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ABSTRACT The MQTTset dataset has been extensively investigated for enhancing anomaly detection in
IoT-based systems, with a focus on identifying Denial of Service (DoS) attacks. The research addresses a
critical gap in MQTT traffic anomaly detection by proposing the incorporation of the ‘source’ attribute from
PCAP files and utilizing hand-crafted feature engineering techniques. Various filtering methods, including
data conversion, attribute filtering, handling missing values, and scaling, are employed. Anomalies are
categorized and prioritized based on frequency of occurrence, with a specific emphasis on DoS attacks.
The study compares the performance of the decision tree and its eight variant models (ID3, C4.5, Random
Forest, CatBoost, LightGBM, XGBoost, CART, and Gradient Boosting) for anomaly detection in IoT-based
systems. Evaluation metrics such as prediction accuracy, F1 score, and computational times (training and
testing) are utilized. Hyperparameter fine-tuning techniques like grid search and random search are applied to
enhance model performance, accuracy, and reduce computational costs. Results indicate that the benchmark
Decision Tree model achieved 92.57% accuracy and a 92.38% F1 score with training and testing times
of 2.95 seconds and 0.86 seconds, respectively. The Feature Engineering (Modified) dataset demonstrated
a substantial improvement, reaching 98.56% accuracy and a 98.50% F1 score, with comparable training
and testing times of 0.70 seconds and 0.02 seconds. Furthermore, the Modified Decision Tree Algorithm
significantly improved accuracy to 99.27%, F1 score to 99.26%, and reduced training time to 0.73 seconds
and testing time to 0.14 seconds. The research contributes valuable insights into feature engineering and
guides the selection of effective approaches for anomaly detection in IoT-based systems, providing early
threat warnings and enhancing overall system security and reliability.

INDEX TERMS IoT, DoS, anomaly detection, MQTT.

I. INTRODUCTION
‘‘Knowledge is power’’ [1]. The power of knowledge is an
important element for both individuals and groups today and
in the future for maintaining a valued legacy, learning new
things, solving issues, developing core competencies, and
beginning new circumstances such as AI [2], the IoT [3], and
many other things have become feasible [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Ming Chen .

Modern technology is seeing a massive increase in IT
toward the IoT [4]. The research findings indicated prospec-
tive growth prediction from 2019 to 2030 are in line with the
technical objectives that have the potential to revolutionize
the interconnected world, as shown in Figure 1 [5].

Table 1 include in the research article to provide a
list of acronyms used throughout this paper. The IoT
Security-Focused Datasets are specifically curated for study-
ing and analyzing security aspects related to IoT devices
and systems [6]. IoT refers to the interconnected network
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FIGURE 1. The average growth prediction in IoT from 2019 to 2030.

of physical devices, vehicles, buildings, and other items
embedded with electronics, software, sensors, and net-
work connectivity [7]. Parameters Analyzed refer to various
aspects or attributes of the data that are being examined. The
parameters include network traffic patterns, device behavior,
vulnerabilities, attack patterns, and others [8].
Dataset names refer to the names given to these datasets,

which are used to identify and reference them. Each dataset
might focus on specific aspects of IoT security and may
have a unique name. Respective years of creation indicate the
years in which the datasets were created or compiled. This
information provides context for understanding the relevancy
and currency of the data within the datasets. In simulated
environments, IoT security datasets often include simulated
environments that mimic real-world IoT networks and sce-
narios. [9].
Such environments allow researchers and analysts to study

security threats and vulnerabilities in controlled settings.
Associated PCAP Files contain captured network traffic
data, including the actual packets of information exchanged
between devices on a network [10]. The files are crucial
for analyzing network behavior, identifying patterns, and
detecting potential security issues [11]. Dataset Sizes refers
to the amount of data present in each dataset, typically mea-
sured in terms of storage size (e.g., megabytes, gigabytes,
terabytes). Dataset size can impact the depth and scope of
analyses that can be performed [12]. Each dataset may have
unique characteristics that make it suitable for certain types of
analysis. The characteristics include the types of IoT devices
covered, the variety of attacks simulated, and the complexity
of the network topology [13]. In other words, in the dynamic
landscape of IoT-based systems, the dataset has emerged as
a pivotal focal point, captivating the attention of researchers
delving into the intricate realm of anomaly detection [14].
This study ventures into the refinement of anomaly detection
techniques, orchestrating a symphony of various filtering

TABLE 1. List of acronyms.

methods ranging from data conversion and attribute filtering
to handling missing values and scaling.With a primary objec-
tive of elevating the identification precision of anomalies, the
research casts a spotlight on the detection of attacks within
the IoT environment. Such an overview would be useful for
researchers, analysts, and practitioners interested in study-
ing IoT security threats and vulnerabilities in a controlled
environment.

The ‘source’ (IP addresses) plays a significant role in
understanding the patterns and behaviors of devices on a net-
work. However, the existingwork on predicting the anomalies
in MQTTset dataset, the ‘source’ (IP address) has been
ignored.

Following are the key contributions.

• By identifying a gap in the dataset regarding the ‘source’
attribute, the research employs hand-crafted feature
engineering techniques to incorporate this attribute from
PCAP files. This addition enhances the data analysis and
improves the prediction accuracy and prediction time in
the MQTTset dataset, particularly for identifying Denial
of Service (DoS) attacks.
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• The research conducts benchmarking analysis, compar-
ing the performance of different decision tree and variant
models, including ID3, C4.5, Random Forest, CatBoost,
LightGBM, XGBoost, and Gradient Boosting, on the
same MQTTset dataset. This comprehensive evalua-
tion allows for the identification of the most effective
approach for detecting anomalies in IoT-based systems.

• The research further refines the selected model’s per-
formance by fine-tuning its hyperparameters. By sys-
tematically adjusting the values of hyperparameters
and evaluating the model’s performance, the research
achieves improved accuracy, precision, recall, and
F1-score, ultimately enhancing the reliability of the
anomaly detection system. Incorporated automated
Hyperparameter tuning to eliminate human dependency
on the prediction models.

In summary, this research significantly advances the state-
of-the-art approaches in IoT-based anomaly detection and
achieving substantial performance improvements. In addi-
tion, the research emphasizes the importance of compu-
tational efficiency, the new approach resulted in effective
anomaly prediction without imposing excessive computa-
tional overhead. The subsequent sections of this paper are
structured as follows: In Section II, present a survey of recent
works closely related to the topic. Section III outlines the
methodology, architectural setup and introduces theML tech-
niques employed in the proposed approach. The experimental
testbed, along with the results and subsequent discussions,
is elaborated upon in Section IV. Finally, Section V provides
a conclusion to this paper.

II. RELATED WORK
The IoT is made up of a large variety of intelligent gadgets
that can gather, store, analyze, and communicate data. The
IoT environment is difficult to protect due to resource limits,
heterogeneity, and the dispersed nature of smart devices. This
rendered network protection techniques such as anti-malware
and anti-virus ineffective. Such issues, as well as the nature of
IoT applications, require the implementation of a monitoring
system, such as anomaly detection, at both the device and
network levels, outside the organizational border. It implies
that an anomaly detection system is better positioned than any
other security technique to safeguard IoT devices [15].

A. ANOMALY DETECTION IN IoT
Today’s modern world is populated by a massive amount
of IoT devices that generate massive amounts of data, and
anomaly detection are a part of practically every system.
The anomalies could indicate resource waste in an industrial
system, a critical condition in a spacecraft system to avoid
unanticipated issues, or identifying anomalous behavior in
medical devices. As a result, being able to detect abnormal-
ities can have a significant impact on the entire efficiency
of any examined system [16]. Defining the precise limits
between normal and abnormal actions is one of the most

TABLE 2. Characteristics of IoT attacks [19].

difficult tasks in detecting abnormalities. When compared to
normal behaviors, deviant behavioral patterns are extremely
rare in real-life circumstances. Most models in anomaly
detection approaches are trained on different patterns of nor-
mal activity. Any occurrence that deviates from this is deemed
anomalous behavior [17].

B. THE MQTT PROTOCOL
MQTT is an international communications standard for the
IoT. It is intended to be a very lightweight publish/subscribe
message carrier for linking wireless connections with a tiny
code footprint and low network traffic. MQTT is now utilized
in a broad range of sectors, including automotive, manufac-
turing, telecommunications, oil and gas [18]. The capability
for continuous sessions in MQTT minimizes the time it takes
to reconnect the customer to the broker.

C. MQTTSET DATASET
MQTTset dataset [19] is a comprehensive collection of net-
work traffic data that captures various types of cyber-attacks.
Among the different attack types included in the dataset, five
anomalies stand out, each with its distinct characteristics.
It combines legitimate and anomalous data, including DoS,
brute-force, flood, malformed, and SlowITe attacks against
the MQTT network. MQTTset can be utilized to train ML
models for the implementation of detection systems capable
of protecting IoT environments. The following describes the
type of attacks in the ‘MQTTset’ dataset. Table 2‘ shows
the comprehensive examination of the ‘MQTTset’ dataset,
a dataset consisting of 34 attributes in total. Within this
dataset, particular attention is given to the ‘target’ attribute,
which exhibits a diverse distribution comprising six distinct
classes. This study aims to provide a thorough analysis of the
‘MQTTset’ dataset, with a primary focus on understanding
the class distribution patterns within the ‘target’ attribute.
This paragraph establishes the context for our research inves-
tigation, outlining the dataset’s key features and its pivotal
‘target’ attribute’s multi-class composition.
DoS attacks aim to disrupt the availability of a network or

service by overwhelming it with a high volume of requests or
malicious activity. Within the ‘target’ attribute of our dataset,
we have identified a total of six distinct classes. In partic-
ular, the ‘DoS’ class has garnered our attention, consisting
of 130,233 rows in total. This ‘DoS’ class has been further
partitioned into 91,156 instances designated for training and
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39,077 instances reserved for testing purposes see Table 2.
This paragraph serves to provide a structured overview of the
class distribution within the ‘target’ attribute, with a specific
focus on the ‘DOS’ class and its respective training and
testing subsets.
Bruteforce attacks involve systematically trying multiple

combinations of usernames and passwords to gain unautho-
rized access to a system or account. See in Table 2 the ‘target’
attribute of our dataset, we have identified a total of six
distinct classes, each representing different data categories.
In particular, the ‘bruteforce’ class has been a subject of inter-
est, comprising 14,501 instances. This ‘bruteforce’ class has
been further segregated into 10,150 instances allocated for
training and 4,351 instances earmarked for testing purposes.
Malformed packets or messages refer to data that does

not adhere to the expected format or protocol specification.
Instances in this class may indicate anomalies caused by
incorrectly formatted or structured data. Within the ‘target’
attribute of our dataset, we have identified a total of six
distinct classes, each representing unique data categories.
Notably, Table 2 shows the ‘malformed’ class has captured
our attention, comprising a total of 10,924 instances. Further
examination reveals that the ‘malformed’ class has been par-
titioned into 7,646 instances designated for training, while
3,278 instances have been reserved for testing purposes.
SlowITe attacks involve intentionally slowing down net-

work communication or specific services to disrupt their
normal functioning. Table 2 shows the ‘target’ attribute of our
dataset, we have identified a set of six distinct classes, each
signifying specific data categories. Notably, the ‘slowite’
class has piqued our interest, comprising a total of 9,202 rows.
Delving deeper into this class, it is deemed that the dataset has
been categorized into 6,441 instances allocated for training
and 2,761 instances earmarked for testing purposes.
Flood attacks aim to overwhelm a network or system by

flooding it with a large volume of traffic, often exceeding its
capacity. Table 2 shows the ‘target’ attribute of our dataset,
we have identified a total of six distinct classes, each repre-
senting specific data categories.

Notably, the ‘flood’ class has garnered our attention,
encompassing a total of 613 instances. A more detailed
examination reveals that this ‘flood’ class has been further
categorized into 429 instances designated for training and
184 instances allocated for testing purposes.
Legitimate class represents normal and legitimate network

traffic or behavior. Instances belonging to this class are
expected to exhibit normal patterns and are considered non-
anomalous. Table 2 shows the number of training and testing
examples used in each category. The ‘target’ attribute in the
dataset under scrutiny exhibits a diverse set of classes. This
research work will focus on one of the classes, ‘legitimate,’
which consists of 165,475 instances. The class ‘legitimate’
is further divided into 115,824 training examples and 49,651
testing examples.

Table 4 presents a the IoT security-focused dataset. It is a
comprehensive overview of the parameters analyzed within

TABLE 3. Association between MQTT attacks and features [30].

recently accessible IoT security-focused datasets. These
datasets encompass essential information such as dataset
names, respective years of creation, simulated environments,
associated PCAP files, dataset sizes, and specific dataset
characteristics. The table seems to cover various parame-
ters related to the datasets, such as names, creation years,
simulated environments, PCAP files, sizes, and specific
characteristics.

D. SIGNIFICANT FEATURES
The attacker needs to identify the target system they want to
disrupt. The IP address is used to uniquely identify a device
on a network, enabling the attacker to pinpoint their target.
According to [19], some features such as source/destination
and port address can play important role in detecting attacks,
however these features were ignored in their experiments.
In another study by [30], the authors analyzed the significance
of the features as evident in Table 3.

E. ML IN MQTT NETWORKS
This section discusses the recent references related to the DT
algorithm. ML algorithms have been widely used in MQTT
Networks.

1) BENCHMARK ALGORITHM
Supervised ML algorithms such as DT, RF, ANN, NB, and
MLP are widely used for the prediction of attacks. Figure 2
shows the overall process of training and evaluation on
MQTTset [19].
The literature reveals that DT is the best performing

algorithm (winning algorithm) DTwhen applied toMQTTset
dataset. The algorithm creates a tree-like model of decisions
and their possible consequences, with each internal node
representing a decision based on a feature and each leaf node
representing a class label or a numerical value [31]. Each
node in the DT may balance potential actions against each
other based on their benefits, costs, and probability.

In the context of the DT model, the performance metrics
are outlined in Table 5. The achieved accuracy rate is notably
high at 92.57%, highlighting the model’s precision in making
accurate predictions. The F1 score, a balanced measure of
precision and recall is 92.38%. Considering computational
aspects, the training process took 2.95 seconds, while the
subsequent testing phase consumed only 0.86 seconds. This
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TABLE 4. Recent available IoT security-focused datasets.

TABLE 5. The results of MQTTset (Reduced) dataset using benchmark
algorithms.

signifies the efficiency of the DT model in swiftly processing
data during both training and testing stages.

The RF [32] algorithm is a supervised classification
method builds upon group of DT. The RF has improved
execution speed as compare with DT. Within the context of
the RF model, the achieved performance metrics such as
the model demonstrates a commendable accuracy level of
92.56%, indicating its proficiency in making precise predic-
tions, The F1 score, which harmonizes precision and recall
is 92.38%, underscoring the model’s balanced predictive
capabilities. Regarding computational efficiency the training
process spans 15.13 seconds, reflecting the time taken to
develop the RF model based on the provided data and during
the testing phase, the model showcases a testing time of
1.42 seconds, showcasing its efficiency in promptly evaluat-
ing data.

NB [33] is a popular ML algorithm based on Bayes’ theo-
rem, which is also used for classification tasks. It assumes
that the features are independent of each other, hence the
name ‘‘naïve’’ [34]. The NB is a classic classifier that
uses Bayes’ theorem of pre-probability to categorize data
instances. It offers a quick training pace for both small and
large datasets. It is less susceptible to missing data, but
it requires previous probabilities to be calculated. Table 5
presents the performance metrics for the conducted exper-
iment. The accuracy achieved is 79.47%, showcasing the
model’s ability to make correct predictions. Additionally, the
F1 score, indicating a balanced measure between precision
and recall is, 76.51%. In terms of computational efficiency,
the training process time 1.39 seconds, while the testing phase
required 1.08 seconds. This demonstrates the rapid process-
ing speed of the model during both training and testing,
underlining its efficiency in handling data.
LR [35] is a statistical method used for binary classification

tasks inML. This technique is typically used for classification
rather than regression. LR models the probability of a binary
outcome (such as 0 or 1) based on one or more predictor vari-
ables. Table 5, the LR model, the experiment’s outcomes are
presented such as the model achieves an accuracy of 79.71%,
showcasing its capability to make accurate predictions. The
F1 score, at 77.02%, signifies a balanced amalgamation of
precision and recall, illustrating the model’s comprehensive
predictive performance. The training process takes 30.70 sec-
onds, indicating the duration required to establish the model’s
predictive framework. During the testing phase, the model
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FIGURE 2. MQTTset (reduced) dataset model using benchmark
algorithms.

efficiently evaluates data within a mere 0.14 seconds, under-
lining its swift and effective assessment abilities.
MLP [36] is the model employs a multi-layer structure,

consisting of interconnected neurons organized into input,
hidden, and output layers. Each neuron in a layer is con-
nected to every neuron in the subsequent layer, forming a
network that can capture intricate relationships within the
data. Table 5 shows the result ofMLPmodel, the experiment’s
outcomes are presented systematically model performance
such as the model achieves an accuracy rate of 82.77%,
showcasing its ability to make correct predictions across the
dataset. With an F1 score of 81.73%, the model demonstrates
a balanced blend of precision and recall, emphasizing its
capability to effectively handle positive instances and avoid
false positives. On the contrary, the training process takes
a total of 338.56 seconds, indicating the duration required
for the model to learn from the training data and optimize
its parameters and the testing phase, the model efficiently
evaluates new data in just 0.57 seconds, highlighting its rapid
and effective classification abilities.
ANN [37] exhibit parallel processing, non-linearity, learn-

ing capabilities, and the ability to handle various data types.
It can automatically extract features, generalize from data,
and tackle complex tasks. However, the complexity and inter-
pretability challenges should be considered when applying

them to different applications. The characteristics of the ANN
model are highlighted in structured manner based on the
provided experiment results see Table 5. In the model perfor-
mance the ANN achieves an accuracy of 81.83%, indicating
its proficiency in making accurate predictions on the dataset.
The F1 score is 80.62%, showcases the model’s ability to
achieve a balanced trade-off between precision and recall
in predictions, In the computational efficiency, the training
process requires a total of 159.49 seconds, reflecting the
duration needed for the model to learn from the training data
and optimize its internal parameters and the testing phase,
the model evaluates new data in 10.42 seconds, highlighting
its ability to process and classify data within a reasonable
timeframe.
KNN [39] is an intuitive ML algorithm used for clas-

sification and regression tasks. It falls under the category
of supervised learning algorithms and is a part of the
instance-based learning family. Themain idea behind KNN is
to classify or predict a new data point based on the majority
class or average value of its KNN in the feature space. See
Table 5 shows the performance metrics, the KNN algorithm
achieves an accuracy of 91.32%, indicating its proficiency in
correctly classifying data points. With an F1 score of 91.23%,
the KNN algorithm demonstrates a balanced combination of
precision and recall in its predictions. The KNN algorithm
doesn’t have a traditional training phase. Instead, it stores
the training data, so the training time is minimal at 0.41 sec-
onds. During the testing phase, the KNN algorithm takes
548.42 seconds to classify new data points based on their
proximity to the training instances.
DNNs [38] consist of multiple hidden layers that enable

them to capture intricate data relationships. They are designed
to handle complex patterns and representations. The pro-
vided experiment results see Table 5 reveal the DNN’s high
accuracy and balanced F1 score, as well as its training and
testing efficiency. According to the performance metrics,
The DNN achieves an accuracy of 82.72%, showcasing its
proficiency in making accurate predictions across the dataset.
With an F1 score of 81.60%, the DNN demonstrates its
capability to achieve a balanced blend of precision and recall
in predictions. The training process of the DNN takes a
total of 202.58 seconds. This time frame encompasses the
model’s learning phase, during which it adapts its internal
parameters to the provided training data. During the testing
phase, the DNN efficiently evaluates new data in 6.08 sec-
onds, highlighting its ability to process and classify data with
speed.

Table 5 shows the predictive performances, F1-Score,
training and testing time onMQTTset reduced dataset [19] by
applying the above ML algorithms. The F1-score is a metric
commonly used to evaluate the performance of classification
models, particularly in situations where there’s an imbalance
between the classes.

As it is evident from the Table 5 results, the DT achieved
the highest predictive accuracy and computational time in
term of testing and training time, therefore the DT algorithms
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TABLE 6. The results of MQTTset (Reduced) dataset using variants of DT
algorithms.

has been chosen for further modification to achieve improve-
ment on MQTTset dataset.

2) VARIANTS OF DT ALGORITHM
The following section describes the variants of DT algorithm.
ID3 [40]: ID3 is one of the earliest DT algorithms. It uses

the concept of information gain to select the best feature at
each step of the tree construction process. ID3 is primarily
used for classification tasks and works well with categori-
cal data. Within the context of the ID3 classifier, Table 6
shows the achieved performance metrics, where the model
demonstrates an accuracy level of 92.55%, indicating its
proficiency in making precise predictions, The F1 score,
which harmonizes precision and recall, stands at an impres-
sive 92.37%, underscoring the model’s balanced predictive
capabilities. Regarding computational efficiency the train-
ing process spans 0.83 seconds, reflecting the time taken
to develop the ID3 classifier based on the provided data
and during the testing phase, the model showcases a testing
time of 1.42 seconds, showcasing its efficiency in promptly
evaluating data.
C4.5 [41]: is an extension of the ID3 algorithm. It intro-

duces the concept of gain ratio, which addresses the bias of
ID3 towards attributes with a large number of distinct values.
C4.5 can handle both categorical and numerical features and
supports missing values. Table 6 presents the performance
metrics for the conducted experiment. The accuracy achieved
is 92.56%, showcasing the model’s ability to make correct
predictions. Additionally, the F1 score, indicating a balanced
measure between precision and recall, stands at 92.37%.
In terms of computational efficiency, the training process took
4.37 seconds, while the testing phase required 0.40 seconds.
This demonstrates the rapid processing speed of the model
during both training and testing, underlining its efficiency in
handling data.
LightGBM Classifier [42]: is another GB framework that

focuses on high efficiency and scalability. It uses a technique
called GOSS to select and prioritize instances during tree
construction, reducing memory usage and improving training
speed. LightGBM also supports categorical features and pro-
vides excellent performance on large datasets. Table 6 shows

about the result of the LightGBM ML algorithm to tackle a
classification task. The results were quite promising, with the
model achieving an accuracy of 92.80%. This indicates the
model’s proficiency in correctly categorizing instances from
the dataset. The F1 score, a metric that balances precision
and recall, was also impressive at 92.63%. Efficiency was
another notable aspect of our study. The training process,
which involved teaching the model on the dataset, took a
mere 20.93 seconds. This signifies the algorithm’s capability
to swiftly learn patterns and relationships within the data.
Subsequently, during the testing phase, where the model’s
generalization to unseen data was evaluated, the process took
only 4.50 seconds.
XGBoost Classifier [43]: is an optimized GB framework

that has gained popularity for its performance and flexibility.
It uses a combination of GB and regularization techniques
to build DT. XGBoost includes various advanced features
like parallel processing, handling missing values, and han-
dling sparse data, making it widely used in ML competitions.
Table 6 shows about the result of the XGBoost classifier for a
classification endeavor. The outcomes were notably encour-
aging, as the model attained an accuracy of 92.54%. This
underscores the model’s competence in effectively classify-
ing instances within the dataset. The F1 score for XGBoost is
92.36%. Efficiency emerged as another salient aspect of our
investigation. The training phase, encompassing the model’s
learning process on the dataset, was completed within a
mere 14.65 seconds. This signifies the classifier’s rapid
assimilation of patterns and information present in the data.
Subsequent to training, the testing phase, which gauged the
model’s performance on previously unseen data, lasted just
1.37 seconds.
CatBoost Classifier [44]: is a GB framework that specifi-

cally addresses categorical feature handling. It incorporates a
novel approach to deal with categorical variables, providing
better accuracy and training efficiency. CatBoost utilizes a
combination of ordered boosting and categorical boosting
to build DT. Table 6 shows the result of CatBoost classi-
fier, the experiment’s outcomes are presented systematically
model performance such as the model achieves an accuracy
rate of 92.80%, showcasing its ability to make correct pre-
dictions across the dataset. With an F1 score of 92.62%,
the model demonstrates a balanced blend of precision and
recall, emphasizing its capability to effectively handle pos-
itive instances and avoid false positives. In other side, the
training process takes a total of 43.12 seconds, indicating the
duration required for the model to learn from the training
data and optimize its parameters and the testing phase, the
model efficiently evaluates new data in just 0.87 seconds,
highlighting its rapid and effective classification abilities.
GB classifier [45]: is a popularML technique used for both

regression and classification tasks. It’s an ensemble learn-
ing method that combines the predictions of multiple weak
learners (usually DTs) to create a strong predictive model.
GB builds the model in a stage-wise manner, where each
new model corrects the errors of the previous ones. Table 6
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shows about the result of the power of the GB Classifier for a
critical classification task. The results obtained were notably
compelling, with themodel achieving an accuracy of 92.55%.
This accomplishment underscores the classifier’s adeptness
in effectively categorizing instances within the dataset. The
F1 score is 92.33%. Of particular interest was the efficiency
aspect of this investigation. The training phase, encompassing
the rigorous learning process of the model on the dataset,
extended over a duration of 206.38 seconds. This underscores
the comprehensive nature of the model’s learning process,
which may contribute to its nuanced performance. Following
the training phase, the testing stage, aimed at evaluating
the model’s generalization to new data, concluded within a
succinct 1.54 seconds.

The above variants of DT have been applied in the experi-
ments results available in section IV

III. PROPOSED APPROACH
The research presented makes several significant contribu-
tions to the field of anomaly detection in IoT-based systems
using the MQTTset dataset. The research applies various
filtering techniques, such as data conversion, attribute fil-
tering, handling missing values, label encoding, and feature
selection to improve the quality and structure of the dataset.
This ensures that the subsequent analysis and modeling steps
are conducted on reliable and meaningful data. By identi-
fying a gap in the dataset regarding the ‘source’ attribute,
the research employs hand-crafted feature engineering tech-
niques to incorporate this attribute from PCAP files. This
addition enhances the data analysis and improves the accu-
racy of anomaly detection, particularly for identifying DoS
attacks.

The research conducts benchmarking analysis, comparing
the performance of different DT and variant models, includ-
ing ID3, C4.5, RF, CatBoost, LightGBM, XGBoost, and GB,
on MQTTset dataset. This comprehensive evaluation allows
identification of the most effective approach for detecting
anomalies in IoT-based systems.

The research further refines the selected performance of
the model by fine-tuning the hyperparameters. By systemati-
cally adjusting the values of hyperparameters and evaluating
the model’s performance, the research achieves improved
accuracy, precision, recall, and F1-score, ultimately enhanc-
ing the reliability of the anomaly detection system.

A. METHODOLOGY
In this research work on the exploration of anomalies within
IoT-based systems using the MQTTset dataset, a compre-
hensive approach was taken. This involved multiple stages,
starting with data preparation as the initial step to refine
the raw information for analysis. Subsequent phases encom-
passed the meticulous cleaning and transformation of the data
into a structured format suitable for machine learning algo-
rithms. A key focus of this research was the determination
of the significance of ‘source’ (IP addresses) through the
application of handcrafted feature engineering methods. This

FIGURE 3. MQTTset (reduced) dataset model using variants of DT
algorithms.

not only aimed to enhance prediction accuracy but also sought
to optimize prediction time within the MQTTset dataset.
Additionally, the integration of automated hyperparameter
tuning played a crucial role in eliminating human dependency
on the predictionmodels, further advancing the efficiency and
robustness of the analytical process. The overall methodology
has been presented in Figure 8.

B. PREPROCESSING TECHNIQUES
The goal of preprocessing is to prepare the data in a way
that enhances the performance and effectiveness of themodel.
The following preprocessing techniques has been applied.

1) HEXADECIMAL CONVERSION
Hexadecimal data can contain valuable information. For
instance, in network traffic analysis, hexadecimal values
might represent packet headers or flags. Converting the hex
values to binary or integers can help extract meaningful
features for ML models to detect anomalies or patterns.
Figure 4 shows the hexadecimal to numeric conversion is
applied to the attributes (‘tcp.flags‘, ‘mqtt.conack.flags‘,
‘mqtt.conflags‘, ‘mqtt.hdrflags‘, ‘mqtt.msg‘). The ‘tcp.flags‘
attribute likely represents the flags in a TCP (Transmis-
sion Control Protocol) packet header. Each flag can be
represented by a specific bit in binary, ‘mqtt.conack.flags‘,
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FIGURE 4. Before and after conversion of ‘flag’ attributes.

‘mqtt.conflags‘, ‘mqtt.hdrflags‘, ‘mqtt.msg‘ attributes are
related to the MQTT (Message Queuing Telemetry Trans-
port) protocol, commonly used in IoT. Converting hex values
to numeric ones allows for easier interpretation of MQTT
packet details. ML models often require numerical input.
By converting hex values to binary or integers, the data
becomes suitable for input into these models. Anomalies or
patterns in network traffic can be detected by training the ML
models on these converted numeric features.

2) LABEL ENCODING
This technique is used to transform categorical data, specif-
ically in the context of IP addresses that is suitable for ML
algorithms. In binary encoding, each category is represented
by a binary number, and each bit in the binary number corre-
sponds to a specific category or feature. For IP addresses, this
means breaking down each part of the address (e.g., octets
in IPv4) into its binary representation. For example, an IP
address like 192.168.1.90 might be represented as a binary
vector where each octet is converted into an 8-bit binary
number (byte).

As for label encoding, it’s a method used to convert cat-
egorical data into numerical format by assigning a unique
numerical label to each category. In Figure 5, it could involve
assigning numerical labels to different parts of the IP address,
such as octets or specific ranges of values.

3) HANDLING MISSING VALUES
Dealing with missing values is indeed crucial in data pre-
processing for ML. The methods—dropping rows with null
values and replacing specific values—are common strategies.
Dropping rows with null values is a technique that involves
removing entire rows from the dataset if they contain any
null values. This operation eliminates rows with any missing
values. Instead of dropping rows, it might choose to replace
missing values with a specific value. This is often done
to retain as much data as possible. The replacing ‘MQTT’
with ‘1’ in the ‘mqtt.protoname’ attribute of a DataFrame

FIGURE 5. Before and after label encoding technique.

named ‘df’. These techniques help ensure that the dataset
remains usable for training machine learning models. How-
ever, it’s essential to carefully consider the implications of
these choices, as they can impact the model’s performance.
Provide more details on the above filtering techniques used
and the specific methods employed for data conversion.

4) FEATURE SELECTION
It seems like in the context of the MQTTset dataset, the
focus was on feature selection to streamline the dataset and
remove unnecessary complexity. The features ‘mqtt.msg‘,
‘Date‘, and ‘Time‘ were specifically mentioned as being
removed. Feature selection techniques aim to choose themost
relevant features for a ML model while discarding irrelevant
or redundant ones. The feature selection techniques in the
MQTTset dataset focused more on data preprocessing and
filtering based on specific criteria.

C. FEATURE ENGINEERING
This research endeavors to enhance the depth of data analy-
sis within the ‘MQTTset’ dataset by incorporating a crucial
attribute, namely ‘source,’ sourced from the PCAP file. The
benchmark MQTTset (reduced) dataset is missing the key
attribute ‘source’, however such attribute is available in the
raw PCAP file provided by the same authors. To extract this
feature, a handcrafted feature engineering technique has been
applied see Figure 6. Handcrafted features, often referred to
as hand-engineered features, are specific attributes or vari-
ables created by domain experts or data scientists through
manual design and feature extraction techniques.

The features are derived from the original data by applying
expert knowledge, domain-specific insights, or mathematical
transformations.

It involves manually designing and extracting the most
relevant features from the PCAP file. To address the existing
gap in the dataset, we have employed a meticulous approach
to feature engineering.

By introducing the ‘source’ attribute, our aim is to augment
the dataset’s analytical capacity significantly see Figure 7.

The literature review underscores the pivotal importance
of including this attribute, which has motivated our research
initiative. It is crucial to bridge the identified gap in the
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FIGURE 6. Extract attributes from the PCAP file.

FIGURE 7. Add ‘source’ attribute into MQTTset (Reduced) dataset.

TABLE 7. Attributes description.

dataset through the strategic incorporation of ‘source’ as
a key attribute. Notably, the attributes extracted from the
PCAP file for this study include ‘Date’, ‘Time’, ‘Source’,
‘Length,’ ‘Src_Port,’ and ‘target’ Table 7 shows the attributes
description.

This comprehensive approach seeks to enrich the dataset’s
analytical potential and contribute valuable insights to the
fields of data analysis and cybersecurity.

D. AUTOMATED HYPERPARAMETER TUNING
Once the most effective model has been identified, its
performance can be refined by fine-tuning its hyperpa-
rameters. It improves the overall security and reliability
of the IoT-based system by providing early warning of

potential threats. Hyperparameters are adjustable settings that
determine how the ML algorithm will learn and perform.
Fine-tuning of hyperparameters can be achieved by using
grid search, random search, or Bayesian optimization tech-
niques, among others. By adjusting the values of the model’s
hyperparameters, we can improve its accuracy and reduce
its computational cost. This process involves systematically
varying the values of each hyperparameter and evaluating the
model’s performance on a validation set.

The fine-tuning the hyperparameters of ML models can
improve the performance of the model in terms of accuracy,
precision, recall, and F1-score. It improves the reliability of
the anomaly detection system and reduce the likelihood of
false positives and false negatives. In summary, benchmark-
ing analysis is important for evaluating the performance of
different models, and fine-tuning the hyperparameters can
further improve the accuracy and efficiency of the selected
model. It can help to detect and mitigate potential threats
and attacks in real-time and improve the overall security and
reliability of the system.

E. EXPERIMENTAL DESIGN
The experiments were carried out in Colab [46]. Holdout
validation was applied by separating the dataset into two
groups, 70/30 split was applied with 70% of the data being
used to train the model and the remaining 30% being used
to test and evaluate it. This evaluation method was chosen to
compare the results with the original benchmark MQTTset
dataset.

IV. RESULTS OF FEATURE ANALYSIS
The next step which is related to the benchmarking analysis,
it is important because it allows us to evaluate the perfor-
mance of different models or algorithms in a standardized
and objective manner. By comparing the results of different
models on the same dataset using the same metrics, we can
determine which approach is most effective for a particular
task. In the context of developing an efficient ML approach
for anomaly detection in theMQTTset dataset, benchmarking
analysis can help to identify the most accurate and efficient
model. By comparing the performance of different algo-
rithms on the same dataset using appropriate metrics, we can
determine which approach is most effective for detecting
anomalies in the data.

A. EVALUATION OF BENCHMARK & VARIANTS OF DT
In the comprehensive evaluation of different DT benchmarks
and their variations, extending its investigation to include
a diverse range of ML algorithms. Assessing performance
metrics within the realm of a prediction task, the analysis
systematically examined the effects of both reduced and
modified datasets on prediction accuracy and F1 score. This
comprehensive approach involved an array of machine learn-
ing algorithms, allowing for a broader understanding of their
efficiency. By placing decision trees alongside various algo-
rithms in this extensive examination, the research aimed to
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TABLE 8. Comparison of Prediction accuracies, F1 score of the
benchmark algorithm – Before and after applying Feature Engineering.

offer a holistic perspective on their comparative effectiveness.
The study served as a pivotal exploration into anomaly detec-
tion within IoT-based systems, utilizing the MQTTset dataset
as a foundational element for the analysis.
Results: Benchmark Algorithms
Table 8 provided summarizes the performance metrics of

different ML algorithms on a prediction task, evaluating both
their reduced and modified datasets in terms of prediction
accuracy and F1 score. The algorithms examined include NB,
MLP, ANN, LR, DT, RF, DNN, and KNN. NB, it achieves
reasonable accuracy and F1 Scores on both the Reduced and
Modified datasets. While not the top performer, NB demon-
strates consistency across datasets. MLP stands out with the
highest accuracy and F1 Scores in the Modified DS. This
indicates its proficiency in capturing complex patterns and
nuances present in the data, making it a strong contender for
scenarios demanding precision and recall. ANN shows com-
petitive results, particularly in the Modified DS. Its ability
to adapt to intricate relationships in data is reflected in the
higher F1 Score, making it a reliable choice for tasks requir-
ing nuanced predictions. LR, while not leading in terms of
metrics, maintains a steady performance across both datasets.
It may be considered a pragmatic choice for simpler models
or when interpretability is crucial. DT and RF shine in both
accuracy and F1 Score, especially in the Modified DS. These
tree-based models demonstrate robustness and effectiveness
in capturing complex decision boundaries. DNN performs
well, showcasing an improvement in F1 Score in theModified
DS. DNNs are known for their capacity to model intricate
relationships, and this is reflected in the enhanced perfor-
mance in the more challenging dataset. KNN exhibits high
accuracy and F1 Score, particularly excelling in the Modified
DS. KNN’s strength lies in capturing local patterns, making
it effective in scenarios where instances with similar features
tend to belong to the same class.

Figure 9 shows, NB exhibits consistent performance across
both datasets, showcasing moderate accuracy of 79.47% in
the Reduced DS and a slightly improved 80.17% in the Mod-
ified DS. Correspondingly, the F1 Scores also demonstrate
stability, with values of 76.51% and 77.96% in the Reduced
and Modified DS, respectively. MLP emerges as a standout
performer, particularly excelling in the Modified DS. With
an accuracy of 82.77% in the Reduced DS and a remark-
able 94.06% in the Modified DS, coupled with F1 Scores
of 81.73% and 92.72%, MLP demonstrates its capability
to capture complex patterns and nuances in the data. ANN
delivers solid performance, especially in the Modified DS.
With an accuracy of 81.83% in the Reduced DS and an
improved 85.10% in the Modified DS, alongside F1 Scores
of 80.62% and 83.09%, ANN showcases its adaptability to
intricate relationships in the data. LR maintains a steady
performance, showing similar accuracy and F1 Scores across
both datasets. With an accuracy of 79.71% in the Reduced
DS and 78.81% in the Modified DS, LR demonstrates relia-
bility in simpler models or scenarios where interpretability is
crucial.

DT and RF emerge as standout performers, particularly
excelling in the Modified DS. DT achieves an accuracy of
92.57% in the Reduced DS and an exceptional 98.56% in the
Modified DS, with corresponding F1 Scores of 92.38% and
98.50%. RFmirrors DT’s exceptional performance, showcas-
ing robust accuracy and F1 Scores, especially in theModified
DS. DNN demonstrates competitive performance, with an
accuracy of 82.72% in the Reduced DS and an improved
86.76% in the Modified DS. Notable improvements in F1
Score are observed in the Modified DS, reaching 88.36%.
KNN exhibits high accuracy and F1 Scores, particularly
excelling in the Modified DS. With an accuracy of 91.32% in
the Reduced DS and an outstanding 98.44% in the Modified
DS, coupled with F1 Scores of 91.23% and 98.37%, KNN
proves effective in capturing local patterns and achieving
precision-recall balance.

Similarly, in terms of F1 score, MLP stood out with an F1
score of 92.72%, closely followed by RF and DT at 98.50%
see Figure 10.

Overall, the results suggest that MLP, RF, and DT are
strong performers across both the reduced and modified
datasets, showcasing their robustness in this predictive task.
However, it’s essential to consider other factors such as com-
putational complexity and interpretability when selecting the
most suitable algorithm for a specific application.

Table 9 provided offers insights into the training and testing
times of various ML algorithms when applied to both a
reduced and modified dataset. These times are measured in
seconds (sec).

For training time on the reduced dataset, the algorithms
exhibit a wide range of performance. KNN stands out as
the fastest, with a mere 0.41 seconds required for training,
followed by DT at 2.95 seconds. In contrast, MLP consumes
the most time, with a considerable 338.56 seconds needed
for training. Other algorithms such as ANN and DNN also

25710 VOLUME 12, 2024



Imran et al.: Realtime Feature Engineering for Anomaly Detection in IoT Based MQTT Networks

FIGURE 8. Proposed model: Modified MQTTset (Reduced) method of MQTTset dataset.

TABLE 9. Comparison of computational training and testing time of the
benchmark algorithm – Before and after applying Feature Engineering.

demand substantial training times, approximately 159.49 sec-
onds and 202.58 seconds, respectively.

When transitioning to the modified dataset, the train-
ing times generally decrease for most algorithms. Notably,
MLP’s training time drops to 317.12 seconds, while ANN’s
training time is reduced to 145.40 seconds. KNN remains

the fastest for training on the modified dataset, taking only
1.01 seconds.

Turning to testing times on the reduced dataset, most
algorithms perform relatively quickly. LR and DT have
the fastest testing times at 0.14 seconds and 0.86 seconds,
respectively.

On the other hand, KNN’s testing time significantly
increases to 548.42 seconds, suggesting it may not be the
best choice for scenarios requiring speedy predictions on this
dataset.

In the case of the modified dataset, testing times remain
within reasonable limits for all algorithms, with the longest
time being 10.45 seconds for ANN. These times are generally
acceptable for most applications, but considerations should
be made depending on real-time requirem ents and computa-
tional resources.
Results: DT and its Variants
Table 10 presents the performance metrics of nine different

DT and its variant algorithms on two distinct datasets: a
reduced dataset and a modified dataset. These algorithms
are evaluated based on their prediction accuracy and F1
score, which are essential metrics for assessing classification
models.
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FIGURE 9. Comparison chart of Prediction accuracies of the benchmark
algorithm – Before and after applying Feature Engineering.

FIGURE 10. Comparison chart of F1 score of the benchmark algorithm –
Before and after applying Feature Engineering.

The DT, RF, ID3, CatBoost, LightGBM, XGBoost, C4.5,
GB, and CART models all exhibit high prediction accu-
racy ranging from 92.54% to 92.80%. This indicates that
these algorithms are generally effective in making correct
predictions on the dataset. The high F1 scores, ranging
from 98.49% to 98.56%, further validate the models’ ability
to strike a balance between precision and recall. CatBoost
and LightGBM outperform the other models with the high-
est prediction accuracy and F1 scores, demonstrating their
robustness on the MQTTset dataset. XGBoost, RF, and

TABLE 10. Comparison of Prediction accuracies, F1 score of the DT and
its Variants – Before and after applying Feature Engineering.

FIGURE 11. Comparison of computational training time of the benchmark
algorithm – Before and after applying Feature Engineering.

CART also perform consistently well across both metrics see
Figure 13. This demonstrates their robustness and reliability
in classification tasks, regardless of the dataset variation.

Similarly, when considering the F1 score, these algorithms
maintain remarkably consistent performance see Figure 14,
with scores ranging from 92.33% to 92.63% on the reduced
dataset and 98.49% to 98.50% on the modified dataset. This
consistent performance across both datasets underscores the
reliability of these DT and variant algorithms in maintaining
high precision and recall for classification tasks.

Table 11 provides insights into the computational perfor-
mance of nine DT and its variant algorithms in terms of
training and testing times, measured in seconds (sec). These
algorithms have been evaluated on both a reduced dataset
and a modified dataset. In terms of training time, the fastest
models in terms of training time are DT, ID3, and CART.
C4.5 and RF have moderate training times. GB, CatBoost,
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FIGURE 12. Comparison of computational testing time of the benchmark
algorithm – Before and after applying Feature Engineering.

FIGURE 13. Comparison chart of Prediction accuracies of the DT and Its
Variants – Before and after applying Feature Engineering.

LightGBM, and XGBoost have significantly longer training
times. In testing time, the DT, ID3, and CART are the fastest
models. CatBoost, XGBoost, and LightGBM have higher
testing times, with CatBoost having the lowest among them.
GB has the longest testing time. The overall performance of
DT, ID3, and CART seems to provide a good balance between
training and testing times. RF shows a longer training time but
potentially better performance with its ensemble approach.
CatBoost, LightGBM, and XGBoost are boosting algorithms
with longer training times but may offer better predictive

FIGURE 14. Comparison chart of F1 score of the DT and Its Variants –
Before and after applying Feature Engineering.

TABLE 11. Comparison of computational training and testing time of the
DT and its Variants – Before and after applying Feature Engineering.

performance due to their ensemble nature. GB has the longest
training time, which might be a concern in scenarios where
speed is crucial. The potential considerations, if model inter-
pretability and fast predictions are essential, are DT, ID3,
and CART. If a trade-off between training time and poten-
tial accuracy is acceptable, Random Forest (RF) might be a
good choice. For datasets where boosting algorithms tend to
perform well, CatBoost, LightGBM, and XGBoost could be
suitable, but their longer training times need to be considered.
Figure 15 shows in terms of training times on the reduced

dataset, the algorithms exhibit notable variations. DT and ID3
are the fastest, requiring just 2.95 seconds and 3.11 seconds,
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FIGURE 15. Comparison chart of computational training time of the DT
and Its Variants – Before and after applying Feature Engineering.

respectively, for training. On the other hand, GB is the most
time-consuming, taking a substantial 206.38 seconds. This
variance in training times suggests that certain DT variants
are more computationally efficient for this specific dataset.

Transitioning to the modified dataset, training times gen-
erally increase, but the relative rankings remain consistent.

DT and ID3 maintain their efficiency, with minimal
increases in training times. Conversely, GB remains the
slowest but exhibits a more significant increase in training
time compared to the other algorithms.

For testing times on the reduced dataset, most algo-
rithms perform quite swiftly, with C4.5 being the fastest
at just 0.40 seconds see Figure 16. However, on the mod-
ified dataset, there are slight increases in testing times for
most algorithms, yet they generally remain within reasonable
limits.

In summary, this table illustrates the varying computational
demands of nine DT and its variant algorithms on both the
reduced and modified datasets. While certain algorithms like
DT and ID3 excel in terms of training efficiency, others
like GB are more computationally intensive but may offer
improved predictive performance. The choice of algorithm
should be carefully considered, considering both computa-
tional resources and the desired predictive accuracy for a
given dataset and application.
Results: Best Automated parameter tuning in DT
Table 12 provided to observe the parameter grid for

fine-tuning a DT algorithm, focusing on the criteria for split-
ting and the splitter selection method. The goal is to identify
the best automated parameters for optimizing the DTmodel’s
performance.

In terms of the CRITERION parameter, which determines
the criterion used for splitting nodes, the table presents two

FIGURE 16. Comparison chart of computational testing time of the DT
and Its Variants – Before and after applying Feature Engineering.

TABLE 12. Best Automated parameter tuning w.r.t criterion and splitter.

options: Gini and Entropy. The AUTO-TUNED PARAME-
TERS column indicates that the best automated parameter
for this criterion is Gini. This suggests that, in this specific
context, using the Gini impurity as the criterion for node
splitting yields better results than using the Entropy criterion.

The SPLITTER parameter, which specifies the strategy
for choosing the split at each node, the table offers two
choices: Best and Random. According to the AUTO-TUNED
PARAMETERS column, the best automated parameter for
this setting is ‘‘Best.’’ This implies that selecting the best
possible split at each node, rather than relying on random
splits, is the preferred strategy for optimizing the DT model’s
performance.

The automated parameter tuning results, the best settings
for the DT algorithm in this context are to use the Gini crite-
rion for splitting nodes and the ‘‘Best’’ strategy for selecting
the split. These parameter choices have been determined to
provide the most favorable outcomes for this specific DT
model and dataset. However, it’s essential to note that param-
eter tuning can be dataset-dependent, and the best settings
may vary for different datasets and problem domains.

Table 13 provided outlines the parameter grid for
fine-tuning a DT algorithm, with a focus on the maximum
depth of the tree, the minimum number of samples required
to split an internal node (MIN_SAMPLES_SPLIT), and
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TABLE 13. Best Automated parameter tuning w.r.t maximum depth,
minimum samples split and leaf.

TABLE 14. Modify DT Algorithms using hyper parameter tune.

the minimum number of samples required to be at a leaf
node (MIN_SAMPLES_LEAF). The goal is to identify the
best automated parameters for optimizing the DT model’s
performance.

Starting with the MAX DEPTH parameter, the DEFAULT
PARAMETER column indicates that the default value is set
to ‘‘None,’’ which means the tree can grow without any
restrictions on its depth. However, through auto-tuning, the
best automated parameter for this setting is determined to
be 5, suggesting that constraining the maximum depth of the
tree to 5 levels yields improved performance.

The MIN_SAMPLES_SPLIT parameter, the DEFAULT
PARAMETER shows that the default value is set to 2, indi-
cating that a node can be split as long as it contains at least
2 samples. However, the AUTO-TUNED PARAMETERS
column reveals that, through automated tuning, the best
parameter setting is 10. This suggests that requiring a mini-
mum of 10 samples to split an internal node is more favorable
for optimizing the DT’s performance in this context.

The MIN_SAMPLES_LEAF parameter, the DEFAULT
PARAMETER is set to 1, implying that a leaf node can
contain just one sample. However, the AUTO-TUNED
PARAMETERS column indicates that the best automated
parameter for this setting is 1, which means keeping the
minimum samples per leaf at its default value is the most
suitable choice for this DT model.

In summary, based on the automated parameter tuning
results, the best parameter settings for the DT algorithm in
this particular context are to limit the maximum depth of the
tree to 5 levels, require a minimum of 10 samples to split an
internal node, and keep the minimum samples per leaf at its
default value of 1. These parameter choices are determined
to provide the most favorable outcomes for this specific DT
model and dataset.

Table 14 provides an overview of the performance met-
rics for modified DT algorithms. The accuracy of these
algorithms stands impressively high at 99.27%, indicating
their proficiency in correctly classifying data points during
training.

FIGURE 17. Accuracy of modify DT algorithms using hyperparameter tune.

FIGURE 18. F1 score of modify DT algorithms using hyper parameter tune.

Additionally, the F1 score, a measure of the algorithms’
precision and recall, is equally impressive at 99.26%, signi-
fying their ability to balance between correctly identifying
positive cases and minimizing false positives.

Moreover, the training time required for these modified DT
algorithms is remarkably low, clocking in at just 0.73 sec-
onds, showcasing their efficiency in model development.
When it comes to testing, these algorithms maintain a swift
pace with a testing time of only 0.14 seconds, ensuring
quick predictions on new data. Overall, these modified DT
algorithms exhibit outstanding performance across various
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FIGURE 19. Computational training time of modify DT algorithms using
hyper parameter tune.

FIGURE 20. Computational testing time of modify DT algorithms using
hyper parameter tune.

metrics, making them a valuable asset in data classification
tasks.

The comprehensive comparison of accuracy, F1 scores,
training time, and testing time for DT algorithms, including
the original DT, Reduced DT, and Modified DT algorithms.
In terms of accuracy, the Modified DT Algorithm out-
performs the other two, Figure 17 shows, achieving an
impressive accuracy rate of 99.27%, showcasing its ability
to make precise predictions. Similarly, Figure 18 shows the

F1 score for the Modified DT Algorithm stands at 99.26%,
indicating a remarkable balance between precision and recall.

When it comes to efficiency, the training time for the
Modified DT Algorithm is notably shorter at 0.73 seconds,
making it amore time-efficient choice formodel development
compared to the original DT (2.95 seconds) and Reduced DT
(0.70 seconds).

In terms of testing time, the Modified DT Algorithm is the
quickest, taking only 0.14 seconds for predictions, whereas
the ReducedDT takes 0.02 seconds, and the original DT takes
0.86 seconds.

Overall, these results suggest that the Modified DT
Algorithm offers a compelling combination of high accuracy,
F1 score, and efficiency, making it a strong candidate for
various data classification tasks, especially when speed and
precision are essential.

V. CONCLUSION
In conclusion, the research conducted on the MQTTset
dataset represents a significant advancement in the field
of anomaly detection within IoT-based systems. This study
addressed a critical gap in the existing literature by incorpo-
rating the ‘source’ attribute from PCAP files and employing
hand-crafted feature engineering techniques. The primary
objective was to enhance the identification of anomalies,
particularly focusing on the detection of DoS attacks.

The evaluation of variousMLmodels, including the bench-
mark DT and its eight variant models, demonstrated the
effectiveness of feature engineering in improving detection
accuracy and F1 scores. The results showcased substantial
performance gains, with the Modified DT Algorithm achiev-
ing an impressive 99.27% accuracy and a 99.26% F1 score.
Notably, this improvement was accompanied by a reduction
in both training and testing times, enhancing computational
efficiency.

Furthermore, the incorporation of hyperparameter fine-
tuning techniques, such as grid search and random search,
further refined the model performance, ensuring higher accu-
racy while managing computational costs.

Overall, this research contributes valuable insights into the
realm of feature engineering and offers clear guidance on
selecting the most effective approach for anomaly detection
in IoT-based systems. The proposedmethod not only provides
early threat warnings but also significantly enhances the over-
all security and reliability of IoT-based systems, making it a
promising avenue for future research and practical implemen-
tation. In conclusion, the future directions for this research
involve delving deeper into advanced techniques, scalabil-
ity, adaptability, real-world implementation, and continuous
improvement to meet the evolving landscape of IoT-based
systems and their security challenges.
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