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ABSTRACT Sewer networks (SNs) are susceptible to various factors that can lead to failures, resulting in
economic losses and environmental pollution. Data-driven approaches based on sewage flow monitoring
enhance the awareness and maintenance capabilities of SNs. However, the current research lacks early
warning systems for flow anomalies. This presents a challenge for the application of supervised methods,
primarily due to the scarcity of anomalous flow datasets. Even with the availability of such datasets, the
effectiveness of these methods may vary due to environmental differences, since SNs are situated in diverse
environments. Therefore, effectively achieving early warnings for anomalies in unlabeled flow data is a
challenge that must be addressed in the field of flow monitoring. To address this challenge, we propose
a detection method for effectively warning of anomalies in flow data. Since anomalies typically result
in significant deviations from normal data, early warnings can be achieved by comparing the differences
between current and historical data. The key to this early warning lies in establishing an adaptive threshold
for detecting abnormal data changes. Our detection method employs an unsupervised bagging-based multi-
anomaly detection algorithm to detect such abnormal data changes. Experiments conducted on Erhai Lake
SNs flow data demonstrate that our method can predict anomalies 5-15 minutes in advance with a precision
of 80.00%, a recall of 66.67%, and an F1 score of 0.73. Our approach not only achieves cost-effective and
timely anomalies detection but also overcomes the challenges associated with limited dataset availability,
making it applicable to various other industries.

INDEX TERMS Unsupervised, anomaly detection, bagging, sewer networks, data-driven, early warning.

I. INTRODUCTION
Sewer networks (SNs) are an integral part of the urban
wastewater system (UWS), and their failure can severely
affect the operation of the entire system [1], [2]. Maintenance
and repair costs associated with SNs worldwide amount to
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trillions of dollars annually, and these costs are expected to
increase as the frequency of failures rises [3], [4], [5], [6].
In order to effectively assist people in managing their assets
and reducing the costs and consequences of SNs failures,
various management approaches have been proposed. These
approaches can be broadly categorized into three main
groups: 1) fault detection, 2) deterioration modeling, and
3) sensor-based data-driven methods.
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Fault detectionmethodsmainly detect physical faults in the
SNs, such as deformations and breaks [7], [8], [9]. Typical
methods include closed circuit television (CCTV) [10],
[11], [12], sonar [13], [14], [15] and radar [16], [17], [18].
These methods can effectively detect fault anomalies in
the SNs, and in recent years have achieved high detection
accuracy when combined with artificial intelligence (AI)
technology [19], [20], but they are usually used to detect
faults that have already occurred and cannot effectively
compensate for the losses caused by faults. Therefore,
considering that corrosion is a major cause of physical
failures in SNs, deterioration models have been developed
to predict corrosion in SNs and make timely decisions to
reduce the impact of corrosion on SNs [21], [22]. Currently,
deterioration models are available as deterministic [23], [24],
statistical [25], [26] and probabilistic models [27], [28], etc.
These models can effectively predict the corrosion of SNs,
but they are primarily used to predict the deterioration of SNs
under natural conditions. When affected by sudden external
factors, such as the discharge of untreated chemical waste
liquids, contamination of the soil around the SNs. These
factors can easily cause the method to fail. Therefore, in order
to effectively achieve early detection of abnormal in the
SNs and to effectively overcome the interference of various
external mutating factors, sensor-based data-driven methods
have been proposed. People place various types of sensors in
the SNs to obtain monitoring data, and the monitoring data is
combined with AI technology to effectively achieve real-time
monitoring and intelligent fault diagnosis of the SNs [2], [29],
[30], [31]. Compared with fault detection and deterioration
modelling approaches, the sensor-based data-driven methods
offers better monitoring efficiency, does not need to rely too
much on the expertise of system experts, is easy to implement,
and is nowwidely used to monitor anomalies in SNs [2], [32].
Currently, among sensor-based data-driven methods,

sewage flow monitoring has proven to be an effective means
of managing SNs. It accomplishes this by reflecting the
condition of SNs through flow data, thereby enhancing
awareness and facilitating maintenance. Sewage flow detec-
tion significantly contributes to urban safety and livability
[33], [34], as it allows for the timely identification of SNs
leaks and aids in the maintenance of drainage systems [35],
[36], [37]. Furthermore, compared to other data-driven
methods such as water quality monitoring [38], sewage flow
monitoring uses cost-effective flowmeters for long-term SNs
monitoring [39]. Sewage flowmonitoring plays a vital role in
SNs management. However, it is worth noting that limited
systematic attention has been devoted to flow feedback
anomalies in sewage flow monitoring studies, resulting in
a lack of early warning systems for these anomalies [34].
Additionally, the absence of anomalous flow datasets has
posed challenges in applying existing monitoring methods.
Even when anomalous flow datasets are available, SNs
are located in various environments, which can lead to
biases in flow distribution [40]. These environmental factors

include differences in precipitation between the rainy and
dry seasons, different types of industrial and residential
areas in various regions with different water demands and
water use habits. As shown in Figure 1, it can be observed
that the difference in precipitation between the dry and
rainy seasons results in varying water levels in the two
different seasons. The anomalies that exceed the thresholds
in the rainy season (b) are at a similar distance from the
normal data points in the dry season (a) in the t-Distributed
Stochastic Neighbor Embedding (t-SNE) example plot (c).
This suggests that there are differences in the definition
of anomalies in different environmental flow data, and that
SNs data from different environmental conditions need to
be segmented to avoid environmental biases that can lead
to method failure. In this case, using supervised methods
would necessitate constructing datasets for SNs under various
environmental conditions. However, labeling flow data from
SNs in different periods and environments poses challenges
such as time-consuming manual labeling of data, high costs,
and low feasibility. Therefore, the effective early warning
of unlabeled SNs flow data under different environmental
conditions is a challenging problem that needs to be
addressed in current flow monitoring.

In this study, we propose a detection method that
effectively provides early warnings for anomalies in flow
data. Since anomalies often result in significant deviations
from normal data, early warning can be achieved by
comparing the differences between current and historical
data. The key to achieving early warning lies in applying
an adaptive threshold to detect abnormal data changes. Our
detection method employs an unsupervised bagging-based
multi-anomaly detection algorithm to identify abnormal data
changes. This algorithm is created by combining three
anomaly detection algorithms: one class SVM, isolation
forest, and local outlier factor, using a bagging technique
inspired by previous work [41], [42]. Previous results have
shown that bagging multiple algorithms enhances precision
due to the comprehensive field of view and multiple
perspectives it provides. Our detection method, based on the
comparison of current and historical data, combined with
the unsupervised bagging-based multi-anomaly detection
algorithm, effectively mitigates the flow data discrepancies
caused by environmental variations in SNs and addresses
the issue of unlabeled data, allowing for cost-effective early
warning of flow anomalies and providing an appropriate
response time for SNs monitoring and maintenance. Impor-
tantly, our detection method, free from domain bias, shows
promise for application in other industrial anomaly detection
scenarios.

This study is organized as follows. In Section II, we present
the study data, and the data preprocessing steps. The research
task and the main method are introduced in Section III.
In Section IV, the experiments are conducted and the results
are shown and analyzed. Conclusions and discussions are
given in Section V.
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FIGURE 1. The figure displays time series data for the liquid level in the same SNs during different seasons. In (a), it presents the
time series data for the liquid level during the dry season, while (b) illustrates the time series data for the liquid level during the
rainy season. By combining these two sequences from distinct periods, an example t-SNE plot (c) is generated, representing the flow
data for both seasons. In (a), points that deviate from the normal data but do not exceed the threshold are referred to as ‘initial
fault points’ by us, while the remaining points that exceed the threshold are classified as anomalies. The thresholds used for
determining anomalies in the figure are established based on the characteristics of SNs’ diameter and operation.

II. TYPES OF ANOMALIES AND RESEARCH DATA
In this section, we introduced the data used in this research
and the types of anomalies.

A. TYPES OF ANOMALIES AND DATA INTRODUCTION
The government department of Dali, China, initiated the
Intelligent Monitoring Project for the Pollution Control of
Erhai Lake, a renowned lake in Yunnan, China. The data
used in this study was provided by this project. The project’s
objective is to achieve real-time monitoring of the SNs
surrounding Erhai Lake by installing flow meters. These
flow meters are employed to identify anomalies, including
damages, blockages, and overflows. Among the flow meters
used, we selected the ultrasonic Doppler flowmeter as the
primary measurement equipment. This choice was suitable
for the large-diameter SNs around Erhai Lake and could be
easily installed without any modifications to the SNs. This
ease of installation supports long-term SNs monitoring [34].
The flow data collected by the ultrasonic Doppler flowmeter
includes sampling time (day/hour), instantaneous flow rate
(m3/h), liquid level (m), and flow velocity (m/s). The data is
sampled at 5-minute intervals.

After analyzing the data, we classified the anomalies into
three types: (1) The instantaneous flow and liquid level
abruptly drop to zero, primarily due to damaged flow moni-
toring equipment, signal transmission interruptions, damaged
or clogged pipes, etc. (2) The leakage of sewage generated
by damaged pipes and the reduction in flow caused by
blocked pipes are the main causes of the sudden decrease in

instantaneous flow and liquid level. (3) Groundwater, surface
water, or rainwater leaks, resulting from pipe breakage, lead
to a sudden rise in liquid level and instantaneous flow.
In this work, we do not distinguish between these anomalies.
Illustrative examples of the anomalies are shown in Table 1,
where the instantaneous flow is characterized by ‘IF,’ and the
anomalies are indexed as ‘abnormal’.

B. DATA PREPROCESSING
In this section, we describe the establishment of a sliding
window in the detection method.

The data preprocessing results are shown in Figure 2.
First, we establish a large sliding window, denoted as TM (D),
to capture flow data information for D consecutive time
periods. Within this large sliding window TM (D), we create
a smaller sub-window, denoted as tK (N ), with a length of N
time periods to obtain data samples that serve as inputs for the
model. Themodel detects these data samples and provides the
prediction result for the last t(D−N )(N ) data samples captured.
The core idea of this detection process is to compare the data
samples acquired by t(D−N )(N ) with historical data samples.
If a change is detected, it may indicate the presence of an
anomaly.

The window tM (P) is known as the data label, which
signifies the state forP future time periods following the large
window TM (D). If an anomaly is predicted to occur within
the next P time periods, the data label is set to ‘‘abnormal’’.
It’s important to note that the data label window tM (P) is
primarily used to evaluate the model’s prediction precision.
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TABLE 1. The anomaly examples were selected from three periods:
9/7, 9/12, and 4/12. These samples respectively demonstrate an abrupt
change in instantaneous flow (IF) and liquid level to zero, a sudden
increase in IF and liquid level, and a sudden reduction in IF and liquid
level.

Once the data samples captured by the large window
TM (D) and the sub-window tK (N ) are input into the model,
the detectionmethod enters an offline phase. In this phase, the
model analyzes and compares all the data samples to provide
prediction results. When new data arrives, the detection
method switches back to the online phase. During this phase,
both sliding windows TM (D) and TM (P) advance by a single
time step increment, acquiring new data for the next detection
cycle.

The large sliding window TM (D), the data sample window
tK (N ), and the data labelling window tM (P), respectively:

TM (D) = [t1(N ), t2(N ), t3(N ), · · · , tK (N ), · · · , t(D−N )(N )],

K = 1, · · · ,D− N (1)

tK (N ) = [f1(i), f2(i), f3(i), · · · , fj(i), · · · , fN (i)],

i = 1, · · · ,m; j = 1, · · · ,N (2)

tM (P) =

{
normal, d < [fD+1(i), · · · , fD+P(i)] < h
abnormal, Otherwise

(3)

In Equation 1, D represents the length of the large sliding
window, and M stands for the number of large sliding
windows. In Equation 2, N denotes the number of samples
contained in the data sample window samples, K is the
number of data samples, and the parameter i signifies the
dimension of each sample, including the dimensions of
instantaneous flow, liquid level, and flow rate. Finally, since
the data is not labeled, we introduce upper bound d and lower
bound h as thresholds in Equation 3 to determine whether the
data is normal or not.

FIGURE 2. This schematic diagram represents data preprocessing. We use
the flow data captured in the first window as input. The data label in the
second window indicates the status of the flow data for the upcoming
P time periods. The second window depicted in the diagram shows an
abnormal situation characterized by a sudden increase in flow data.
Consequently, the data label is marked as ‘abnormal,’ signifying the
presence of an anomaly during this P time period.

III. TASK DESCRIPTION AND THE MAIN METHOD
In this section, we provide a comprehensive description of
our research task and outline the main methodology used.
The research task is divided into three main parts, as shown
in Figure 3. First, two sliding windows are set up to obtain
the data samples to be detected and the data labels. The data
labels are only used to assess the accuracy of our method’s
predictions. Next, we input the data samples into the bagging-
based multi-anomaly detection algorithm for detection and
output the prediction results of the final intercepted data
samples, i.e., the samples intercepted by the window shown
in red. The idea behind the detectionmethod is to compare the
current data sample with the historical data samples, and if a
change occurs, it indicates that an anomaly may occur either
in the present or in the future. To assess the precision of the
prediction, we compare the prediction results with the data
labels captured by the window. Finally, we move the sliding
window to ensure continuous monitoring and detection of
new data as it becomes available.

A. EARLY AND REAL-TIME ANOMALIES DETECTION TASKS
In this section, we explain the difference between the tasks
of early anomalies detection and the tasks of real-time
anomalies detection.

In the context of our study, we have defined two different
tasks: early anomalies detection and real-time anomalies
detection, based on the input samples provided to the
model. As shown in Figure 4, the sliding window that
has been set up keeps moving and intercepts different
data samples. The figure illustrates that the data samples
captured by the sliding window at tk+n, while not exceeding
the threshold, have deviated from the historical data (t0 -
tk ). When our detection method identifies these deviations,
it issues an early warning, performing an early anomalies
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FIGURE 3. Schematic diagram of research task.

FIGURE 4. Diagram describing the early and real-time anomalies detection tasks.

detection task. These points that deviate from the normal
data but do not exceed the threshold are defined by us
as incipient fault points. As the sliding window progresses
and the tk+n+1 intercepted data samples contain anomalous
points exceeding the threshold, the prediction result of
our method is considered an alarm result, and the detec-
tion method performs the real-time anomalies detection
task.

B. THE MAIN METHOD
The bagging-based multi-anomaly detection algorithm used
in this study is built upon prior research [41], [42]. Previous
studies have shown that integrating the outputs of multiple
models can enhance the reliability of classification results.

We implemented the bagging-based multi-anomaly detec-
tion method using three anomaly detection algorithms: one-
class SVM [43], isolation forest [44], [45], and local outlier
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FIGURE 5. An illustration of the bagging-based multi-anomaly detection algorithm. There are 5 samples numbered 1 to 5. The three
anomaly detection algorithms classify these samples into two groups, shown in green and red in the graph. Then, a voting method is
applied to determine the classification result. The samples that are classified differently are depicted in yellow. Finally, these
controversial samples are considered as normal to obtain the final prediction results, i.e., 1, 2, 3, and 4 are classified as normal,
while 5 is classified as abnormal.

factor [46]. A brief overview of these three methods is
provided in the appendix. Figure 5 illustrates the fundamental
concept behind the bagging-based multi-anomaly algorithm.
In this approach, a sub-sample is classified as abnormal
only if all three algorithms concur on its abnormality. While
this strategy yields high-confidence predictions, it may lead
to lower recall due to subsamples with conflicting votes
being classified as normal. However, in practical situations,
it is more valuable to make high-confidence predictions for
anomalies.

IV. RESULTS AND ANALYSIS
Since the early warning of flow anomalies is the primary
focus of this research, this section will concentrate on
evaluating the performance of the detection methods in the
task of early anomalies detection.

The data are collected by flowmeters placed at different
locations in the SNs. Since sewage flow is affected by
the location of the SNs and the environment, it results in
different patterns of data changes. Consequently, during our
sewage flow anomaly detection experiments, we divided the
data from different monitoring points to reduce the impact
of inconsistent data patterns. We set the size of the data
sample window and the data label window to N=8 and P=3,
respectively. The length of the large sliding window is set to
D=228, and the number of information ’i’ for each sample
is set to 3, which includes the instantaneous flow, liquid
level, and flow velocity. In the bagging-based multi-anomaly
detection algorithm, three anomaly detection algorithms are

implemented based on scikit-learn. The kernel function of
the one-class SVM is selected as the Gaussian kernel (rbf),
and the floating-point number ‘nu’ is set to 0.08. The number
of local domain samples ‘n-neighbors’ in the Local Outlier
Factor is set to 20, and the proportion of abnormal sample
contamination is set to 0.27. The proportion of anomalous
contamination in the Isolation Forest is set to 0.17, the
maximum number of features ‘max-features’ is set to 1, and
the number of subtrees is set to 10.

Experimental results demonstrate that our detection
method can predict anomalies in flow data 5-15 minutes in
advance with a prediction precision of 80.00%, a recall of
66.67%, and an F1 score of 0.73. This performance surpasses
that of the traditional thresholding method in the task of early
anomalies detection.

A. WARNING TIME AND RESULT OF THE METHOD
The effectiveness of early warning is determined by the lead
time provided by the method. The earlier the warning signal
is issued, the more effective it is in preventing losses caused
by anomalies. To evaluate the early warning performance of
ourmethod, we assessed all correctly predicted samples when
conducting the early anomalies detection task. Our analysis
revealed that the optimal early warning time for the method
is 15 minutes, with an effective range of 5 to 15 minutes.
As depicted in Figure 6, we can observe that the number
of predicted samples gradually increases with the duration
of P, which represents the prediction time. However, when
P exceeds 3, i.e., extends beyond 15 minutes, the number
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FIGURE 6. The graph illustrates the number of samples predicted at
various warning times. The horizontal axis represents the prediction time,
while the vertical axis shows the number of predicted samples.

TABLE 2. Comparison of the results of three methods in early anomalies
detection tasks.

of predicted samples no longer increases. We calculated the
precision, recall, and F1 scores for our methods in the context
of the early anomalies detection task, as presented in Table 2.

B. COMPARING THE RESULTS OF THE PROPOSED
METHOD WITH THE THRESHOLD METHOD IN EARLY
ANOMALIES DETECTION TASK
To demonstrate the effectiveness of our approach and the
challenges of anomaly alerting, we compare the performance
of a bagging-based multi-anomaly detection algorithm with
that of a commonly used anomaly detection method (i.e., the
thresholding method) in an early anomalies detection task.
We used both static and variable thresholding methods [47]
in our thresholding approach. A brief overview of all the
thresholding methods used is given in the Appendix. Table 2
shows the results of the comparison of the methods in the
early anomalies detection task.

In this study, our approach is to compare the difference
between current and historical data and then establish an
effective adaptive threshold to detect abnormal data changes
in order to implement early warning. In Table 2, we can see
that static thresholds are more difficult to implement in SNs
early warning, and can hardly be used to detect potential

TABLE 3. Comparison of the results of five methods in a real-time
anomalies detection task.

changes in data from normal to abnormal, and the method
is usually used for alerting tasks. Variable thresholds are
generated based on the data and can therefore detect some
potential changes in the data from normal to abnormal, thus
enabling early warning, but since in SNs flow data fluctuates
due to factors such as residential water consumption, these
fluctuations are likely to lead to false alarms of variable
thresholds, thus reducing the precision of the warning. Our
method can be considered as an enhanced adaptive threshold.
It effectively detects abnormal data changes and improves
robustness to data fluctuations. In addition, our method
dynamically determines the threshold based on the data itself
and continuously updates it with the arrival of new data.
Compared to traditional thresholding techniques, our method
performs better, is not affected by environmental biases, and
is applicable to different SNs environments.

C. COMPARING THE RESULTS OF THE PROPOSED
METHOD WITH THE THRESHOLD METHOD IN
REAL-TIME ANOMALIES DETECTION TASK
We conducted a comprehensive comparison of our method
with static thresholding and variable thresholding, incorpo-
rating dead zones to enhance the performance in a real-time
anomalies detection task. We adopted FAR and MAR as
the evaluation metrics, with lower values indicating superior
model performance. In Table 3, it can be observed that the
introduction of dead zones effectively reduced the MAR
for both static and dynamic thresholding methods. Our
method exhibits a higher FAR compared to static thresholding
methods that incorporate dead zones, primarily because
of the presence of harmful data and densely anomalous
data [48]. Furthermore, our method demonstrated a lower
MAR when compared to the static thresholding method with
the introduction of dead zones. This is primarily due to
the inadequacy of threshold settings in static thresholding,
resulting in some anomalies being under-considered. In light
of these results, further research could further improve
detection methods and reduce the impact of dense anomalous
or harmful data to increase the effectiveness and precision of
detection methods.

D. ANALYSIS OF THE EFFECTIVENESS OF BAGGING
In early anomalies detection tasks, single anomaly detec-
tion algorithms typically yield subpar performance. This
phenomenon primarily arises due to the complexity of
sewage flow data dimensions and the diversity of anomalies,
as discussed in previous studies [49], [50]. To address
this, we introduce a bagging-based multi-anomaly detection
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FIGURE 7. The impact of different window lengths, D and N , on the model’s prediction results is shown in Figure 7. In Figure 7(a),
the model’s prediction precision and recall are presented for varying values of N , with P fixed at 3 and D at 207. Notably, the model
achieves the best results when N is set to 8. Figure 7(b) displays the model’s prediction precision and recall for different values of D,
while keeping P at 3 and N at 8. The optimal model prediction results are obtained when D is set to 207.

TABLE 4. Comparison of the early warning results of the bagging-based
multi-anomaly detection algorithm and the single anomaly detection
algorithm.

algorithm employing a voting mechanism. To assess the
method’s effectiveness, we compare its results with those of
single anomaly detection algorithms, as presented in Table 4.
It’s evident that there is a substantial improvement in the
final prediction results of our model when utilizing the voting
method, in contrast to using a single anomaly detection
algorithm. However, it’s worth noting that, as indicated by
the recall metric, our method classifies the prediction results
of certain contentious samples as normal. Consequently, this
approach does not lead to a significant improvement in
recall compared to the single anomaly algorithm; in fact, our
method either maintains the lowest recall or even exhibits
a lower recall compared to the single anomaly detection
algorithm. Nevertheless, in the context of anomaly alerting,
the paramount focus is unquestionably on promptly obtaining
high-confidence predictions.

E. EFFECT OF DIFFERENT WINDOW LENGTHS ON
PREDICTION PRECISION
By setting a suitable large sliding window length D and data
sample window lengthN , themodel can effectively obtain the
changes in the data, thus improving the prediction precision
of the model. We fixed the condition of data label window
length P=3 and adjusted the lengths of D and N respectively
to observe the prediction precision of our method, and the
results are shown in Figure 7. Figure 7(a)(b) shows that
when D=207, N=8, the prediction of the detection method

FIGURE 8. Results of the detection method for the early anomalies
detection task on different monitoring points.

achieves the best results. By selecting an appropriate length
for the large sliding window (D) and the data sample window
(N ), the model can effectively capture changes in the data,
resulting in improved prediction precision.While keeping the
data label window length fixed atP=3, we adjusted the values
ofD andN to evaluate the prediction precision of our method.
The results are presented in Figure 7. Figure 7(a)(b) illustrates
that the detection method achieves the best predictions when
D=207 and N=8.

F. ROBUSTNESS EXPERIMENT OF THE METHOD
Because SNs are situated in various environments, they
exhibit different patterns of flow data changes. To validate
the effectiveness and robustness of our detection method,
we conducted early anomalies detection tasks on data from
various monitoring points. The results are illustrated in
Figure 8, indicating that our method remains effective in
detecting anomalies across different monitoring points while
maintaining high precision.
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TABLE 5. Performance of different anomaly detection algorithms in early
anomalies detection tasks.

V. CONCLUSION AND OUTLOOKS
In this study, we present a method for early warning of
sewage flow anomalies in SNs. This method is implemented
within a sliding windowmonitoring framework and leverages
a bagging-based multi-anomaly detection algorithm based
on unsupervised bagging. Early warnings are generated
by comparing current data to historical data, enabling
the detection of abnormal changes and the provision of
timely alerts. Notably, our detection method doesn’t rely on
data labeling and effectively addresses data bias resulting
from environmental variations within SNs. In experiments
conducted using sewage flow data from Erhai Lake SNs,
our method effectively detects anomalies. It is data-agnostic
and free from domain bias, with the potential for future
applications in anomaly detection tasks across various
industries.

Currently, our method has certain limitations, including
relatively short warning times and the opportunity for further
improvement in precision and recall. To address these
challenges, we intend to explore advanced deep learning
techniques that enhance feature distinctions between current
and historical data, leading to higher precision, recall, and
earlier warnings. Additionally, we can delve into the specific
classification of these anomalies as a research problem to be
addressed in the future.

APPENDIX
A. ANOMALY DETECTION ALGORITHM SELECTION
We have selected several conventional machine learning
anomaly detection algorithms for the task of early anomalies
detection, as presented in Table 5. It is evident that the
algorithms in the first four categories of methods in the table
show some promise in early anomalies detection. However,
the precision of these algorithms still falls short of the desired
ideal. To enhance their performance, we applied the bagging
method to combine each of these four classes of methods.
The final results of the two best-performing combinations are
shown in Table 4 and Table 6, respectively.
Table 4 showcases the best-performing prediction results

in this study. In contrast, Table 6 combines the local outlier
factor and the connectivity-based outlier factor, which belong
to the same category of algorithms. Consequently, their
prediction results exhibit similarity, leading to no significant
improvement after applying the bagging voting mechanism.
On the other hand, Table 4 combines three algorithms

TABLE 6. The results are based on the combination of one class SVM,
local outlier factor, connectivity-based outlier factor based on the bagging
voting mechanism.

with different anomaly detection principles, enabling diverse
angles and perspectives in obtaining prediction results. This
approach yields higher precision through the bagging voting
mechanism.

B. A BRIEF REVIEW OF THE ONE CLASS SVM
One class SVM. The algorithm was given by
Schölkopf et al. [43] to deal with binary classification. The
algorithm works by dividing the positive examples of a
given sample into a specific region, and returns +1 if the
sample is within that region, indicating a positive sample.
Otherwise, it returns −1, indicating a negative sample. The
algorithm for one-class SVM is outlined below: If one-
dimensional training data Xi ∈ Rn(i = 1, 2, 3, . . . ., n) is
set, there is: minω,i,ξ,ρ(1/2)ωTω − ρ + (1/vn)

∑n
i=1 ξi and

ωT8(xi) ≥ ρ−ξi and xii ≥ 0,i = 1, 2, . . . ., n. Then solving
by transformation yields: mina(1/2)αTQijα and 0 ≤ αi ≤

(1/vn), i = 1, 2, .., n and eTα = 1. Finally, the decision
and sign functions are: f (x) = sign(

∑n
i=1 K (x, xi − ρ)),

g(x) =
∑n

i=1 αiK (x, xi) − ρ.

C. A BRIEF REVIEW OF THE ISOLATION FOREST
Isolation forest.This algorithm conception is an unsupervised
learning proposed by Fei et al. [44] which can detect
dataset quickly. Anomaly detection can be performed without
building any data model and any label description. Anomalies
can be found simply by estimating the data in turn.

The isolation forest algorithm operates by placing the data
on isolated trees [45] and then separating the data based
on their characteristics. Data with similar characteristics
are grouped together while dissimilar data are separated.
Since anomalies have significant differences compared to
normal data, they are likely to be separated early in the
process, making it more likely that the first separated data
is anomalous data. This makes the isolation forest algorithm
effective in quickly detecting anomalies without the need for
a labeled dataset or complex modeling.

D. A BRIEF REVIEW OF THE LOCAL OUTLIER FACTOR
Local outlier factor. The algorithm, introduced by
Breunig et al. [46], calculates a numerical score to reflect
the degree of anomalousness of a sample. It does so by
examining the average density of the sample points around
each individual sample point. If the density of a particular
point is found to be less than the density of the surrounding
sample points by a factor of greater than 1, then it is likely

21706 VOLUME 12, 2024



C. Qiu et al.: Unsupervised Real Time and Early Anomalies Detection Method for SNs Systems

to be an outlier. If the opposite is true, then the point is
likely to be a normal data point. This algorithm is particularly
effective in situations where the data points are not uniformly
distributed and are instead grouped in clusters of varying
densities.

E. A BRIEF REVIEW OF THE STATIC THRESHOLD
Static threshold. The algorithm mainly sets a fixed threshold
to diagnose whether the data is abnormal or not. This method
is one of the most commonly used methods in alarm systems,
and the method is achieved as follows:

Result =

{
1, d < S < h
−1, Otherwise

(4)

h and d are the upper and lower bounds of the threshold value,
respectively, and S is the data. When the value of the data is
within the threshold boundary, 1 is returned to indicate that
the data is normal, otherwise −1 is returned to indicate an
exception.

F. A BRIEF REVIEW OF THE VARIABLE THRESHOLD
Variable threshold. The main idea of the algorithm is that
the threshold value changes with time and is achieved in
the following steps: v = γ v(k − 1) + (1 − γ )v(k),
m = γm(k − 1) + (1 − γ )m(k), T (k) = m(k) ∓ αv(k).
Where m(k) is the mean of the data intercepted by the sliding
window, γ is the momentum factor and takes values in the
range [0,1], v(k) is the variance of the data intercepted by the
sliding window, k is the window length (number of samples in
each window), α is an adjustable factor, and T (k) is variable
threshold value in the kth window [47], [48].

G. A BRIEF REVIEW OF THE DEADBAND
Deadband Method. This method is designed to improve the
ability of the algorithm to resist harmful data in the alarm
system, for clearing another limit of alarms. Static threshold
and deadband refer to the establishment of a deadband
based on the percentage of the high and lower limits of
the established threshold [51], [52]. Variable threshold and
deadband have the same deadband setting, but the deadband
changes with the threshold value. The deadband can be
achieved as follows [47]: deadband width(DB) = H (1− db)
for high limit , deadband width(DB) = D(1 + db) for lower
limit . Where H and D is the threshold value, and db is
deadband value.

H. EVALUATION METRIC
The performance of the bagging-based multi-anomaly detec-
tion method proposed in this study is evaluated by the
precision [53], recall [54], f1 score [55], MAR [56], and
FAR [57] of the marked anomalies.
Precision describes how many of the two classifiers are

true positive examples from the perspective of prediction
results. The main research of precision is the authenticity
of classification as anomalies to judge the quality of the

bagging-based multi-anomaly detection method proposed in
this study.
Recall describes how many real positive examples are

selected by the second classifier in the test set from the
perspective of reality. It’s divided into anomalies types in this
studies, which are really anomalies.
F1 score is a measurement index of classification prob-

lems, referred to as F1. It’s the harmonic average of precision
and recall. The maximum is 1 and the minimum is 0.
In general, the larger the index, the better the performance
of the model. The calculation method of F1 is as follows:
F1 = 2 · precision · recall/(precision+ recall).
MAR and FAR are two indicators commonly used to

evaluate alarm systems, in the alarm task, which when
these two indicators are lower, the better the performance of
the model, in the confusion matrix, FP represents negative
samples predicted as positive samples, TN represents neg-
ative samples predicted as negative samples, FN represents
positive samples predicted as negative samples, TP represents
positive samples predicted as positive samples, and the two
indicators are calculated as follows: FAR = FP/(FP + TN ),
MAR = FN/(TP+ FN ).
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