is introduced into the models, usually assuming that words
closer to the target words are more likely to be related
to its polarity [10]. However, these methods may attend
the irrelevant sequence words to the specific aspect [11].
To address this issue, graph-based models [12], [13],
[14] were employed to utilize the relationship between
words through syntactic dependency trees. These models
construct a graph for the entire text and leverage graph
convolutional networks (GCN) [15] to incorporate non-
sequential information. Moreover, some studies [16], [17]
focused on aspect, constructing text graph according to
relation between context words and aspect words. Graph
based methods enrich the representation vectors of context
and aspect terms, leading to improved the performance of
ABSA. Expression ability of the GCN is closely related
to the graph relation weight score [18]. Liang et al.
[19] introduced external affective commonsense knowledge
between words for relation weight score. However, most
of these methods regard the dependency relations as same
weight score, without considering their dependency types.
This limitation restricts the expressive capabilities of the
dependency relations. For example, considering the sentence
‘‘great food but the service was dreadful !’’, the dependency
graph is shown as Fig.1.

FIGURE 1. Example of sentence dependency relationship.

From the Fig.1, we can see ‘‘great’’ and ‘‘food’’ have a
dependency relation of ‘‘amod’’, while ‘‘food’’ and ‘‘was’’
have a relation of ‘‘conj’’. Obviously, the ‘‘amod’’ type
should be more important than ‘‘conj’’ and ‘‘det’’. Therefore,
the weight score of the edge between ‘‘great’’ and ‘‘food’’
should be higher than the score between ‘‘food’’ and ‘‘was’’
in the text graph. However, most studies assign the same
weight to all dependency relations, neglecting the distinction
between different relation types. Hence, it is necessary
to develop an appropriate approach that can differentiate
between different relation types and compute weight scores
accordingly.

Furthermore, graph-based models often overlook the
semantic relationships between words. To illustrate, consider
the following text:

‘‘i had a terrific meal, and our server guided us toward a
wine in our price range.’’

In this example, the aspect ‘‘wine’’ is perceived as positive,
which can be inferred from the phrase ‘‘terrific meal’’. There
exists a semantic relationship between the words ‘‘meal’’ and
‘‘wine’’. The word ‘‘terrific’’ influences the word ‘‘meal’’,
which in turn impacts the aspect ‘‘wine’’. Consequently, it is

crucial to establish semantic relationships between words
within the text. This enables a comprehensive understanding
of the overall meaning conveyed by the text.

In this paper, we propose an approach to effectively
utilize syntax information by employing type embeddings to
represent different dependency relation types. We introduce a
syntactic weighted module to automatically learn the weight
scores for these different types. Additionally, we introduce
a text semantic graph to enhance the representation ability
between words. Graph convolutional network is employed
to get the text and aspect representation from semantic and
syntactic graphs.

The main contributions of our work can be summarized as
follows:

• We explore a type embedding layer to obtain repre-
sentations of dependency relation types, and introduce
a syntactic module to automatically learn the weight
scores for these different types. This module overcomes
the limitation in graph models where all types of
relationships have the same weight, thereby enhancing
the expressive power of syntactic information in the
text.

• We introduce a text semantic graph to capture the
semantic relationships between words. This module
incorporates semantic information to the text, enabling
a more comprehensive understanding of the text and
thereby enhancing the text representation ability.

• We propose a novel model, called SS-GCN, which
automatically learns the text syntactic and semantic
features from graph convolutional networks. Further-
more, we incorporate an attention module to obtain
specific context-aspect representations for the ABSA
task. We evaluate our method on four publicly available
datasets. The experimental results indicate that our
proposed model achieves higher accuracy than most of
the baseline models and outperforms the strong baseline
models.

II. RELATED WORK
Aspect-based sentiment analysis is an important fine-grained
sentiment analysis task that has received increasing attention
in recent years. Traditional methods [20], [21] for this task
primarily focus on extracting a set of handcrafted features,
such as sentiment lexicons, to train a sentiment statistic-
based classifier. However, these methods heavily rely on
handcrafted features, which are labor-intensive and costly.
Deep learning methods have shown strong text representation
capabilities through multiple hidden layers. They are more
scalable than manual-based features. Many works based on
deep learning approaches are developed for ABSA.

Sequential models, such as recurrent neural network, long
short-term memory and gated recurrent neural networks
(GRU), have demonstrated strong represent ability in natural
language processing (NLP). TD-LSTM [5] splits a sentence
into two parts from the target, and utilizes two LSTMs to
obtain the left and right representation of the target. Further
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more, Zhang et al. [22] proposed bi-direction GRU perform
even better than LSTM, compared to TD-LSTM.

Not all context words are important for the aspect words.
Sequential models combinedwith attentionmechanisms have
been employed to address the relationship between context
and aspect words [23], [24], [25], [26]. Feng et al. [27]
introduced an attention mask mechanism to ignore irrelevant
words in the context. The integration of complex attention
mechanisms with sequential models has greatly improved
ABSA performance and become a prevalent framework.
In addition, some previous works [28], [29], [30], [31]
utilized memory networks or Capsule Networks to extract
aspect-relevant information from the context. For example,
TransCap [31] developed semantic capsules for sentence
representation, employing aspect routing to compute the
weight between aspects and the context words. CPA-SA [32]
introduced two asymmetric positional weighting functions to
model aspect-specific context position information.

Despite the effectiveness of these methods, they implicitly
get the related information from attention score, making
it challenging to capture long-range dependencies between
words.

Graph convolutional network has the ability to process data
on the generalized graph, which can capture the dependencies
of the graph structure [33]. It performs excellent for
processing rich relational data by updating nodes feature
from adjacent nodes. Therefore, it can capture the long-range
sentiment relation through syntactic or semantic information
between words. Graph convolutional networks combined
with dependency trees have been explored to predict aspect
sentiment polarity [12], [13], [14]. For instance, Chen et al.
[13] utilized graph convolutional networks to enhance text
representation capabilities by considering syntactic graphs.

However, these methods consider all relations between
words, which do not focus on the connection between
aspect and opinion words. R-GAT [16] and dotGCN [34]
reconstructed the dependency parser tree specifically for
aspect words, generating a graph structure with the aspect
words as root nodes. AGGCN [34] used gated LSTM to
encode sentences, which selected specific aspect represen-
tation information from the context. Nevertheless, all these
methods ignore the dependency relation type between words,
and they regard them as the same weight in the adjacent
matrix. Phan et al. [35] pointed out that the performance
of graph-based methods strongly depends on the graph
structure and edge weights. DREGCN [36] and T-GCN [37]
exploited dependency relation type by embedding them
as type vectors and updated node features by adjacent
node features and type vectors. These works are most
similar to our approach. However, in these works, the
edge weights are dependent on the relation type and word
representation. Obviously, it is inconsistent with our intuition,
as the same type of relation should have the same weight.
Researchers are increasingly recognizing the importance of
word relations and incorporating additional knowledge in
analyzing these relationships. PD-RGAT [38] constructed

graph structure by incorporating rich information from both
dependency trees and phrase trees. Liang et al. [11] used
constituent tree to build adjacent matrix for each phrase layer.
Hete_GNNs [39] and Sentic GCN [19] introduced sentiment
dictionary into words relationship. In addition, BERT-based
context representation models [40], [41], [42] can improve
the performance whatever it is a graph-based model or none
graph-based model [43].

In addition, another trend is to explicitly utilize knowledge,
such as syntax, semantics, and affective dictionaries, to con-
struct text graphs. Graph convolutional networks are applied
to perform operations on these graph structures. Constructing
text graph based on dependency relationships is a prevalent
approach in graph-based models. However, all of these works
did not take into account the semantic information between
words. The semantic relationship between words is very
important for text comprehension, as it can enhance the
representation ability of words, and subsequently improve the
performance of the ABSA task.

III. OUR PROPOSED MODEL
In this section, we explain the proposedmodel in detail. Given
the sentence s = w1,w2, . . . ,wt ,wt+1, . . . ,wt+1−k , . . . ,wn,
the task is defined as predicting the sentiment polarity
category corresponding to the specific aspect term a =

wt ,wt+1, . . . ,wt+1−k . Where wi is the ith word in sentence
s, and a is the subsequence of s.
For graph-based models, constructing text graphs is

an important step. First, we introduce the process of
constructing the syntactic and semantic text graph. Subse-
quently, we present the architecture of our proposed model,
as depicted in Fig. 2 (All matrix scores in Fig. 2 are provided
as examples.).

Our model can be mainly divided into three parts, that is:
• Syntactic representation: Learn the syntactic weighting
matrix from the text syntactic graph and obtain the
text syntactic representation through the syntactic GCN
layer.

• Semantic representation: leverage a semantic weighted
matrix to get text semantic representation from the text
semantic GCN layers.

• Attention module: the syntactic representation and
semantic representation are combined to obtain the
text representation. Afterwards, an aspect mask is
applied to the text representation to extract the aspect
representation. The attention module then computes the
attention weight for the specific aspect and outputs the
final representation for sentiment classification.

A. GRAPH CONSTRUCTION
For graph based methods, establishing an appropriate graph
is a critical step as it determines the structure of the graph.
The differences in graph structures can have an impact on
the relationships between words, which are closely related
to the text representation. In our model, the syntactic graph
and semantic graph are constructed separately. We enhance
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FIGURE 2. Overall architecture of the proposed SS-GCN model.

the text representation ability by leveraging syntactic and
semantic information.

1) SYNTACTIC GRAPH
The syntactic undirected graph is constructed by dependency
relation between words. Each word in sentence corresponds
to the node in graph, and the edges between words are
dependency type. We add self loop for each node, and the
type is defined as ‘‘self’’. The dependency type index is built,
starting from 1. The syntactic adjacency matrix Asyn:

Asynij =

{
T , if wi and wj have dependency relation
0, others

(1)

where T is dependency type index.

2) SEMANTIC GRAPH
Word embedding models such as Glove [44] and Word2vec
[45] represent words in the form of vector, and previous
studies have demonstrated that they can be used for
measuring semantic similarity between words [46]. Semantic
similarity plays an important role in the field of linguistics.
We build edges for any two nodes in the text, where the
edge weight is semantic similarity. The semantic similarity
is defined as:

distanceij =
∣∣cosine(Ei,Ej)∣∣ (2)

Ei and Ej are embeddings corresponding to wi and wj,
respectively. The distance between wi and wj is the absolute
value of cosine similarity between their embedding vectors.
The semantic weighted matrix Asem is:

Asemij =

{
distanceij, if distanceij > ε

0, if distanceij ≤ ε
(3)

ε is the threshold of the distance.

B. SS-GCN MODEL
In the embedding layer, each word in the sentence is
embedded into a dw-dimensional vector by looking up
table E ∈ Rdw×N , where N denotes the size of the
vocabulary. The semantic weighting matrix Asem is obtained
by embedding words in the semantic weighting module as
shown in (3). As shown in the weighted score examples in
Fig.2, the syntactic adjacency matrix is symmetric. After
passing through the type embedding layer, the syntactic type
embedding Htype ∈ Rdt×n×n is generated, where dt is
the dimension of type embedding. The syntactic weighted
matrix is produced by the syntactic weighted module, and the
formula is:

Asyn = σ (WsHtype + bs) (4)

where Ws ∈ Rdt×1 and bs are the trainable parameters, and
σ is the sigmoid activation function. The Asyn ∈ Rn×n is a
self-learning weighted matrix, which indicates that different
types of dependencies correspond to different the dependency
weight.

With the word embeddings of the sentence X , a bidirec-
tional LSTM is used to generate the context hidden state
vectors Hc. Then semantic weighted matrix and syntactic
weighted matrix are fed into semantic GCN layers and
syntactic GCN layers, respectively. In the GCN layers, the
node representation is updated by aggregating neighbor
nodes information from adjacent matrix, where the weight
denotes the importance of the adjacency. The syntactic
GCN layer integrates syntactic related words into the word
representation, and the hidden state of theword inGCN layers
is formulated as:

H (l+1)
syn = ReLU (LsynH (l)

synW
(l)
syn) (5)

whereW (l)
syn is the learned parameter in the l−th layer of GCN,

and Lsyn is the Laplacian matrix that is defined as:

Lsyn = D̃−
1
2 ÃsynD̃

1
2 (6)

where Ãsyn is denoted as Ãsyn = Asyn+ I , and I is the identity
matrix. D̃ is a diagonal matrix, and the D̃ii =

∑
j A

syn
ij . The

initial hidden state H (0)
syn is set to Hc. The l layers GCN is

considered to capture information from l−hops neighbors.
Similar to the syntactic GCN layers, the formula for the
semantic GCN layer is given by:

H (l+1)
sem = ReLU (LsemH (l)

semW
(l)
sem) (7)
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where Lsem is the Laplacian matrix of the Asem. The last layer
of syntactic GCN and semantic GCN are concatenated to
obtain the text representationHtext . The aspect representation
Haspect is produced by aspect mask module fromHtext , where
the word vectors of non-aspect words are set to 0. This can be
expressed as follows:

H i
aspect =

{
H i
text , if t ≤ i ≤ t + k − 1

0, otherwise
(8)

The attention module derives significate features form the
contextual representation, and the final representation Hfinal
and attention weights are calculated as follows:

Hfinal =

n∑
m=1

αmHm
c (9)

αm =
exp(βm)∑n
i=1 exp(βi)

(10)

βm = (Hm
text )

THaspect =

t+k−1∑
i=t

(Hm
text )

TH i
aspect (11)

Here αm is attention weight of the m-th word with respect
to the aspect. The final text vectors Hfinal are forwarded to
softmax layer for aspect sentiment classification.

y = softmax(WfHfinal + bf ) (12)

where Wf and bf are trainable parameters, and softmax(·)
represents the softmax function, which is employed to learn
the output distribution for the sentiment classifier.

C. MODEL TRAINING
The model is trained to optimize all the parameters to mini-
mize the objective function. In our model, the cross-entropy
with L2-regularization term is used as the loss function, and
it is formulated as:

l(θ ) = −

N∑
i

C∑
j

yjilog(ŷi
j) + λ ||θ ||

2 (13)

where N is the number of samples, and C is the number
of classes. The ŷi is the estimated probability, and λ is the
L2-regularization factors.

IV. EXPERIMENTS
A. DATASETS AND EXPERIMENTAL SETTINGS
To evaluate our model, extensive experiments are performed
on four publicly available datasets, abbreviated as Rest14,
Lap14, Rest15, and Rest16 respectively. Rest14 and Lap14
respectively come from the restaurant and laptop domains
of SemEval-2014 Task 4 [47]. Rest15 and Rest16 are
restaurant reviews collected fromSemEval-2015 Task 12 [48]
and SemEval-2016 Task 5 [49], respectively. To ensure a
fair comparison with the baseline models, we utilized the
same data partitioning scheme as employed by the baseline
models [12], [13], [19], [30], [39]. The statistics of datasets
are shown in Table 1.

TABLE 1. Statistics of the experimental datasets.

In this paper, we construct syntactic graph using depen-
dency relations and types obtained from Spacy parse tree.1

300-dimensional pretrained word embeddings of GloVe are
used to represent the word vectors, and semantic graph is
constructed by computing the semantic distance through
word embeddings with the threshold of 0.1. The embedding
size of the dependency type is set to 300 and randomly
initialized. Following pilot studies, the depth of GCN layers
is set to 2. The dimensionality of hidden state vectors in the
model is set to 250 and initialized randomly with uniform
distribution. The coefficient of L2 regularization is set to
0.00001. The model is trained using Adam optimizer with
0.001 learning rate. Accuracy and Macro-Averaged F1 are
utilized as the evaluation metrics.

B. BASELINE MODELS
To evaluate the effectiveness of the proposed model, we com-
pare its performance with the following methods on four
public datasets:

• TD-LSTM [5]: utilizes two LSTM networks to obtain
the left and right context-aspect hidden vectors sep-
arately. These hidden vectors are then combined to
generate the specific aspect representation.

• IAN [24]: employs interactive attention networks
dynamically learns the relationship between the context
and aspect.

• Transcap [31]: transfers document-level knowledge
to aspect-level sentiment classification by a transfer
capsule network framework.

• IACapsNet [30]: learns vector-based feature represen-
tation through a capsule network and obtains clustered
features from an EM routing algorithm.

• GCNSA [13]: adopts graph convolutional networks
over syntactic dependency graph for text representation
and an extended structural attention model for aspect
representation.

• ASGCN [12]: leverages syntactical information and
word dependency relations to construct text graph,
and aspect-specific features are generated using
retrieval-based attention mechanism.

• CPA-SA [32]: introduces two asymmetric positional
weighting functions to adjust the weights of contex-
tual words at different positions. It also utilizes a
multiple-sentence-level Bi-GRU to capture contextual
features.

1Spacy tools:https://spacy.io/
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TABLE 2. Experimental results on four datasets.

• Hete_GNNs [39]: incorporates syntax dependency
relations, speech part-of-speech (POS) relations, and
sentiment relations into the adjacency matrix. Graph
attention networks are employed to capture heteroge-
neous graph relations information.

• Sentic GCN [19]: constructs a graph over the
dependency tree, incorporating affective commonsense
knowledge. Graph convolutional networks are then used
to capture affective dependencies to specific aspects.

C. RESULTS
We conducted a comparison of our proposed method with
baselines on the four datasets, and the results are reported in
Table 2. The performance of the model is influenced by the
choice of optimizer and batch size. To accurately assess the
performance of each model, we re-implemented the models
and trained them using the same settings as the others. The
results marked with ‘♮’ indicate that they have been re-
implemented, whereas those denoted with ‘‡’ are obtained
from open source codes. The remaining results are retrieved
from the original papers. The best results are highlighted in
bold, the second best results are underlined.

As shown in Table 2, our proposed method SS-GCN
achieves the highest performance on the Rest14, Rest15
and Rest16 datasets. Among the compared methods,
TD-LSTM performs the worst as it disregards the represen-
tation of context. The IAN is slightly better than TD-LSTM
for introducing attention mechanism into sequential model.
The performance of the capsule network-based methods
TransCap and IACapsNet is superior to the sequential models
TD-LSTM and IAN. In particular, IACapsNet utilizes EM
routing for specific aspect representations, achieving the
highest accuracy and F1 score on Lap14. CPA-SA achieves
the second highest accuracy on the Rest14 dataset, with
F1 scores only second to our proposed method on the
Rest16 dataset. CPA-SA differs from ASGCN by assigning
asymmetric weights to contextual words. However, the
performance improvement is limited because aspect-related
words are not only influenced by their position in the sentence
but also by syntax and semantics.

Graph based models GCNSA, ASGCN, Sentic-GCN,
Hete_GNNs and our model SS-GCN generally outperform

sequential models because these graph-based models are able
to incorporate more information, such as syntactic, affective
features into models. As a result, they can better capture the
relationship between context and specific aspect. As show on
Rest15 and Rest16 in Table 2, we can observe that the F1
scores of our method are 66.16% and 74.28%, respectively.
Compared with the second result, it increased by 2.95% and
4.1%, respectively.

Our method, SS-GCN, incorporates a syntactic weighted
module that automatically learns the weights of syntactic
dependency relations, enabling it to assign weight informa-
tion based on the importance of dependency types. In com-
parison to SAGCN, ASGCN, and Sentic GCN, SS-GCN
overcomes the drawback of assigning equal weights to all
dependency types. The semantic weightedmodule introduced
in our approach obtains semantic relation weights between
words, which aggregates information fromwordswith similar
semantics. This integration of semantic information into
word features enhances the representation ability of the text.
However, existing methods have overlooked this aspect of
information. The incorporation of these two modules fully
leverages the semantic and syntactic information and further
improves performance.

D. ABLATION STUDY
To evaluate the impact of each component of the proposed
SS-GCN approach on the overall performance, we compare
different variants of SS-GCN on four datasets as presented
below:

• Semantic-GCN: the syntactic graph convolution net-
work is ablated, and other parts are similar to SS-GCN.

• Syntactic-Embedding-GCN:The semantic graph convo-
lution network is excluded and syntactic dependency
relation is embedded as SS-GCN.

• Syntactic-GCN:It is similar to the proposed variant
Syntactic-embedded-GCN, without inclusion of the
semantic graph convolution component. The weight of
all the dependency relation type is set to a fixed value 1,
rather than being learned from the embedding.

• C-SS-GCN: The attention module is removed. The
context representation vector and the aspect hidden
vector are passed through mean pooling to obtain
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TABLE 3. Ablation study.

the context hidden vector and aspect hidden vec-
tor, which are then concatenated to form the final
representation.

The results of the ablation study are demonstrated in Table 3.
We can observe that Syntactic-Embedding-GCN outperforms
Syntactic-GCN on all datasets, which demonstrates the
effectiveness of our proposed syntactic weighted module
for learning dependency weights. Furthermore, Syntactic-
Embedding-GCN is superior to Semantic-GCN, indicating
that the syntactic graph convolutional network in our module
can capture more important features than the semantic graph
convolutional network. However, Syntactic-GCN does not
outperform Semantic-GCN on all datasets, which further
demonstrates the close relationship between dependency
relation weight and the performance of graph-based mod-
els. The C-SS-GCN model generally performs better than
Syntactic-Embedding-GCN and Semantic-GCN due to its
incorporation of both syntactic and semantic information.
The results also indicate that the semantic graph relation is
a necessary complement to the syntactic graph. However,
when considered separately, the syntactic relation is more
important than the semantic relation. C-SS-GCN is inferior
to SS-GCN, suggesting that attention-based representation of
the context-aspect relationship is more effective than using
concatenated approaches.

E. IMPACT OF THE SEMANTIC GRAPH THRESHOLD
To investigate the impact of threshold value of semantic graph
to the performance, we conduct experiments on the Lap14,
Rest14, Rest15, and Rest16 datasets. The threshold values are
varied from 0 to 0.9 with an interval of 0.1, resulting in a
total of 10 values. The accuracy results are presented in Fig.3,
while the F1 scores are displayed in Fig.4.

The variation of the threshold value has a significant
impact on the accuracy. When the threshold value is 0, the
accuracy is not optimal across all datasets, which indicates
that including all semantic relations introduces a lot of noisy
information. When the threshold is set to 0.5, all datasets
demonstrate the lowest accuracy. As the threshold value
increases beyond 0.5, the accuracy tends to decrease initially
and then stabilize.

The F1 score is also affected by the variation of threshold
values. Generally, as the threshold value increases to greater
than 0.4, the F1 score significantly decrease, similar to the
changes observed in the accuracy. These results indicate

FIGURE 3. The impact of threshold values on accuracy.

FIGURE 4. The impact of threshold values on the F1 score.

that setting a threshold too high can filter out many useful
semantic relationships.

F. IMPACT OF DEPENDENCY EMBEDDING SIZE
In this section, we investigate the impact of dependency
embedding size by changing the dimension from 50 to 400.
Our experiment focused on the Rest 15 and Rest 16 datasets.
The accuracy results of the experiment are shown in Fig.5.

The size of dependency embeddings has a notable impact
on the performance of the model. Generally, increasing the
size of dependency embeddings leads to higher accuracy.
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FIGURE 5. The impact of dimension of dependency embedding.

In particular, when the size is set to 300, the model achieves
the highest accuracy on Rest15 and Rest16 datasets. When
the size exceeds 300, the performance changes are not
significant. This observation supports the notion that when
the dependency embedding size is small, the model may face
challenges in capturing fine-grained syntactic relationships
between words. On the contrary, increasing the dependency
embedding size enables a more expressive representation of
the dependency relationships.

G. CASE STUDY
To perform a comprehensive analysis of the importance of
semantic and syntactic graph relationships, we conducted
a case study in which we reported the results of several
representative testing examples.

For the sentence ‘‘great food but the service was dread-
ful!’’, the syntactic dependency relations are depicted in
Fig.1. We proposed to automatically learn the weights of
different dependency relation types. The results of the learned
dependency weights are shown in Fig.6.

From Fig.1, we can observe that ‘‘great’’ and ‘‘food’’
have the relation type ‘‘amod’’, whereas ‘‘food’’ and ‘‘but’’
have the relation type ‘‘cc’’. After learning, we found that
in our model, the weight of ‘‘amod’’ is 0.7673 and the
weight of ‘‘cc’’ is 0.2622, as shown in Fig.6. This implies
that, according to our learned weights, the ‘‘amod’’ relation
is considered more important than the ‘‘cc’’ relation. This

FIGURE 6. Weights of the dependency relations for the example sentence.

weighting approach is more suitable than simply setting all
relation type weights to 1, as done in other methods.

The sentence ‘‘The food was very good and I was
pleasantly surprised to see so many vegan options.’’ contains
‘‘food’’ and ‘‘vegan’’ two aspects. It is relatively easy to judge
the sentiment for the aspect ‘‘food’’ as it is closely related
to the adjective ‘‘good’’. However, the aspect ‘‘vegan’’ is
distantly related to the adjective words. Without semantic
information, it becomes difficult to determine the correct
sentiment for this aspect. By leveraging the semantic relation,
we can infer the sentiment by understanding that vegan is a
type of food and food is described as good, thus allowing us
to further judge that ‘‘vegan’’ is also good. In our proposed
method, we construct a semantic graph for the sentence, and
the weights of the semantic graph relations are visualized in
Fig.7.

From Fig.7, we can observe that the word ‘‘vegan’’ has
the highest relation weights with ‘‘food’’ compared to other
words. In our experiments, this weight helped us correctly
determine the sentiment polarity for the aspect ‘‘vegan’’.
Although, it is challenging to determine the sentiment of
‘‘vegan’’ solely based on syntactic and positional informa-
tion, our approach relies on semantic relations to accurately
capture the sentiment. This highlights the significance of the
semantic graph in the aspect-based sentiment analysis task.

FIGURE 7. Visualization of semantic relation weight for the example
sentence.

V. CONCLUSION
For aspect-level sentiment analysis tasks, it is crucial to have
a comprehensive understanding of the overall meaning of the
entire text and the relationships between aspects and the entire
text. The comprehension of text heavily relies on the syntactic
dependency relationships and semantic relationships between
words. However, the importance of different syntactic and
semantic relationships varies, and existing methods struggle
to effectively capture the weights of these two types of
relationships, which consequently impacts the performance
of graph-based methods.
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In this paper, we propose a graph-based model called
SS-GCN, which incorporates both semantic and syntactic
information. Our model consists of a syntactic weighted
module that automatically learns the weights of syntactic
dependency relations, and a semantic weighted module that
captures the semantic relations between words. Experimental
results demonstrate the importance of semantic relations
in text representation. Experimental results and case study
demonstrate that the learned weights can effectively represent
the importance of different relationships. The incorporation
of these two modules overcomes the limitation of assigning
equal weights to all relationships, thereby enhancing the text
and aspect representation capability. Specifically, in longer
sentences, different words may be used to express the same
concept, making semantic information even more crucial.
Furthermore, our experiments reveal that the sentiment
polarity of an aspect is related to the entire sentence, indi-
cating the importance of comprehensively understanding the
entire sentence. Simply considering syntactic and semantic
information alone is not sufficient.

In the future, it is essential to consider additional
information such as common sense knowledge and affective
knowledge. An appropriate fusion method for all these
types of information will be crucial for advancing this task.
In addition, in aspect-level sentiment tasks, the text can be
considered as a whole, while aspects are specific parts within
the text. Understanding the relationship between the whole
and its parts is crucial for aspect-level tasks. Irrelevant content
related to aspects in the text may introduce noise and affect
the accuracy of the task. Therefore, in the future, it is crucial
to segment the relevant aspects from the unrelated portions.
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[4] M. M. Truşcǎ and F. Frasincar, ‘‘Survey on aspect detection for aspect-
based sentiment analysis,’’ Artif. Intell. Rev., vol. 56, no. 5, pp. 3797–3846,
May 2023.

[5] D. Tang, B. Qin, X. Feng, and T. Liu, ‘‘Effective LSTMs for target-
dependent sentiment classification,’’ in Proc. 26th Int. Conf. Comput.
Linguistics, Tech. Papers, 2016, pp. 3298–3307.

[6] S. Ruder, P. Ghaffari, and J. G. Breslin, ‘‘A hierarchical model of reviews
for aspect-based sentiment analysis,’’ in Proc. Conf. Empirical Methods
Natural Lang. Process., 2016, pp. 999–1005.

[7] Y. Ma, H. Peng, and E. Cambria, ‘‘Targeted aspect-based sentiment anal-
ysis via embedding commonsense knowledge into an attentive LSTM,’’ in
Proc. AAAI Conf. Artif. Intell., 2018, vol. 32, no. 1, pp. 5876–5883.

[8] L. Bao, P. Lambert, and T. Badia, ‘‘Attention and lexicon regularized
LSTM for aspect-based sentiment analysis,’’ in Proc. 57th Annu. Meeting
Assoc. Comput. Linguistics, Student Res. Workshop, 2019, pp. 253–259.

[9] V. Mnih, N. Heess, and A. Graves, ‘‘Recurrent models of visual attention,’’
in Proc. Adv. Neural Inf. Process. Syst., vol. 27, 2014, pp. 1–9.

[10] X. Wang, M. Tang, T. Yang, and Z. Wang, ‘‘A novel network with multiple
attention mechanisms for aspect-level sentiment analysis,’’ Knowl.-Based
Syst., vol. 227, Sep. 2021, Art. no. 107196.

[11] S. Liang, W. Wei, X.-L. Mao, F. Wang, and Z. He, ‘‘BiSyn-GAT+:
Bi-syntax aware graph attention network for aspect-based sentiment
analysis,’’ 2022, arXiv:2204.03117.

[12] C. Zhang, Q. Li, and D. Song, ‘‘Aspect-based sentiment classification with
aspect-specific graph convolutional networks,’’ 2019, arXiv:1909.03477.

[13] J. Chen, H. Hou, Y. Ji, and J. Gao, ‘‘Graph convolutional networks with
structural attention model for aspect based sentiment analysis,’’ in Proc.
Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2019, pp. 1–7.

[14] J. Chen, H. Hou, J. Gao, Y. Ji, T. Bai, and Y. Jing, ‘‘GCNDA: Graph
convolutional networks with dual attention mechanisms for aspect based
sentiment analysis,’’ inProc. Int. Conf. Neural Inf. Process. Springer, 2019,
pp. 189–197.

[15] T. N. Kipf and M. Welling, ‘‘Semi-supervised classification with graph
convolutional networks,’’ in Proc. Int. Conf. Learn. Represent., 2016,
pp. 1–14.

[16] K. Wang, W. Shen, Y. Yang, X. Quan, and R. Wang, ‘‘Relational graph
attention network for aspect-based sentiment analysis,’’ inProc. 58th Annu.
Meeting Assoc. Comput. Linguistics, 2020, pp. 3229–3238.

[17] B. Liang, R. Yin, L. Gui, J. Du, and R. Xu, ‘‘Jointly learning aspect-focused
and inter-aspect relations with graph convolutional networks for aspect
sentiment analysis,’’ in Proc. 28th Int. Conf. Comput. Linguistics, 2020,
pp. 150–161.

[18] L. Wu, Y. Chen, K. Shen, X. Guo, H. Gao, S. Li, J. Pei, and B. Long,
‘‘Graph neural networks for natural language processing: A survey,’’
Found. Trends Mach. Learn., vol. 16, no. 2, pp. 119–328, 2023.

[19] B. Liang, H. Su, L. Gui, E. Cambria, and R. Xu, ‘‘Aspect-based sentiment
analysis via affective knowledge enhanced graph convolutional networks,’’
Knowl.-Based Syst., vol. 235, Jan. 2022, Art. no. 107643.

[20] L. Jiang, M. Yu, M. Zhou, X. Liu, and T. Zhao, ‘‘Target-dependent Twitter
sentiment classification,’’ in Proc. 49th Annu. Meeting Assoc. Comput.
Linguistics, Hum. Lang. Technol., 2011, pp. 151–160.

[21] T. Nakagawa, K. Inui, and S. Kurohashi, ‘‘Dependency tree-based
sentiment classification using CRFs with hidden variables,’’ in Proc.
Annu. Conf. North Amer. Chapter Assoc. Comput. Linguistics, 2010,
pp. 786–794.

[22] M. Zhang, Y. Zhang, and D.-T. Vo, ‘‘Gated neural networks for targeted
sentiment analysis,’’ in Proc. AAAI Conf. Artif. Intell., 2016, vol. 30, no. 1,
pp. 3087–3093.

[23] Y. Wang, M. Huang, X. Zhu, and L. Zhao, ‘‘Attention-based LSTM for
aspect-level sentiment classification,’’ in Proc. Conf. Empirical Methods
Natural Lang. Process., 2016, pp. 606–615.

[24] D. Ma, S. Li, X. Zhang, and H. Wang, ‘‘Interactive attention networks for
aspect-level sentiment classification,’’ in Proc. 26th Int. Joint Conf. Artif.
Intell., Aug. 2017, pp. 4068–4074.

[25] L. Li, Y. Liu, and A. Zhou, ‘‘Hierarchical attention based position-aware
network for aspect-level sentiment analysis,’’ in Proc. 22nd Conf. Comput.
Natural Lang. Learn., 2018, pp. 181–189.

[26] E. F. Ayetiran, ‘‘Attention-based aspect sentiment classification using
enhanced learning through CNN-BiLSTMnetworks,’’Knowl.-Based Syst.,
vol. 252, Sep. 2022, Art. no. 109409.

[27] A. Feng, X. Zhang, and X. Song, ‘‘Unrestricted attention may not be all
you need–masked attention mechanism focuses better on relevant parts in
aspect-based sentiment analysis,’’ IEEE Access, vol. 10, pp. 8518–8528,
2022.

[28] P. Chen, Z. Sun, L. Bing, and W. Yang, ‘‘Recurrent attention network on
memory for aspect sentiment analysis,’’ in Proc. Conf. Empirical Methods
Natural Lang. Process., 2017, pp. 452–461.

[29] Q. Liu, H. Zhang, Y. Zeng, Z. Huang, and Z.Wu, ‘‘Content attention model
for aspect based sentiment analysis,’’ inProc.WorldWideWeb Conf., 2018,
pp. 1023–1032.

[30] C. Du, H. Sun, J. Wang, Q. Qi, J. Liao, T. Xu, and M. Liu, ‘‘Capsule net-
work with interactive attention for aspect-level sentiment classification,’’
in Proc. Conf. Empirical Methods Natural Lang. Process. 9th Int. Joint
Conf. Natural Lang. Process. (EMNLP-IJCNLP), 2019, pp. 5489–5498.

[31] Z. Chen and T. Qian, ‘‘Transfer capsule network for aspect level sentiment
classification,’’ in Proc. 57th Annu. Meeting Assoc. Comput. Linguistics,
2019, pp. 547–556.

[32] B. Huang, R. Guo, Y. Zhu, Z. Fang, G. Zeng, J. Liu, Y. Wang,
H. Fujita, and Z. Shi, ‘‘Aspect-level sentiment analysis with aspect-specific
context position information,’’ Knowl.-Based Syst., vol. 243, May 2022,
Art. no. 108473.

[33] S. Abadal, A. Jain, R. Guirado, J. López-Alonso, and E. Alarcón,
‘‘Computing graph neural networks: A survey from algorithms to
accelerators,’’ ACM Comput. Surv., vol. 54, no. 9, pp. 1–38, Dec. 2022.

22508 VOLUME 12, 2024



J. Chen et al.: Syntactic and Semantic Aware Graph Convolutional Network for ABSA

[34] C. Chen, Z. Teng, Z.Wang, and Y. Zhang, ‘‘Discrete opinion tree induction
for aspect-based sentiment analysis,’’ in Proc. 60th Annu. Meeting Assoc.
Comput. Linguistics, 2022, pp. 2051–2064.

[35] H. T. Phan, N. T. Nguyen, andD.Hwang, ‘‘Aspect-level sentiment analysis:
A survey of graph convolutional network methods,’’ Inf. Fusion, vol. 91,
pp. 149–172, Mar. 2023.

[36] Y. Liang, F. Meng, J. Zhang, Y. Chen, J. Xu, and J. Zhou, ‘‘A dependency
syntactic knowledge augmented interactive architecture for end-to-end
aspect-based sentiment analysis,’’Neurocomputing, vol. 454, pp. 291–302,
Sep. 2021.

[37] Y. Tian, G. Chen, and Y. Song, ‘‘Aspect-based sentiment analysis with
type-aware graph convolutional networks and layer ensemble,’’ in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, Human Lang.
Technol., 2021, pp. 2910–2922.

[38] H. Wu, Z. Zhang, S. Shi, Q. Wu, and H. Song, ‘‘Phrase dependency
relational graph attention network for aspect-based sentiment analysis,’’
Knowl.-Based Syst., vol. 236, Jan. 2022, Art. no. 107736.

[39] G. Lu, J. Li, and J. Wei, ‘‘Aspect sentiment analysis with heterogeneous
graph neural networks,’’ Inf. Process. Manage., vol. 59, no. 4, Jul. 2022,
Art. no. 102953.

[40] H. T. Phan, N. T. Nguyen, and D. Hwang, ‘‘Aspect-level senti-
ment analysis using CNN over BERT-GCN,’’ IEEE Access, vol. 10,
pp. 110402–110409, 2022.

[41] H. Xu, B. Liu, L. Shu, and S. Y. Philip, ‘‘BERT post-training for review
reading comprehension and aspect-based sentiment analysis,’’ in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang.
Technol., vol. 1, 2019, pp. 2324–2335.

[42] P. Yang, P. Zhang, B. Li, S. Ji, andM. Yi, ‘‘Aspect-based sentiment analysis
using adversarial BERT with capsule networks,’’ Neural Process. Lett.,
vol. 55, no. 6, pp. 8041–8058, Dec. 2023.

[43] G. Brauwers and F. Frasincar, ‘‘A survey on aspect-based sentiment
classification,’’ ACM Comput. Surv., vol. 55, no. 4, pp. 1–37, Apr. 2023.

[44] J. Pennington, R. Socher, and C. Manning, ‘‘Glove: Global vectors for
word representation,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process. (EMNLP), 2014, pp. 1532–1543.

[45] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 26, 2013, pp. 1–9.

[46] S. M. Mohammed, K. Jacksi, and S. R. M. Zeebaree, ‘‘A state-of-the-art
survey on semantic similarity for document clustering using GloVe and
density-based algorithms,’’ Indonesian J. Electr. Eng. Comput. Sci., vol. 22,
pp. 552–562, Apr. 2021.

[47] M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou,
I. Androutsopoulos, and S. Manandhar, ‘‘SemEval-2014 Task 4:
Aspect based sentiment analysis,’’ in Proc. 8th Int. Workshop Semantic
Eval., 2014, pp. 27–35.

[48] M. Pontiki, D. Galanis, H. Papageorgiou, S. Manandhar, and
I. Androutsopoulos, ‘‘SemEval-2015 Task 12: Aspect based sentiment
analysis,’’ in Proc. 9th Int. Workshop Semantic Eval., Denver, CO, USA,
2015, pp. 486–495.

[49] M. Pontiki, D. Galanis, H. Papageorgiou, I. Androutsopoulos,
S. Manandhar, M. AL-Smadi, M. Al-Ayyoub, Y. Zhao, B. Qin,
O. De Clercq, and V. Hoste, ‘‘SemEval-2016 Task 5: Aspect based
sentiment analysis,’’ in Proc. Workshop Semantic Eval. (SemEval), 2016,
pp. 19–30.

JUNJIE CHEN received the M.S. and Ph.D.
degrees in computer application technology from
Inner Mongolia University, in 2004 and 2020,
respectively.

She is currently a Master’s Tutor with the
College of Computer and Information Engineer-
ing, Inner Mongolia Agricultural University. Her
research interests include natural language pro-
cessing, ontology, knowledge engineering, infor-
mation retrieval, and computer vision.

Dr. Chen is a Reviewer of the International Conference on Neural
Information Processing (ICOIP), from 2019 to 2023, a top international
conference on the CCF Conference List, and the Annual Conference of the
North American Chapter of the Association for Computational Linguistics
(NAACL), from 2020 to 2022. She is invited as a Keynote Speaker at
the Third International Conference on Computer Information Science and
Artificial Intelligence (CISAI 2020) International Conference.

HAO FAN was born in Hohhot, Inner Mongolia,
China, in 1998. He received the bachelor’s degree
in computer science and technology from Inner
Mongolia Agricultural University, in 2021, where
he is currently pursuing the master’s degree
in computer science and technology with the
College of Computer Science and Information
Engineering.

His research interests include natural lan-
guage processing, named entity recognition, and
multimodal sentiment analysis.

WENCONG WANG was born in Liaocheng,
Shandong, China, in 2000. She received the bach-
elor’s degree in computer science and technology
from Shandong Normal University, in 2022. She
is currently pursuing the master’s degree in
computer science and technology with the College
of Computer and Information Engineering, Inner
Mongolia Agricultural University.

Her research interests include natural language
processing, computer vision, and multimodal
sentiment analysis.

VOLUME 12, 2024 22509


