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ABSTRACT The belt surface of the mine belt conveyor can cause serious wear under the condition of
long-term high-load operation, which can have a negative impact on production, bring economic losses,
even endanger personal safety, and cause serious production accidents. Manual detection requires a lot
of manpower and material resources, and is highly dependent on empirical judgment, which is with low
efficiency and security risks. Therefore, in this study, we introduce a new conveyor belt wear detection
algorithm Retinex-YOLOv8-EfficientNet-NAM (RYEN algorithm) based on deep learning and machine
vision technology to replace manual detection, improving detection efficiency and recognition accuracy.
The wear degree of belt is reclassified and defined according to the mechanical properties and wear texture
characteristics of belt with different wear degrees, and a new special data set for belt wear detection is
established. Aiming at the low brightness, high noise and complex working conditions of the underground
mine, Gaussian filtering and bilateral filtering are used as the central surround function of the improved
Retinex algorithm, and then channel fusion is performed with the image after histogram equalization and
adaptive brightness adjustment. The improved Retinex multi-image fusion algorithm is used to preprocess
the collected image. EfficientNet has the performance of reasonably allocating the input resolution, network
depth, and channel width, and can maximize the performance of the network with limited resources.
EfficientNet is used to replace Darknet53 of YOLOv8 as the backbone of the feature extraction network,
which improves the detection accuracy under limited computing resources. A lightweight attention module
NAM is added to the improved network, which improves the detection speed without reducing the detection
accuracy. Experimental results show that RYEN algorithm effectively maintains the smoothness of the image
during the image preprocessing stage, improves the brightness and contrast of the image, and better preserves
the edge information of the image. RYEN algorithm achieves a detection speed of 66FPS and an average
accuracy of 98.57%. Compared with the original YOLOv8 algorithm, the accuracy of RYEN algorithm is
increased by 6.4% and the speed is increased by 13.2%. In comparison experiments with similar methods,
RYEN algorithm occupies less hardware resources, has strong generalization ability, good performance, and
has high detection speed and accuracy.

INDEX TERMS Conveyor belt wear inspection, Retinex-YOLOv8-EfficientNet-NAM, machine vision,
deep learning, YOLOv8.

I. INTRODUCTION
As one of the main conveying equipment under the mine,
the stable operation of the mining belt conveyor is the key
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to efficient production. At present, mining conveyor is devel-
oping in the direction of long-distance, high efficiency, large
capacity, and intelligentization [1].

The conveyor belt as an important part of the belt conveyor,
mainly serves the role of carrying materials and transferring
transportation [2]. The conveyor belt is vulnerable to foreign
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bodies which can be extremely destructive. There are mainly
two types of situations that can cause damage to conveyor
belts. One is that when the roller is broken or the material
is blocked, the conveyor belt often suffers from longitudinal
tears, surface scratches, and other damages. The other is
fatigue wear caused by long-term operation. As the conveyor
belt wear intensifies, the cotton canvas [4] and steel wire
rope inside is gradually exposed to the skin [5], and chemical
reactions occur when they come into contact with air and
coal slurry. If it cannot be detected and treated effectively
in time, the internal material of the conveyor belt can cause
corrosion, and the damage may further expand, resulting in
belt breakage and other accident.

The commonly used conveyor belt damage detectionmeth-
ods can be divided into manual detection methods and
non-destructive detection methods. The main methods used
for manual inspection include observation of surface damage
on conveyor belts, belt speed detection, tension detec-
tion, etc., which require a large amount of work [6]. There-
fore, manual inspection requires a great effort, and the recog-
nition accuracy is unsatisfactory. These methods need to be
operated in the state of static offline, which makes it difficult
to meet the actual detection requirements. There are various
non-destructive testing (NDT) methods, such as tear sensors,
eddy current detection [7], weak magnetic detection [8],
X-ray detection [9], ECD (Embedded Conductive Detection)
technology [10], etc. Most of them canmeet the needs of real-
time detection, but these methods still have problems such as
low sensitivity, radiation to the human body, and high price.

In recent years, the rapid development of computer tech-
nology has provided strong support for the development of
machine vision technology. The maturity of machine vision
technology has been gradually applied in various fields and
has been successfully applied in the field of belt conveyor.
For example, the measurement of coal volume and coal flow
on the conveyor belt [11], classification of materials [12],
on-line analysis of ore composition [13], [14], [15], [16], [17],
gangue identification [18], [19], [20], conveyor belt detec-
tion [21], [22], [23], and so on. Zhang et al. [24] proposed a
conveyor belt deviation detection method based on machine
vision technology for fast and timely detection of conveyor
belt runout status. Jose et al. [25] used a combination of
machine vision techniques and multiple real-time sensor data
to inspect conveyor belt system health. Hao et al [26] pro-
posed a multi-class support vector machine detection system
based on visual saliency. It is used to effectively extract
grey values and identify and classify damage locations under
dry and wet working conditions. Lv et al [27] proposed an
improved grey scale centre of gravity method (IGGM). The
features of longitudinal belt tear are transformed into linear
features of line laser and belt tear detection is performed
based on the features of laser centreline. Qiao et al. [28]
used a combination of visible light and infrared vision to
detect the longitudinal tearing of conveyor belts in real time.
This fusion method greatly improved the accuracy of tear
detection. Hou et al. [29] used multispectral vision detection

to identify longitudinal belt tears while also classifying other
states of the belt. Guo et al. [30], [31] used binarisation to
process the images and combined with the collected sound
signals to make a comprehensive judgment on the belt status.
The theory of belt damage detection is summarised on the
basis of machine vision and deep learning, which provides
theoretical support for related research. Guo et al. [32] pro-
posed a multi-classification condition method based on the
generative adversarial network using deep learning to effec-
tively detect belt surface damage. Liu et al. [33] proposed a
belt damage detection method by fusing image spatiotem-
poral features, which effectively improved the accuracy of
detection. Wang et al. [34] proposed a foreign object recog-
nition method for conveyor belts based on improved SSD
algorithm to fundamentally prevent the occurrence of tearing.

In summary, the current research on conveyor belt inspec-
tion mainly focuses on belt damage detection, with less
research on belt wear. Until now, the main detection method
still relies on manual inspection, and the existing manual
inspection requires a lot of manpower and material resources
in thework. The inspection process is highly dependent on the
inspector’s empirical judgement, which results in low inspec-
tion efficiency and potential safety hazards. A new belt wear
detection method of Retinex-YOLOv8-EfficientNet-NAM
(RYEN algorithm) in this paper is proposed for conveyor
belt wear state detection in underground mines based on
deep learning and machine version. RYEN algorithm is to
replace manual inspection to achieve a more reliable, more
effective, and more intelligent belt wear detection. The main
contributions of this paper are summarized as follows.

• Compared with most current conveyor belt damage
detection methods, the RYEN algorithm based on deep
learning can achieve real-time detection of conveyor
belt wear status, greatly improving detection efficiency
and accuracy.

• The classification of conveyor belt wear degree is rede-
fined and classified based on mechanical property data
support and wear texture characteristics, which makes
the classification more detailed, and maximizes the
utilization of conveyor belt.

• The RYEN algorithm in this paper integrally considers
the effect of model scaling on the detection results
and achieves the best speed-accuracy trade-off on the
dataset, which can also be applied to other target detec-
tion in other fields.

II. CLASSIFICATION OF BELT WEAR BASED ON
MECHANICAL TEST PROPERTIES AND WEAR
TEXTURE CHARACTERISTICS
As the main loss component of conveyor belts in daily oper-
ation, the performance of conveyor belts will also change
with the deepening of their wear. The full layer tensile
strength of the conveyor belt is a key performance parameter
in the quality inspection of the conveyor belt [34]. If the
strength does not meet the requirements, the conveyor belt
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FIGURE 1. Conveyor belt wear types.

may inevitably tear or even break when the dynamic tension
changes significantly.

The tensile test is carried out on the conveyor belt using a
tensile testing machine. NN-100 nylon belt commonly used
in conveyor belts is selected as the test sample, as shown in
Fig. 1. According to the national standard GB/T 3690-2017,
the full thickness tensile test specimens are prepared. Con-
veyor belt cutting samples with different wear degrees are
selected. The samples are exposed in the environment with
the temperature of 23 ± 2◦C and the humidity of 50% ± 5%
for three days to allow the residual stress generated by the
cutting of the conveyor belt to self-regulate and release. The
sample width is 50mm, the effective tensile length is 300mm,
the experimental cutting length is 500mm. The clamping
length in this experiment is 100mm, not less than 50mm
stipulated by the national standard. This helps to increase
the contact area between the fixture and the conveyor belt,
increase the clamping force, and reduce the dislocation or
pulling of the clamping force and the belt between the layers
during the stretching process. The selected tensile testing
machine for the experiment is WAW-100, as shown in Fig.2.
The jaw type is Q-type, and the stretching speed of the tester
gripper is 100mm/min, with a clamping length of 100mm.

The specific structure of the conveyor belt, as shown
in Fig.3, mainly consists of a nylon core skeleton and a lami-
nated covering layer. The performance results of the conveyor
belt test after the tensile test are shown in Fig.4. The joints
between the layers of the conveyor belt have no wear and
are relatively tight after one layer of wear, and the tensile
performance curve is relatively smooth. From the structural
characteristics of the conveyor belt, due to the undamaged
rubber layer on the surface, the surface of the undamaged
conveyor belt is smooth. The rubber layer on the surface
of the wear conveyor belt breaks down, exposing the nylon
core layer. The nylon core exhibits a distinctive wear bound-
ary that borders the rubber layer, providing a unique wear
textured appearance. The elongation distance at the final

FIGURE 2. WAW-100 type tensile testing machine.

FIGURE 3. Conveyor belt internal structure.

FIGURE 4. Tensile test results.

fracture is between 60 mm and 65 mm. The characteristic
of the wear texture from the second to fifth layers is that
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as wear increases, the rubber and nylon layers are exposed
deeper, thereby showingmorewear boundaries. As the degree
of wear increases, the resin layer and nylon core layer of
conveyor belt have a certain relaxation, which complicates
the internal mechanical properties. Tests have shown that for
two-layer wear, three-layer wear, four-layer wear, and five-
layer wear, the elongation distance at the final fracture point
is roughly distributed between 55mm-60mm, 50mm-55mm,
45mm-50mm, and 40mm-45mm. At the same time, the maxi-
mum tensile force that the conveyor belt can withstand is also
decreasing.

According to standard GB/T 3690-2017 implemented by
the conveyor belt, the longitudinal tensile elongation of the
full thickness is not less than 10%. Therefore, when the wear
level of the conveyor belt reaches three layers, it exceeds the
allowable range of standard conveyor belt performance and
poses a safety hazard. It should be replaced promptly.

The tensile test shows that the number of wear layers
directly affects the tensile properties of the conveyor belt,
and the different wear layers have unique textures. Thus, the
unique wear texture of conveyor belts with different wear
layers combined with the tensile strength of each wear level
obtained from tensile performance tests are used as the cat-
egorization criterion. A category threshold is set according
to the criterion, and when the tensile performance of the
worn conveyor belt exceeds the threshold, the conveyor belt
is regarded as end-of-life and replaced in time.

Therefore, the wear detection is classified according to the
number of layers of the conveyor belt, which is divided into
no wear, one layer wear, two layers wear, three layers wear,
four layers wear and five layers wear.

III. WEAR DETECTION METHOD OF RETINEX-
YOLOv8-EFFICIENTNET-NAM (RYEN)
A. IMAGE ENHANCEMENT BASED ON IMPROVED
RETINEX AND IMAGE FUSION
Under extremely low brightness and accompanied by a large
amount of noise in underground mines, the quality of images
captured by industrial cameras is poor, which reduces the
detection accuracy greatly. Therefore, the improved Retinex
algorithm is used in the image preprocessing stage to process
images with low illumination and low contrast.

Retinex algorithm is an image enhancement algorithm
based on the properties of the human eye visual system,
which improves the brightness and color of an image through
multi-scale processing of the image. Retinex image enhance-
ment algorithm is classified into three categories, single-scale
based Retinex algorithm (SSR), multi-scale based Retinex
algorithm (MSR), and multi-scale Retinex algorithm with
color restoration (MSRCR). However, all of them have
defects after enhancement. Both SSR and MSR algorithms
lose local color details during image enhancement, resulting
in severe image distortion. MSRCR algorithm has the prob-
lem of haloing in regions with large differences in brightness
during image enhancement. Therefore, an improved Retinex

with a multi-image fusion algorithm is proposed. Three kinds
of images after histogram equalization, adaptive luminance
adjustment and improved Retinex processing are processed
by channel fusion to retain their clear features, and finally
the images are transferred to RGB color images to achieve
image enhancement.

In the traditional Retinex algorithm, the scale fac-
tor σ of the Gaussian function determines the effect of
image enhancement, however, this has obvious limitations.
As shown in equation (1). G (x, y) is the Gaussian wrap
around function expression.

G(x, y) = K∗exp(−(x2 + y2)/(σ 2)) (1)

where σ denotes the Gaussian surround scale; K is the
normalization constant. To get the best image enhancement
effect, we debug the optimal scale parameter of Gaussian sur-
round function by experiment. According to the experimental
results, when σ is relatively small, it can better maintain
the edge feature information and expand the dynamic range
but lacks in color recovery; when σ is relatively large, the
color recovery is good, but the smaller dynamic range will
cause the loss of detailed feature information. Therefore,
it is determined that the parameter value of the Gaus-
sian surround function is set to 80. σ = 80 can ensure
good color recovery and maintain complete detailed feature
information.

The improved Retinex algorithm uses Gaussian and bilat-
eral filters as center surround functions. The incoming image
to be processed is subjected to a convolution operation and
the incident components are estimated separately. Then the
estimated incoming and outgoing components are weighted
and fused, and the fused incoming components can not only
maintain the smoothness of the image and improve the image
contrast but also better retain the image edge information
to achieve the filtering effect. The construction process of
the improve enhancement algorithm is shown in Fig. 5. The
specific steps are as follows.

• Firstly, the image to be processed is converted to HSV
color space and a threshold is set to adjust the luminance
of its channel component V. Then it is converted to RGB
color space.

• The processed image will be made into 3 copies; his-
togram equalization will be performed on the first copy
and then median filtering will be performed on the pro-
cessed image to eliminate the noise points present in the
image.

• Automatic brightness adjustment is performed for the
second copy. Firstly, the luminance value of the image
component V is calculated, and the calculated luminance
value is compared with a set threshold T value. The
threshold T is set to 120, and the brightness value is
higher than 120, the image is sufficiently bright and does
not need to be processed; the brightness value is lower
than 120, the image is insufficiently bright and needs
to be subjected to a brightness enhancement operation.
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FIGURE 5. Flowchart of improved image enhancement algorithm.

Finally, the processed image is subjected to bilateral
filtering to highlight the image edge information.

• The third copy is processed by the modified Retinex
algorithm, which uses Gaussian filtering, bilateral fil-
tering as its wraparound function to estimate the image
illumination components separately, and finally outputs
the reflectance map.

• The processed 3 copies of the image were transferred to
HSV color space. Multi-image fusion is performed for
its component V. The component values of the second
image are used for both H and S components. The fused
image is transferred from HSV to RGB color space, and
the processed image is output.

A bilateral filter is a nonlinear filter with strong bound-
ary protection, noise reduction, and smoothing capabilities,
which is shown in equation (2). Similar to other filters, bilat-
eral filtering also uses weighted averaging to represent the
intensity of a pixel by weighting the luminance values of
surrounding pixels. The difference is that bilateral filtering
considers both weights. It considers not only the Euclidean
distance of the pixels but also the difference in pixel paradigm
thresholds.

g(x, y) =

∑
(k,l)∈S(x,y) f (k, l)w(x, y, k, l)∑

(k,l)∈S(x,y) w(x, y, k, l)
(2)

In Eq. (2): g(x, y) is the pixel gray value after bilateral
filtering; f (k, l) is the gray value of the pixel point of the
image to be processed; w(x, y, k, l) is the new gray value
computed by using a weighted Gaussian function; S(x, y)
is the range of gray values of the pixel point centered on
point (x, y).

B. WEAR DETECTION BASED ON IMPROVED YOLOv8
The essence of conveyor belt wear condition detection is
target detection. Target detection methods based on super-
vised learning can be categorized into two groups: two-stage
target detection algorithms based on candidate regions and
single-stage target detection algorithms based on regression.
Two-stage target detection algorithms based on candidate
regions generate candidate frames through a region pro-
posal network (RPN) and then use a convolutional neural
network for classification and localization regression. Such
algorithms have higher accuracy, but due to the large num-
ber of candidate frames being slower, they are difficult to
meet the real-time requirements. SPP-Net and R-CNN series
are representative two-stage target detection algorithms.
Regression-based single-stage target detection algorithms
can directly regress the size, location and category of the
target, greatly improving the detection speed. Representative
ones are SSD (Single Shot MultiBox Detector) and YOLO
(You Only Look Once).

1) YOLOv8 NETWORK ARCHITECTURE
YOLO algorithm has the advantages of fast speed, high
accuracy, and strong generalization ability. Therefore, this
study focuses on the most advanced YOLO detection model
YOLOv8, whose network structure is shown in Fig.6.

The target detection network can be divided into three
parts which are the Backbone feature extraction network
part (Backbone), the Reinforcement feature extraction part
(Neck), and the Prediction part (Head). The quality of the
features extracted by the feature extraction network directly
affects the prediction results of the prediction network. This
means that if there are better features, there may be better pre-
diction results. YOLOv8 provides a new SOTA model, that
is CSPDarknet, as the backbone feature extraction network
of YOLOv8, adopts the Cross Stage Partial Network (CSP)
structure, which divides the network into two parts, each
containing multiple residual blocks. The residual structure
uses the idea of gradient diversion to effectively solve the
problem of gradient explosion caused by network deepening.
The deeper network also helps to extract deeper features
and improve the accuracy of the network. Compared with
Darknet, this structure can effectively reduce the parameters
and computation of the model and improve the efficiency
of feature extraction. Meanwhile, YOLOv8 draws on the
idea of feature pyramid network (FPN). Multi-scale detection
mechanism integrates three feature layers of different scales
for target detection, which improves the network’s ability to
detect targets of different scales and increases the detection
accuracy of small targets. Accuracy improves as the network
depth deepens. However, in a limited number of computa-
tional units, the amount of computation likely increases with
the depth of the network, which reduces the speed of target
detection.

The backbone feature extraction network of YOLOv8
refers to the design idea of YOLOv7 ELAN. The C3 structure
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FIGURE 6. YOLOv8 network architecture.

of the backbone part and the neck part are all changed to the
C2f structure with richer gradients, and the kernel of the first
convolutional layer is changed from 6 × 6 to 3 × 3, which
improves the detection speed of the model. The prediction
part (head) is changed from coupled head to uncoupled head.
The original anchor-based detection method is changed to
anchor-free, which improves the generalization ability of the
model and reduces the time cost of post-processing.

FIGURE 7. Structural scaling model.

2) SELECTION OF BACKBONE FEATURE NETWORK BASED
ON EFFICIENTNET
For better extraction of features and information from image,
enhanced and extended backbone feature extraction network
methods are commonly used, which are shown in Fig.7.

The base network is shown in Fig.(7-a). Width increasing
method of the network is shown in Fig.(7-b), which increases
the number of convolution kernels. More layer structures
are used to increase the number of channels of the feature
matrix, as well as increase the depth of the network, which
is shown in Fig.(7-c). Resolution increasing method of the
input network is shown in Fig.(7-d). However, this does not
necessarily mean that network expansion can produce better
results in terms of accuracy or speed. Increasing the depth of
the network yields richer features and can be well applied to
other tasks, but a network that is too deep can face problems
of vanishing gradients and training difficulties. Increasing
the width of the network results in more detailed features
and is also easier to train, but it is often difficult to learn
deeper features for networks with large widths and shallow
depths. Increasing the image resolution of the input network
can potentially yield higher fine-grained feature templates,
but for very high input resolutions, the gain in accuracy is also
reduced, and large-resolution images increase the amount of
computation.

EfficientNet network utilises NAS (Neural Architecture
Search) technology. This technique achieves a reasonable
configuration of three parameters: network image input reso-
lution, network depth, and channel width. The performance of
the neural network is maximized under the limited resources,
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and for the first time proposed and validated the model of
the integrated scaling of the effect on the network as shown
in Fig. (7-e).

EfficientNet draws on the idea of multi-objective opti-
mization problems in mathematics and tries to use limited
computational resources to improve the computational accu-
racy as much as possible by appropriately adjusting the depth,
width, and resolution of the network’s input images.

The algorithm consists of a convolutional network N of
k convolutional layers, each of which can be represented as
Yi = Fi(Xi).
The complete convolutional neural network structure can

be represented as:

N = Fk ⊙ · · · ⊙ F2 ⊙ F1(X1) = ⊙
j=1,2,...k

Fj(X1) (3)

The layers of convolutional neural networks commonly
used in applications are divided into stages. Each stage of
the convolutional layer has the same architecture, so the
convolutional network can also be represented as:

N = ⊙
i=1...s

FLii (X[Hi,Wi,Ci]). (4)

where: Xi denotes the input tensor, and [Hi,Wi,Ci] denotes
the shape of the input tensor X in the layer i, the Yi denotes the
output tensor, Fi denotes the operator operation, F

Li
i denotes

that the Fi operation is repeated Li times in the stage.
Conventional convolutional neural networks focus more

on improving network performance by finding the optimal
layer architecture. In contrast, EfficientNet neural networks
simplify the design problem of new resource constraints by
scaling H i, W i, C i of the network without changing the
predefined Fi in the baseline network. To further reduce the
design space, it is restricted that all layers must be scaled
uniformly at a constant rate. The mathematical model of the
objective optimization can be expressed as:

Target :
max
d,w, r

Accuracy(N (d,w, r)) (5)

s.t.N (d,w, r) = ⊙
i=1...s

F̂d ·L̂i
i (X〈

r ·Ĥi,r ·ŵi,r ·ĉi
〉) (6)

Memory(N ) ≤ target − memory (7)

FLOPS(N ) ≤ target_flops (8)

where, w, d , and r are scale factors measuring the width,
depth, and resolution of the network; F̂i, L̂i, Ĥi, Ŵi and Ĉi are
predefined parameters in the baseline network.

FIGURE 8. Limitations of single dimension expansion.

Therefore, for conveyor belts, large-resolution images that
need to extract richer deep feature information require deeper
networks. However, each dimension of the model scaling is
not completely independent. It can cause the layer structure
to lose balance and the network performance decline by
expanding only a single dimension. EfficientNet proposes a
hybrid scaling method, which uses a single mixing factor ϕ

to uniformly scale width, depth, and resolution scaling. The
specific calculation is as follows:

depth : d = αϕ (9)

width : w = βϕ (10)

resolution : r = γ ϕ (11)

s.t.α·β2 · γ 2 ≈ 2 (12)

α ≥ 1, β ≥ 1, γ ≥ 1 (13)

where: (α, β, γ ) are constants determined using the NAS
implementation. The theoretical computation amount is dou-
bled as depth is doubled and will becomes 4 times as much
as before as width and resolution are doubled. So, the total
theoretical computation can be approximated by (α, β2, γ 2)

ϕ
,

which is equivalent to an increase of 2ϕ times for any ϕ, after
restricting α · β2

· γ 2
≈ 2.

The hybrid scaling method used by EfficientNet is scaled
in two steps to determine the three parameters of α, β, γ .
Step 1: First, ϕ = 1 is fixed, and a twofold increase is

assumed in available resources, then a mini-grid search is
performed according to Eq. (5-13) to finally find the three
best parameters (α, β, γ ) for EfficientNet-B0.

Step 2: According to α, β and γ obtained in step 1,
EfficientNet-B1 to EfficientNet-B7 are obtained based on
EfficientNet-B0 using different methods.

FIGURE 9. EfficientNet network architecture.

The structure of EfficientNet is shown in Fig. 9. The
optimal EfficientNet is selected as the backbone feature
extraction network of YOLOv8 according to the above steps
to extract richer feature information for the prediction net-
work of YOLOv8. After feature extraction by the backbone
network of YOLOv8, the feature maps input to the pre-
diction network are the combination of the original feature
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maps after convolution downsampling and compression by
a factor of 3, 4, and 5, which achieves favorable results in
multi-scale target detection. This is the same as the Efficient-
Net network’s down-sampling method for the input image.
Therefore, the same downsampling method can realize the
replacement of the YOLOv8 backbone feature extraction
network.

3) NAM ATTENTION MODULE
To further enhance the accuracy of the improved network,
the NAM attention mechanism is introduced at the channel
where the backbone network extracts the three feature layers.
Firstly, NAM serves as an efficient and lightweight atten-
tional mechanism, which is employed to reduce less salient
features and weights. Meanwhile, this module applies sparse
weight penalties to make these weights computationally more
efficient, enabling higher accuracy along with performance.
Next, NAM utilizes the modular integration approach of
CBAM, which redesigns the channel and spatial attention
sub-modules. Hence, a NAM module is embedded at the
end of each residual network. Noteworthy, For the channel
attention submodule, a batch normalized (BN) scaling factor
is used.

FIGURE 10. Channel attention mechanism.

FIGURE 11. Spatial attention mechanism.

The channel attention sub-module is shown in Fig. 10,
and its mathematical expression is given in Eq. (14). which
represents the output features obtained at the end, and γ is
the scaling factor for each channel. This gives the weights for
each channel. If the same normalization method is employed
for each pixel in the space, the weights for spatial attention
can be obtained. The pixel normalization method is shown in
Fig. 11 and its mathematical expression is given as Eq. (15).
To suppress unimportant features, a regularization term is
added to the loss function as in Eq. (16).

Mc = sigmoid(Wγ (BN(F1))) (14)

M s = sigmoid(Wγ (BNs(F2))) (15)

Loss =

∑
(x,y)

l(f (x,W), y) + p6g(γ ) + p6g(λ) (16)

4) RETINEX-YOLOv8-EFFICIENTNET-NAM DETECTION
MODEL(RYEN)
The structure of Retinex-YOLOv8-EfficientNet- NAM
(RYEN) is shown in Fig.12. Improved Retinex with a
multi-image fusion algorithm is used to preprocess the cap-
tured images. YOLOv8 target detection algorithm is used
as the basis. Then, the original backbone feature extraction
network CSPDarknet of YOLOv8 is replaced by Efficient-
Net, which makes the original huge network structure lighter
and optimizes the scaling of the network without chang-
ing the layer structure. This ensures the original detection
accuracy of YOLOv8. Furthermore, incorporating the NAM
lightweight attention module into the three feature layer
channels of the predictive network enhances the extraction of
backbone features, resulting in improved network detection
accuracy.

FIGURE 12. RYEN network structure diagram.

IV. EXPERIMENTS AND DISCUSSIONS
A. COMPARISON OF ALGORITHMS BEFORE AND AFTER
IMAGE ENHANCEMENT
The data set used in this experiment was collected from a
mine plant of Jizhong Energy Fengfeng Group. Hikvision
MV-CA013-20GC industrial camera was used to capture
the dataset. The real camera is shown in Figure 13. Before
shooting, the camera was fixed on the unloading part of the
conveyor below the mine, as shown in Figure 14 in the way
and location of erection. It was set to manual shooting mode
to adjust the Angle and replenish the light source.

Fewer data resources in the process of conveyor belt wear
recognition can cause overfitting of the deep network model.
Fewer data samples can also result in less robust network
models and weaker generalization. Therefore, random crop-
ping, rotation, scaling, brightness adjustment, and adding
pretzel noise are used to expand the dataset. After expansion,
there are a total of 1831 images in the dataset. The training
set, validation set, and test set are divided in a ratio of 7:2:1.
LabeImg software is used to annotate the wear parts of the
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FIGURE 13. Spatial attention mechanism.

FIGURE 14. Physical picture of the position of the frame camera.

conveyor belt in the image, and the type of belt wear degree
and coordinate information are saved into an XML file.

The image processed by the improved Retinex with mul-
tiple image fusion algorithm is shown in Fig.15. Reliance
solely on camera acquisition without any processing methods
in underground mines can result in very low image bright-
ness. The captured images are very dark and blurry, almost
invisible. Therefore, they cannotmeet the requirements of any
detectionmodel. The image appears brighter after undergoing
the original Retinex processing. However, the presence of
noise and other distortions in the mine results in reduced
clarity of the image. Additionally, the worn texture of the belt
is not clearly visible, and the image is noticeably distorted.
The detection effect of the detection model is also greatly
affected. For the complex environment of the mine, it is
difficult for the common image enhancement algorithms to
meet the requirements. Improved Retinex multi-image fusion
algorithm, first the original Retinex algorithm is improved
and then the processed image with the improved algorithm
is channel fused with the multi-image. The processed image
is greatly improved in terms of brightness, sharpness and
contrast.

To verify its effectiveness, the original image, the Retinex
processed image, and the image processed by the improved
image enhancement algorithm are detected on the conveyor
test bed. The results are shown in Fig. 16.
The image captured without anymeans of processing is too

low in brightness, resulting in the detection model is unable

FIGURE 15. Image enhancement comparison (a) Original image
(b) Retinex processed image (c) Improved Retinex processed images.

FIGURE 16. Comparison of the effect of image enhancement algorithms
after applying to the algorithm. (a) Original image (b) Retinex processed
image (c) Improved Retinex processed images.

to detect the belt wear state. There are some problems by
Retinex image processing, such as wrong wear classification,
low recognition accuracy and missed detection. In contrast,
the improved Retinex algorithm detects clear images, recog-
nises wear categories accurately, has high accuracy and is
well suited to the detection model.

B. COMPARATIVE EXPERIMENT
The hardware platform configuration for this experimental
model training, CPU for AMD Ryzen 7 6800H; GPU for
NVIDIA GeForce RTX 3070 Ti; experimental environment
for Windows 11; Pytorch1.13.0; CUDA11.7; Python3.9.

In this paper, the performance of the model is evaluated
in terms of both detection accuracy and detection speed. For
the detection performance, mean average precision (mAP),
computation (GFLOPs), number of parameters (Params), and
speed (FPS) are used as evaluation metrics. The precision of
calculating mAP needs to calculate average precision (AP)
first, and then average the AP values of different classes. The
AP value is obtained by calculating the average of the preci-
sion values for each recall value, as shown in Eq. (17-20).

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)
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TABLE 1. Performance of different backbone feature networks on the dataset.

where TP is a positive category judged as positive, FP is a
negative category judged as positive, and FN is a positive
category judged as negative.

AP =

∫ 1

0
ρ(r)d(r) (19)

mAP =
1
K

∑K

i=1
AP i (20)

where, ρ is the precision, which indicates the proportion
of correct results identified by the model among all results
identified; r is the recall, which indicates the proportion of
correct results identified by the model among the results that
need to be identified in the dataset; and K is the number of
categories in the sample.

1) BACKBONE FEATURE EXTRACTION NETWORK TESTING
To select the backbone feature network structure with optimal
performance, EfficientNet B0-B7 is tested as the backbone
of Yolov8, respectively. The test performance is shown in
Table 1. The algorithm achieves the best speed-accuracy
trade-off on the conveyor belt wear dataset with an AP rate
of 98.57% at 61.11 FPS and 88.45% at 81.81 FPS. Within
the constraints of the experimental environment, the require-
ments on the hardware devices increase as the amount of
computation increases, and the problem of graphic memory
overflow occurs when experimenting with EfficientNet-B5.
However, the trend from Table 1 shows that as the coef-
ficient ϕ increases, the model is further extended, and the
prediction accuracy of the neural network is further improved.
However, the increase in computation inevitably reduces the
detection speed. Therefore, EfficientNet-B4 with better per-
formance is chosen, which achieves an AP rate of 98.57% at
61.11 FPS.

2) COMPARISON OF ALGORITHM PERFORMANCE WITH
NAM ATTENTION MODULE
Under the same experimental conditions, different attention
modules are added to YOLOv8 algorithm to compare the
effects of different attention modules on the performance of
the algorithm, the results are shown in Table 2 and Fig.17.
Among them, CAM is a channel attentionmodulewith a com-
pression rate of 16, and SE is a lightweight attention module.
As seen from table 2, the addition of a single channel attention
module CAM improved the detection accuracy by 1.1% com-
pared to YOLOv8. The improvement effect is not significant.

TABLE 2. Performance comparison after introduction of attention
module.

FIGURE 17. Results of different attention module training.

For the CBAM attention module with channel-space synergy,
the number of parameters is increased by 1.3M, the com-
putation is increased by 0.8G, and the detection accuracy is
increased by 2.88% compared to the original algorithm. The
CBAM mechanism ignores channel-space interactions and
thus loses cross-latitude information. Compared with CBAM,
the number of parameters of the NAM attention module
is reduced by 0.6 G, the amount of computation of NAM
is reduced by 0.8 G, and the detection accuracy of NAM
is improved by 2.26%. The detection accuracy of NAM is
improved by 5.14% compared to the original algorithm with
a frame rate of 62.1 per second. The experiments show that
NAM attention module highlights salient features by utilizing
the variance measure of the training model weights, resulting
in more accurate detection results.

3) COMPARISON OF RYEN ALGORITHM AND YOLOv8
PERFORMANCE
Performance comparison of RYEN algorithm and the original
YOLOv8 on the dataset is shown in Fig.16 and Table 3.
As shown in Fig. 18, both algorithms are better able to
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TABLE 3. PERformance comparison of ryen algorithm and original YOLOV8.

TABLE 4. Performance comparison of various algorithms.

FIGURE 18. Comparison of experimental effect of YOLOv8 before and
after improvement. (a) YOLOv8 Detection Effect (b) RYEN algorithm
detection effect.

achieve the identification of various predetermined conveyor
belt wear areas and the determination of the degree of wear.
It is obtained from Table 3 that, compared with the original
YOLOV8 algorithm, RYEN algorithm has higher accuracy
and recall rate for the belt with three layers of wear. This
is very important because, according to the data obtained
after our mechanical performance tests, a wear level of three
layers means that the performance of the belt reaches a
level close to substandard. The maximum tensile strength
that a worn three-ply belt can withstand already exceeds the
national standard and poses a safety hazard. As seen from
Fig. 18, the accuracy of the RYEN algorithm is slightly

higher than the original algorithm, which is consistent with
the results of table 3. Furthermore, the RYEN algorithm
has higher recognition accuracy for detecting three layers
of wear.

4) PERFORMANCE COMPARISON OF DIFFERENT
ALGORITHMS
The performances of several algorithms are tested simul-
taneously on the conveyor belt wear dataset, including
Faster-RCNN, SSD, YOLOv5, YOLOv7, YOLOv8, and
RYEN algorithm. The network sets are to be trained with
300 iterations, Adam’s initial learning rate is 0.001, the
weight decay coefficient is set to 0.0005, and the learning
rate momentum is 0.937. The performance results of various
algorithms are shown in Table 4.
Seen in Table 4, the detection speed of Faster R-CNN,

is 13.84 FPS, which is the slowest among all tested algo-
rithms. RPN network that takes the extraction of candidate
regions replaces the previous selective search, which greatly
reduces the amount of computation. However, compared with
YOLO algorithm or SSD algorithm which needn’t generate
candidate frames (region proposal) and is directly based on
regression prediction, computational volume of RPN network
is still large, and it is difficult to meet the real-time demand.
In contrast, the SSD algorithm based on the regression mech-
anism also predicts multi-scale feature maps, which greatly
improves the ability to detect large and small targets simul-
taneously and achieves an accuracy of 90.55% in the dataset.
On the other hand, YOLO algorithm has very good results in
terms of accuracy and detection speed. Based on YOLOv8,
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FIGURE 19. Utilization of different hardware.

FIGURE 20. Recognition effect of different algorithm.

RYEN algorithm proposed in this paper has accuracy rate of
98.57 % and detection speed of 66.11 FPS.

To evaluate the performance of the algorithms more
comprehensively, in addition to considering the algorithm
accuracy and detection speed aspects, the hardware usage
of different algorithms is also compared. The performance
results are shown in Fig.19, which is more instructive for the
operators in the actual working conditions.

As can be seen from Fig.19, the GPU and RAM usage
of RYEN algorithm (here the backbone feature extrac-
tion network is EfficientNet-B4) is less compared to the

original YOLOv8, and the CPU usage of both is the same.
In comparison, the huge computational volume of Faster
R-CNN results in it taking up a large number of GPUs
and CPUs. In addition, it is more obvious that the RYEN
algorithm based on the EfficientNet feature extraction net-
work proposed in this paper has higher timeliness while
guaranteeing the accuracy of the measurement.

Four belt wear images with different wear levels are
selected to be predicted with different algorithms. The pre-
diction results are shown in Fig.20. Faster-R-CNN and
SSD have the problem of not detecting worn regions.
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TABLE 5. Comparison of the accuracy of different detection models and manual detection.

FIGURE 21. Comparison of accuracy data between different detection models and manual detection.

YOLOv5 and YOLOv7 also have the problem of inaccurate
frame prediction. Compared with other algorithms, YOLOv8
has more outstanding detection ability, but its large structure
leads to slower detection speed. The RYEN algorithm detects
worn regions with higher confidence and accuracy than the
original YOLOv8. The RYEN algorithm performs better in
terms of accuracy. The RYEN algorithm performs better in
terms of accuracy.

Compared to the original YOLOv8, the RYEN algorithm
has an average test accuracy of 98.57% on the dataset. The
accuracy of the improved algorithm has been improved, espe-
cially in shallow wear detection. Moreover, the improved
algorithm has significantly improved the prediction speed,
increasing the number of frames from 52.94 FPS to
61.11 FPS.

5) COMPARISON OF DIFFERENT NETWORK DETECTION
MODELS WITH MANUAL DETECTION
Different network detection models are compared with man-
ual detection by experiments. Experiments are conducted by
placing 100 pre-prepared conveyor belts with different levels
of wear on the belt conveyor. Among them, 19 wear points

in one layer, 25 wear points in two layers, 27 wear points in
three layers, 12 wear points in four layers, and 17 wear points
in five layers. The average detection rate (Adr) and the correct
detection rate (Cdr) are calculated by counting the number
of wear and tear and the number of correct identifications,
respectively, for different detectionmodels andmanual detec-
tion. The comparative data results are shown in Fig.19 and
Table 5. The average detection rate was 58.98 per cent and
the correct detection rate was 45.48 per cent, depending only
on the subjective judgement of the inspectors. The reason is
that the inspector’s position for observing the conveyor belt is
not the optimal observation position, and the angle of vision
and the running speed of the conveyor belt can lead to missed
detection and incorrect detection of the degree of wear. So,
Small target wear points cannot be detected. The average
detection rate and correct detection rate of different network
inspection models are higher than manual inspection.

C. VALIDATION OF MODEL GENERALIZATION
CAPABILITIES
The generalization ability of the model is the key to the
success of the model. To verify the generalization ability of
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FIGURE 22. Field test equipment and experimental results. (a) (b) (c) Conveyor test rig at Jizhong Energy Fengfeng Group’s mine plant. (d) (e) Belt
wear test field test results.

the proposed model, a laboratory simulation environment test
is conducted.

Since it was impossible to apply the belts with wear
requirements to the conveyor, we have chosen to affix the
broken belts to a normally operating conveyor belt test
bed, which is shown in Fig. 22 (a) (b) (c). A Hikvision
MV-CA013-20GC industrial camera is mounted directly
above the unloaded belt. The camera frame rate is 90 fps, and
the maximum resolution is 1280 × 1024. The width of the
conveyor belt is 1.4 m, and the rated running speed is 3.0 m/s.
As shown in Fig.22(d) (e), the algorithm accurately identifies
belt conveyor belts with four and five layers of wear, with
accuracy rates of 88% and 90%, and real-time frame rates of
70.62 FPS and 74.28 FPS, respectively, meeting the actual
needs of the project.

V. CONCLUSION
In this paper, a new detection method RYEN algorithm of
the wear state detection of mining conveyor belts based on

deep learning and machine vision is proposed. The degree
of belt wear is reclassified and redefined with the support
of the mechanical properties data of the worn belt and the
wear texture features, to establish a new dedicated dataset
for conveyor belt wear detection.To solve the problems of
low brightness and high noise under the mine with com-
plex conditions, the acquired images are preprocessed based
on improved Retinex with multi-image fusion.Then,based
on the YOLOv8 algorithm, EfficientNet is used to replace
Darknet53 as the backbone feature extraction network, com-
prehensively considering the balance of network scaling
network depth, width, and image resolution, and improv-
ing the accuracy of the algorithm under limited computing
resources. Moreover, a lightweight attention module NAM is
introduced, which increases the accuracy of belt wear detec-
tion while improving the detection speed. RYEN algorithm is
verified with better detection accuracy and real-time perfor-
mance through field experiments. The main contributions of
this paper are summarized as follows.
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(1)Aiming at the daily fatigue wear of conveyor belts as
the main concern, the degree of wear of different wear states
of belts is redefined and classified by analyzing the data of
mechanical property tests and wear texture characteristics.
A more detailed classification of belt wear states can more
accurately monitor the operating condition of the conveyor
belt and make the belt utilization rate maximized.

(2) Aiming at the problems of low brightness, high noise,
and complex working conditions under the mine, improved
Retinex with a multi-image fusion algorithm is used to pre-
process the captured images.

(3) Considering the balance of network scaling, network
depth, width, and image resolution, EfficientNet is used
to replace Darknet53 of YOLOv8 as the backbone feature
extraction network to improve detection accuracy under lim-
ited computing resources. Moreover, a lightweight attention
module NAM is added to the three channels of the backbone
feature extraction network of YOLOv8 to improve the detec-
tion speed without reducing detection accuracy.

(4) RYEN algorithm results in a double improvement in the
detection accuracy and detection speed. The tested detection
accuracy on the conveyor belt wear dataset is as high as
98.57%, and the fastest tested detection speed is 66 FPS.

From the test platform, it can be seen that our proposed
model has high generalization ability. Comparing the detcc-
tion accuracy and speed of the algorithms, the hardware usage
is also considered when the algorithms are running to provide
a reference for engineers to choose the algorithms. In the
next work, the focus of research will be on how to make the
model more lightweight. Meanwhile, we will further extend
the belt-wear dataset to improve the robustness and general-
ization ability of the neural network.
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