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ABSTRACT Electrocardiogram (ECG) data’s high dimensionality challenges real-time arrhythmia
classification. Our approach employs functional approximation to condense ECG recordings into a compact
feature set for simpler classification using Chebyshev polynomials. These polynomials, with 200 time
points and 80 coefficients, accurately represent arrhythmias in an 81 × 1 feature vector. We prove
Chebyshev polynomials act as implicit low-pass filters on input signals. Using MIT-BIH Arrhythmia
and MIT-BIH Supraventricular Arrhythmia datasets, we introduce classifiers that achieve significant
accuracy. A three-layered Artificial Neural Network yields high F1-scores (0.99, 0.90, 0.93, and 0.76 for
classes N, S, V, and F) with minimal parameters (20,964), surpassing existing models. Furthermore, our
proposed ECG classification system exhibits minimal computational demands, requiring only 0.1 MIPS
per beat. We also propose efficient signal reconstruction methods, with the iterative approach showcasing
accurate reconstruction with negligible error. This approach accommodates various data sampling types and
determines optimal Chebyshev coefficients for capturing signal bandwidth.

INDEX TERMS Level-crossing ADC, electrocardiograms, functional approximation, Chebyshev polyno-
mials, artificial neural networks, arrhythmia, support vector machines, bandwidth analysis.

I. INTRODUCTION
Arrhythmia, an abnormal heart rhythm, is a significant
medical condition. Atrial fibrillation, the most common form
of arrhythmia, is projected to affect millions of people in the
United States and Europe in the coming decades [1]. Auto-
mated arrhythmia classification is a widely researched area
that can help with early diagnosis and improve patient care
by providing long-term remote cardiac monitoring. Several
hardware-friendly designs have been proposed for real-time
arrhythmia classification. Notably, the literature includes
real-time patient-specific ECG classifiers as demonstrated
in prior works such as Malik et al. [2], Tang et al. [3], and

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhan-Li Sun .

Kiranyaz et al. [4]. Abubakar and colleagues [5] introduced
a wearable long-term ECG processor for arrhythmia clas-
sification, employing a reduced feature set. Additionally,
a low-complexity antidictionary-based ECG classifier was
proposed by Duforest et al. [6]. Tang et al. [7] presented
a patient-specific arrhythmia classifier with low complex-
ity, utilizing support vector machines. Another promising
approach for real-time wearable arrhythmia classification
involves utilising a novel sampling technique at the analogue
front end, employing level-crossing ADCs (LC-ADCs).

Recent research has demonstrated a growing interest in
LC-ADCs due to their potential to reduce data streams
and battery consumption. Li et al. [8] introduced an ECG
front-end featuring an LC-ADC, showcasing its potential
for low-power, high-performance applications. In a different
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approach, Marisa et al. [9] presented a pseudo-asynchronous
LC-ADCwith dynamic comparators for implantable biomed-
ical sensing. This design offers energy efficiency, a smaller
chip area, and robust performance in noisy conditions,
making it suitable for long-term sensing applications.
Ravanshad et al. [10] introduced an asynchronous analogue-
to-digital conversion system utilizing a modified LC-ADC
for measuring ECG RR intervals. This system achieved high
accuracy, sensitivity, and low power consumption, making
it viable for wearable wireless ECG sensors in body-sensor
networks. Furthermore, Tlili et al. [11] employed an LC-
ADC for ECG signal measurement and proposed a biosignal-
dependent design methodology to minimise distortion. Their
design exhibited excellent signal quality and robustness
against non-idealities, making it a promising choice for ECG
data acquisition.

More recently, Van and Gielen [12] introduced a new LC-
ADC for biomedical signal acquisition, whichmitigated com-
mon issues like power consumption and signal-dependent
distortion. Similarly, Wei et al. [13] introduced an LC-ADC
with adaptive sampling. Their design, utilizing a 180-nm
CMOS process, achieved outstanding power efficiency con-
suming just 197nW , while still delivering 6.4bits of effective
resolution and a signal-to-noise and distortion ratio (SNDR)
of 41.6dB. Tang et al. [14] introduced a novel second-order
level-crossing sampling ADC for real-time data compression
and feature extraction in ECG applications. Their system
efficiently separated sampling and quantization processes,
achieving a compression factor of 8.33 for sparse ECG
signals, and proved to be suitable for low-power sensors.
Lin et al. [15] reduced energy consumption in biological
signal acquisition by using non-uniform sampling and fixed
windows. The LC-ADC achieved 9.51-bit ENOB in 0.18µm
CMOS technology. Tong et al. [16] introduced an energy-
efficient fixed-window LC-ADC for biomedical applications.
With a single continuous-time comparator and integrated dig-
ital circuitry, it achieved 73.1 dB SNDR and 20.1µW power
consumption at 1 kHz in 0.18µmCMOS technology, offering
compact design suitability for biomedical applications.

Existing literature demonstrates that LC-ADCs can
achieve data compression of up to 3x, and event-driven
arrhythmia classifiers demand only 50% of the computational
resources compared to standard classifiers designed for
uniformly sampled data [17]. The majority of current ECG
classifier systems are tailored for uniformly sampled data,
whereas LC-ADCs generate non-uniformly sampled data.
These existing designs are not readily applicable to the non-
uniform data produced by LC-ADCs. Consequently, there
is a pressing demand for algorithms capable of harnessing
event-driven data from LC-ADCs for automated arrhythmia
detection, with a focus on minimizing power consumption.
Fig. 1 shows an illustration of uniform sampling using a
conventional ADC and event-driven sampling using an LC-
ADC. In conventional ADCs, sampling occurs at regular time
intervals, producing quantized amplitude values. In contrast,

FIGURE 1. (a) uniform sampling using a conventional ADC
(b) event-driven sampling using an LC-ADC.

LC-ADCs utilize an event-driven sampling scheme where
samples are taken only when the input signal crosses pre-
defined levels - each output is thus a two-dimensional
quantity comprising a time and amplitude coordinate.
This activity-dependent sampling makes them suitable for
sporadic signals, e.g. an ECG signal, resulting in lower
average sampling rates and reduced power consumption.

An interesting aspect of LC-ADC is the theoretical absence
of amplitude quantization error - when the LC-ADC indicates
that a level was crossed, it does so with arbitrary accuracy.
Of course, there are other sources of ‘noise’ arising from
this sampling process as examined by Tili et al. [11], [18],
Ravanshad et al. [10] and Saeed et al. [17] - in particular the
number of levels used, how accurately they are defined, and
the quantization of the time coordination of each sample.
Quantization figures of merit are difficult to define as
they are very signal-dependent, making the choice of LC-
ADC parameters domain-specific. To address this, a recent
study [17] used theMIT-BIHArrhythmia database to develop
a good set of parameters, as shown in Table 1, for the
application of ECG monitoring. This configuration will be
used throughout this paper.

One challenge encountered in event-driven ECG is the
varying length of the two-dimensional output, consisting
of ‘‘time, amplitude’’ pairs. This output cannot be directly
utilized by a classifier, leading to difficulties in analysis
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TABLE 1. The LC-ADC parameters used for simulation of event-driven ECG
datasets.

and classification. Although non-uniformly sampled data is
prevalent in numerous fields such as astronomy, medicine,
image processing, communication, and the automotive indus-
try, limited research has been conducted on transforming such
data into standard feature sets for classification purposes [19],
[20], [21].

A promising approach worth exploring is the spectral
analysis of non-uniformly sampled data [22]. Non-uniform
fast Fourier transforms (NUFFTs) have gained significant
attention as efficient algorithms for computing the dis-
crete Fourier transform (DFT) of non-uniformly sampled
data [23], [24]. NUFFTs find applications in various domains,
including signal processing, imaging, and computational
science [24], [25].

Approximation techniques provide a simplified approach
to analyze and interpret complex signals. Functional approx-
imation, in particular, has shown its value in classify-
ing smooth time-series data. By estimating an unknown
underlying function based on a given set of observations,
a functional approximation can handle irregularly spaced
time samples derived from a continuous signal. This method
effectively summarizes high-dimensional signals using a
standard set of features, eliminating the need for complex
deep-learning algorithms to learn features. The work of
Melchert et al. [26] emphasizes the effectiveness of using
approximation coefficients as features in non-equidistant and
non-uniform datasets. Their findings demonstrate the ability
of approximation coefficients to compensate for missing data
and irregular sampling.

This work builds on the research presented by Saeed et al.
[27] with an expansion on the methodology and analysis of
the classification of functional approximation features using
Chebyshev polynomials. The main novel contributions are:
a) functional approximation is used to estimate a feature set
from event-driven ECG signals, b) a discrete cosine transform
is used for faster coefficient calculation, c) bandwidth
analysis of Chebyshev polynomials is presented, d) three new
class-oriented classifiers are used to demonstrate the accuracy
of classification using functional approximation features, and
e) methodologies for accurate reconstruction of ECG signals
are compared.

II. METHODOLOGY
A. FUNCTIONAL APPROXIMATION FOR FEATURE
ESTIMATION
Consider a time-domain signal, g(t), with t ∈ [a, b], which
can bemapped to a normalized time-domain signal, y(x), such

that x ∈ [−1,+1].

y(x) ≜ g
(
b− a
2

x +
a+ b
2

)
We can approximate the signal y(x) using a finite weighted
sum of polynomials, specifically, we use Chebyshev polyno-
mials as presented in the work in [27], as,

y(x) ≈ ỹ(x) ≜
K−1∑
k=0

ckTk (x) ∀ |x| ≤ 1 (1)

where the ck are a set of K Chebyshev coefficients
approximating the original signal and the Tk (x) are the
Chebyshev polynomials of the first kind defined as:

Tk (cos(θ)) = cos(kθ ) ∀ 0 ≤ k <∞

The discretized version of these polynomials form an
orthogonal basis set [28]:

N−1∑
n=0

Ti(xn)Tj(xn) =

{
0 i ̸= j
1

2−δi
N i = j

(2)

where δi is the Kronecker delta function of k , and:

xn ≜ cos
(
(n+ 1

2 )
π

N

)
0 ≤ n < N (3)

where N ≥ K is the number of time domain points used to
compute the coefficients. Note that the orthogonality property
does not hold at the more usual uniform samples in time but
rather at these specific time points {xn}. Accordingly, we can
compute the coefficients as:

ck =
2− δk

N

N−1∑
n=0

ynTk (xn) ∀ 0 ≤ k < K (4)

where yn ≜ y(xn) are the samples of y taken at the orthogonal
time points xn.

It is important to note the {xn} are more concentrated near
the boundaries xn ≃ ±1 compared to near the origin xn ≃
0. Fig. 2a shows the location of {xn} points on an ECG beat
using (3). It can be seen that the distribution of these points
is mostly concentrated towards the edges of the ECG beat,
whereas the highest activity of the QRS complex lies around
the R peak. The impact of this is that the approximation in (1)
is poor if the ck are computed using these xn points directly.
To address this issue, we introduce a pre-processing step that
first applies a windowing function to the ECG beat, followed
by a rotation (in time) around the R peak. The purpose of the
windowing is to taper off the edges of the ECG beat before
rotation to eliminate an unwanted discontinuity post-rotation.
Although many windowing functions are possible, we chose
to use the following raised cosine window function defined
on the interval x ∈ [−1, 1]:

w(x) =

 1 |x| < (1− β)
1
2

(
1+ cos

(
π
|x| − (1− β)

β

))
elsewhere
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FIGURE 2. (a) An example of the xn time points on an ECG beat for N=50, (b) effect of windowing, and (c) the rotated beat and new orthogonal points.

where β is the roll-off factor and signifies the percentage
of the signal being tapered off. In this work, we set β =

30%. Together, the windowing and rotation operation can be
summarized in the following equation:

y(x)←

{
y′(x − 1+ R) x > −R
y′(x + 1+ R) x ≤ −R

where y′(x) ≜ w(x)y(x) is the windowed version of y(x),
and R ∈ [−1, 1] is the position in time of the R-peak.
Accordingly, the beat is now rotated (circularly shifted)
around the R-peak such that the R-peak is now positioned
near the boundaries at x = ±1; this corresponds to the
highest density of orthogonal points xn as per (3) meaning
that the xn time points will now be ‘focused’ on the
R-peak.

This is illustrated in Fig. 2 where N=50 time points, xn, are
shown with and without these pre-processing steps. Firstly,
in Fig. 2a, the position of the xn with respect to the original
ECG beat is shown - it can be seen that the R-peak is not
well-captured, having only 2 samples. Fig. 2b shows the
effect of windowing to taper off the edges. Finally, Fig. 2c
shows that after rotation, there are now 11 samples in the
region of the R peak, making any subsequent processingmore
accurate.

B. EFFICIENT COEFFICIENT CALCULATION WITH
DISCRETE COSINE TRANSFORM
Computing the coefficients, denoted as {ck}, using the direct
method, as outlined in equation (4), exhibits a computational
complexity of O(NK ) and necessitates prior knowledge
of the values of Tk (xn) for 0 ≤ k < K and 0 ≤
n < N . In contrast, we propose utilizing the Discrete
Cosine Transform (DCT) [29], which offers a more efficient
computation with a complexity ofO(N logN ). By employing
equation (3) in equation (4), we obtain:

ck =
2− δk

N

N−1∑
n=0

yn cos
(
k(n+ 1

2 )
π

N

)

This summation is just the length N DCT(Type II) of the
vector y⃗ where {y⃗}n ≜ yn

ck =
2− δk

N
{DCT (y⃗)}k ∀ 0 ≤ k < N (5)

Here, DCT (y⃗)k represents the k-th DCT coefficient of the
vector y⃗. It is important to highlight that the computational
complexity of our DCT method is independent of K . This is
becausewe compute allN DCT coefficients and subsequently
discard the last N − K coefficients to obtain our desired
set of K Chebyshev coefficients. An essential advantage
of our DCT-based approach is the elimination of the need
to pre-compute or store the Tk (xn) values, which would
be particularly burdensome for resource-constrained IoT
devices.

C. CLASS-ORIENTED CLASSIFIERS
In the context of ECG classification using functional approx-
imation features, we propose employing three machine
learning algorithms: a k-nearest neighbour classifier, a sup-
port vector machine, and an artificial neural network.

1) K-NEAREST NEIGHBORS
To design a k-NN classifier, we utilized the MATLAB
Classification Learner toolbox, setting k equal to 3. The
choice of k was determined through simulations across
the range of k = [1, 2, 3, . . . , 30]. As shown in Figure 3, the
cross-validation and test errors were minimized when k was
set to 3. Thus, we adopted a 3-NN classifier for our feature
set classification. We also used a 70:30 training-to-test ratio
and employed 10-fold cross-validation during training.

2) SUPPORT VECTOR MACHINES
For SVM classification, we utilized the LibSVM library
withinMATLAB to train a one-vs-one Gaussian SVMmodel.
We employed a cross-validation grid search to optimize the
Gaussian model parameters, resulting in a cost value of 3 and
a gamma value of 1. A 70:30 split ratio between the training
and test sets was also applied. This model involved a total of
12,898 trained support vectors.
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FIGURE 3. The training, cross-validation and test error as a function of k
nearest neighbours for the k-NN classifier.

3) ARTIFICIAL NEURAL NETWORK
In this approach, we utilized the artificial neural network
model described in [27]. The architecture consists of three
hidden layers with 128, 64, and 32 neurons and an output
layer with 4 neurons representing class labels. The number of
hidden layers and the number of neurons were selected after
several simulations, considering options ranging from one to
five hidden layers and 8-256 neurons per layer.

We adopted a training-test split ratio of 70:30, allocating
an additional 10% as a validation set from the training data.
The model was trained using the Adam optimizer, sparse
categorical cross-entropy loss, and a batch size of 64. Early
stopping was implemented to prevent overfitting, and we
employed synthetic minority oversampling [30] to address
class imbalance.

III. EXPERIMENTAL SETUP
A. ORTHOGONAL TIME POINTS: CHOICE OF N
To determine the minimum number of time points required
for computing the approximation coefficients and to show-
case the significance of pre-processing steps (windowing and
rotation), we conducted experiments with and without these
pre-processing steps. In each case, we evaluated the root
mean square (RMS) difference [17] between y(x) and its
approximation ỹ(x) as defined in (1). These experiments were
carried out using the MIT-BIH Arrhythmia Database [31]
for various values of N, and the results are presented in
Fig. 4.

In Fig. 4a, the beats were interpolated to orthogonal
time points without any pre-processing, and converted to
Chebyshev coefficients. Next, the beat was reconstructed
from the coefficients and the percentage RMS difference was
calculated compared to the original beat. In Fig. 4b the same
procedure was repeated, but this time, the windowing and
rotation pre-processing steps were applied before interpola-
tion. Comparing the mean PRD values (shown in blue) it
can be seen in Fig. 4a, that the percentage RMS difference
converges to 2.52% when using N=300 time points without

FIGURE 4. The percentage RMS difference as a function of N (number of
interpolation points) when a) windowing and rotation are not used, and
b) when windowing and rotation are used. (Note: The blue triangles
represent the average over all records in the MIT-BIH dataset.).

the pre-processing steps. Whereas, with the pre-processing
steps, in Fig. 4b, the percentage RMS difference converges
faster to 2.56% at N=200 time points. Thus confirming the
usefulness of these proposed pre-processing steps. For the
rest of this article, a value of N=200 is used throughout.

B. BANDWIDTH ANALYSIS: CHOICE OF K
The approximation in (1), where we essentially zero the
Chebyshev coefficients for k > K , is analogous to removing
high-frequency terms in a Fourier series style expansion,
i.e. it represents an implicit low-pass filtering operation.
To quantify this concretely and to serve as an aid in selecting
a suitable value of K we derive in this section, a closed-
form expression of the frequency content captured by the
Chebyshev polynomials. We show that, for any application,
the choice of K can be made simply by knowing the cut-off
frequency one wishes to obtain.

The signal ỹ(x) can be approximated using the first K terms
as:

ỹ(x) ≈
K−1∑
k=0

ckTk (x)

Then in the frequency domain,

Ỹ (ω) = F (ỹ) =
K−1∑
k=0

ck T̂k (ω)
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FIGURE 5. Spectrum for various choices of K used in the functional
approximation.

where, T̂k (ω) is the Fourier transform of Tk (x). Then, the
energy spectral density of the signal is,

Sỹ(ω) = E
[∣∣∣Ỹ (ω)∣∣∣2]

= E

∣∣∣∣∣
K−1∑
k=0

T̂k (ω)ck

∣∣∣∣∣
2

=

K−1∑
i=0

K−1∑
j=0

∣∣∣T̂i(ω)T̂j(ω)∣∣∣2 E [∣∣cicj∣∣2] (6)

In general, the auto-correlation function E[cicj] is not known
for arbitrary signals so the approach adopted here is to
compute the spectrum of the output, i.e. Sỹ(ω) under the
assumption that the input y⃗ is white. Accordingly, it is shown
in Appendix A that:

E[cicj] = δi−j

Therefore, (6) can be reduced to:

Sỹ(ω) =
K−1∑
k=0

∣∣∣T̂k (ω)∣∣∣2 (7)

Fig. 5 illustrates this spectrum, Sỹ(ω), for various choices
of K, the number of Chebyshev coefficients used in the
functional approximation. It can be seen that the sum of
K polynomials behaves like an implicit low-pass filter on
the incoming signal. For example, for K=80 Chebyshev
coefficients, the noise beyond 40 Hz is removed. Therefore,
for the rest of this study, we choose K=80 as it captures
the useful ECG bandwidth of 0.5-40Hz. Due to this implicit
filtering effect, applications that employ this functional
approximation techniquemay opt to remove filtering as a pre-
processing step, as is the case for our work. Fig. 5 can be used
as a guide for this purpose.

TABLE 2. Beat distribution in the combined MIT-BIH Arrhythmia and
MIT-BIH Supraventricular Datasets.

C. EVENT-DRIVEN DATASET
For the classification of ECG beats, theMIT-BIHArrhythmia
database [31] was used, which contains 48 two-channel
recordings sampled at 360Hz with an 11-bit resolution. This
dataset was non-uniformly sampled using a 7-bit LC-ADC
with a 2385 Hz clock and a 6-bit clock timer as described
in [27]. Using the recommendations by the Association for
the Advancement of Medical Instrumentation (AAMI) [32],
the beats were organized into four major classes, i.e. normal
(N), supraventricular (S), ventricular (V), and fusion (F)
beats. Furthermore, the four paced records 102, 104, 107 and
217 were excluded from the analysis.

There is an inherent class imbalance in this dataset where
the majority class (N) is represented by 83% beats, and
the smallest class (F) is represented by less than 1% beats.
To overcome this class imbalance, we supplemented this
data with the S, V and F types beats from the MIT-BIH
Supraventricular Arrhythmia Database [33]. This database
is sampled at 128Hz. Therefore, it was first resampled to
360Hz before non-uniform sampling using the 7-bit LC-
ADC as described above. The new class distribution with
combined beats from both datasets is shown in Table 2. Next,
using N=200 time points and K=80 Chebyshev coefficients,
each beat was converted to 81 approximation coefficients
using (4). The feature set was normalized before training,
validation and testing of classifiers.

D. EVALUATION METRICS
All classifiers were evaluated for Accuracy (ACC), sensitivity
(SEN or recall), positive predictivity (PPV or precision), and
false positive rate (FPR), which are defined as:

ACC =
(TP+ TN )

(TP+ FP+ FN + TN )

SEN =
TP

(TP+ FN )

PPV =
TP

(TP+ FP)

FPR =
FP

(FP+ TN )

where FP, FN, TP, and TN are the number of false positives,
false negatives, true positives, and true negatives per class.

In addition to ACC, SEN, PPV and FPR, the classifiers are
also evaluated using the F1 scores. The F1 score provides
a combined evaluation of SEN and PPV, representing their
harmonic mean. It is a valuable metric for assessing both
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TABLE 3. Classification results using the three machine-learning
algorithms.

parameters simultaneously and is defined as:

F1 = 2 ∗
(PPV ∗ SEN )

(PPV + SEN )

In this analysis, two classification approaches are consid-
ered: class-oriented and patient-specific. The patient-specific
approach demands a sufficient amount of labelled data from
each new patient to train the classifier. This necessitates
extended recordings and additional time for clinicians to
assign and verify labels in long-term ECG recordings.
Consequently, for this study, we opted for the class-oriented
classification approach. In this approach, similar beats from
all subjects are grouped for training and testing. One
drawback of this approach is the variability observed in the
same type of ECG beats from subject to subject, adding
complexity to the classification task.

IV. RESULTS AND DISCUSSION
Table 3 shows the classification results using the three
classifiers summarized in II-C. For the KNN, with a cross-
validation loss of 0.031, F1 scores of 0.98, 0.89, 0.93 and
0.75 are achieved for the N, S, V and F classes, respectively.
The k-NN was also tested using SMOTE to balance the
dataset. However, no improvement in testing accuracies was
observed. The SVMmodel achieved similar results for the N,
S, and V classes but classified the smallest class F better with
an F1-score of 0.80. Additionally, we tested the SVM model
with SMOTE to balance the class distribution, which did not
improve the results. Linear SVM models were also tested for
classification performance. However, they failed to perform
well in the smaller classes.

Table 3 also shows the ANN performance without SMOTE
and with SMOTE to balance the class distribution.

Although the three classifiers gave very similar per-
formances, the ANN combined with SMOTE had the
highest sensitivities and lowest false-positive rates for the
four classes. Furthermore, the SVM model had a similar
performance to the k-NN model. Sensitivity, also known as
recall, is considered the most important evaluation parameter
in this classification problem as it represents the classifier’s
ability to correctly diagnose arrhythmias. For example, a high

TABLE 4. Gaussian SVM performance on the three majority classes.

sensitivity in the S class represents correctly identified S-type
beats in the record when it truly contained S-type beats.

In terms of complexity, the k-NN model has a complexity
of O(nd), where n=85980 training data points and d=81 is
the number of features in the training set. Therefore, the kNN
requires close to 7 million parameters to be stored in memory
for real-time classification. Next, the SVM model requires
12898×3 support vector coefficients and a 12898×81matrix
to store the 12898 support vectors. Overall, the SVM model
requires a little over 100,000 parameters to be stored in
memory for classification. Finally, the ANN model requires
only 20,964 parameters for real-time classification.

While, practically, the ANN model appears to be the
optimal choice for real-time on-device classification, all
three models underscore the efficiency of the functional
approximation feature set in representing event-driven ECG
data. The highlighted F1-scores in Table 3 indicate the best-
performing models for each class.

It’s important to note that the relatively poorer performance
of the F-class can be attributed to its representation in less
than 1% of the overall dataset. For very imbalanced classes,
most classifiers and class-balance techniques struggle to
perform effectively, as observed in the limited improvement
provided by SMOTE for the F-class. This class imbalance’s
impact is evident in the three-class results presented in Table 4
when using the Gaussian SVM. For this analysis, F-class
beats were excluded from all records. These results show
a slight improvement over those in Table 3 using Gaussian
SVM and ANN but remain otherwise unaffected.

A. COMPARISON WITH PREVIOUS WORKS
Table 5 provides a performance comparison between this
study and previous hardware-efficient designs. Two of these
designs utilized uniformly sampled ECG data, while the
others employed event-driven ECG. In this study, the ANN
and Gaussian SVM models exhibited similar F1 scores
for all four classes. However, the ANN model required
approximately 79% fewer hardware resources than the
Gaussian SVM model. Both models outperformed the ANN
model in [27] and the 1D-CNN model in [17], both of which
used a 7-bit level-crossing ADC with a 2385 Hz clock. The
1D-CNN [17] required 132,676 parameters and achieved a
relatively lower F1 score (0.83) for S-type beats but slightly
better F1 scores for F-type and V-type beats (0.84 and 0.96,
respectively) compared to the Gaussian SVM and ANN
models in this study. The ANNmodel in [27] required 20,964
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TABLE 5. Comparison with previous works.

parameters and achieved lower F1 scores for S-type and
F-type beats (0.75 and 0.78, respectively).

In [34], the ANN model used an 11-bit ADC and was
analyzed using a patient-specific approach, requiring only
3,717 parameters to be stored in memory. This model
achieved slightly better F1 scores for S-type and V-type
beats at 0.96 and 0.98, respectively. However, the F1 score
for F-type beats was the lowest among all models at 0.63,
primarily due to the low sensitivity performance of F-type
beats at 40.03%. The models in [3] and [35] utilized
uniformly sampled ECG and reported results for S-type and
V-type beats only. Unfortunately, the PPV parameter was
not reported in [35], preventing direct comparison of F1
scores. The ANN model in this work required only 8,415
parameters and was evaluated using a patient-specific model.
The class-wise performance of the class-oriented model was
not reported in [35]. The classifier in [3] presented a very
low-complexity linear SVM that required only 32 parameters.
The best model, SkP-32, achieved F1 scores of 0.83 for S-
type beats and 0.92 for V-type beats, with poorer PPV values
compared to other works. Overall, the three-layered ANN
model presented in Section II-C3 demonstrated the most
balanced performance across all classes and required only
20,964 parameters for real-time classification. With more
data available for the F-class, further improvements in results
can be expected.

B. COMPLEXITY CONSIDERATION OF THE SYSTEM
To estimate the complexity inferred, we consider the event-
driven classification system shown in Fig. 6. Analog ECG
signal is sampled by the 7-bit level-crossing ADC, using the
two thresholds, UQL and LQL . The two digital-to-analogue

converters adapt the thresholds as the input ECG signal
changes. We use a 2385Hz clock cycle and a 6-bit timer
as described in [36]. The non-uniformly sampled ECGout
and the vector representing the time between consecutive
samples, TI , are fed into an R-peak detector and a beat
extractor. A low-complexity level-crossing-based QRS detec-
tor [10], [37] can be used here. The beat-extractor identifies
all samples within a window of -260ms to +400ms about
the R-peak. Note that the number of samples contained
within this window is variable due to the event-driven nature
of the LC-ADC. These samples are then fed into a linear
interpolator that generates samples at the 200 orthogonal time
points defined in (3). Approximately 400 multiplications (or
equivalently divisions) operations are required to convert the
2D variable length vector [ECGout , TI ] to these orthogonal
time points. As described in Section II-A, the windowing
function requires 200 multiplications, and the rotation in
time can be implemented for free by careful pre-rotation
of the stored Chebyshev basis functions. Alternatively, the
rotation step can also be absorbed into the stored Cheby-
shev polynomials (basis functions). Next, the 81 feature
vector is computed by a dot product that requires using
200 multiplications per feature. In total, the feature extraction
requires 400+200+81*200 ≈ 17k multiplications per ECG
beat. Whereas, the pre-trained ANN-based classifier itself
requires 21k multiplications (i.e. the number of parameters
in the ANN). This final block in Fig. 6 produces a label
per ECG beat, classifying them as normal (N) or abnormal
(S, V or F). These complexity estimates are per-ECG
beat, which for a typical subject of c.60 to 100 beats
per minute would result in a complexity of approximately
0.1 MIPS.
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FIGURE 6. The event-driven electrocardiogram classification system with a level-crossing ADC, approximation coefficient features and a
neural network classifier.

V. ECG SIGNAL RECONSTRUCTION
In an automated event-driven arrhythmia classification sys-
tem, the arrhythmias detected by the system may necessitate
further analysis by a specialist or practitioner to assess the
underlying issues. Therefore, in this section, we propose
and compare various methodologies for reconstructing a
signal ỹ(x) at a set of N time points using a set of
K Chebyshev coefficients. As presented in Section II-A,
to compute the ck coefficients using (4), the signal y(xn) must
be taken at the orthogonal time points xn represented by (3).
Signals are not inherently sampled at these orthogonal time
points. Therefore, interpolation techniques such as linear or
cubic-spline interpolation must be used before computing
the K Chebyshev coefficients. Table 6 summarizes the
reconstruction methods presented below.

A. INVERSE DISCRETE COSINE TRANSFORM AND
INTERPOLATION
By using (3) in (1), the signal ỹ(x) can be computed as,

ỹ(xn) =
K−1∑
k=0

ckTk (cos
(
(n+ 1

2 )
π

N

)
)

=

K−1∑
k=0

ck cos
(
k(n+ 1

2 )
π

N

)
This is equivalent to the inverse discrete cosine transform
(iDCT) if we also include a scaling factor, such that,

⇒ ỹ =

√
N
2
iDCT

(
c′

)
where

{ỹ}n ≜ ỹ(xn) and {c′}k =


√
2c0 k = 0

ck 1 ≤ k < K
0 K ≤ k < N

The iDCT reconstruction method reconstructs the signal
at orthogonal time points. Therefore, reconstruction using

iDCT still requires interpolation to get to the desired time
points.

B. ITERATIVE APPROACH
We can iteratively construct a vector b of length K × 1 at any
time point x, such that reconstruction of the signal is only
dependant on its first two terms, as defined by the following
algorithm:

Algorithm 1 Procedure for Computing ỹ(x) Given c
Let bK = bK+1 = 0
for r = K−1→ 0 do
br = cr + 2xbr+1 − br+2

end for
ỹ(x) = b0−x ∗ b1

where, c⃗ is the vector of K coefficients. A more detailed anal-
ysis of this algorithm is presented in a previous study [36].

C. COMPARISON OF RECONSTRUCTION TECHNIQUES
Table 6 summarizes the three reconstruction methods pre-
sented above. We tested the three reconstruction techniques
on record 234 of theMIT-BIH Arrhythmia dataset. The direct
method with interpolation has a complexity of O (NK ) and
an average reconstruction error of 4.821% overall beats.
If interpolation is to be avoided, this method requires prior
knowledge of the Chebyshev polynomials at targeted time
points or the capability to compute the polynomials at run-
time. The iDCT approach has the computational complexity
of O (N logK ) and is restricted to the N orthogonal time
points and requires interpolation to get to the desired
time points. However, it is much faster than the direct
method. Finally, the iterative approach has a complexity of
O (N logN ) and can be computed at any arbitrary set of N
time points on the continuous range [−1,+1]. Furthermore,
the iterative approach had a reconstruction error of only
0.008%.
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TABLE 6. Comparison of signal reconstruction techniques.

VI. CONCLUSION
This work presented an efficient way to reduce high-
dimensional data streams into a compact set of features that
can be classified using low-complexity machine learning
classifiers. Functional approximation and Chebyshev polyno-
mials were used to estimate a small feature set to classify the
ECG beats in real-time, which can be applied to uniformly
or non-uniformly sampled signals. A closed-form expression
was derived that represents the frequency content captured by
the Chebyshev polynomials. We have shown that Chebyshev
polynomials implicitly apply low-pass filtering to signals.
Using 80 Chebyshev coefficients, the 3 dB cut-off frequency
of 40 Hz for ECG signals was achieved. It also demonstrated
the use of discrete cosine transforms for faster calculations of
Chebyshev coefficients. In addition, three machine learning
algorithms for classifying ECG beats into four classes (N,
S, V, and F) using the 81 Chebyshev coefficients were
presented.

The ANN performed best for all classes and required
the fewest number of training parameters (20,964), making
it the most practical choice for real-time classification.
Compared to previous works, the ANN model presented
here, which uses a class-oriented classification approach,
performed the best among all uniformly and event-driven
classifiers developed for real-time ECG classification. This
model had an overall F1-score of 0.99, 0.90, 0.93, and
0.76 for N, S, V, and F classes. The results for the smallest
class (F) in our model, representing 0.67% of all beats
in the dataset, could be further improved if additional
beats were available for the class. Finally, an iterative
algorithm for fast and accurate reconstruction of ECG beats
at any point in time and at any resolution was presented,
which may be useful for further analysis of ECG data by
physicians.

APPENDIX A
COMPUTATION OF COEFFICIENT CROSS-CORRELATION
FUNCTION
For the evaluation of (6), we know that cicj = 0 ∀ i, j ≥ k
and ck = d⃗k · y⃗. Here, d⃗k is the k th row of the DCT matrix
in (5) and we assume, that y⃗ is a column vector containing a
white signal. Then,

cicj = (d⃗i · y⃗)(d⃗j · y⃗)

= (
∑
l

di,lyl)(
∑
r

dj,ryr )

=

∑
l

di,ldj,ly2l +
∑
l

∑
r ̸=l

di,ldj,rylyr

Under the assumption that the input signal y⃗ is white then we
can say E[|y⃗|2] = I, i.e.:

E[ylyr ] = δl−r

where δk is the Kronecker delta function. Thus, the expected
value of the cicj becomes:

E[cicj] =
∑
l

di,ldj,l

= d⃗i · d⃗j
= δi−j

REFERENCES
[1] G. Lippi, F. Sanchis-Gomar, and G. Cervellin, ‘‘Global epidemiology

of atrial fibrillation: An increasing epidemic and public
health challenge,’’ Int. J. Stroke, vol. 16, no. 2, pp. 217–221,
Feb. 2021.

[2] J. Malik, O. C. Devecioglu, S. Kiranyaz, T. Ince, and M. Gabbouj, ‘‘Real-
time patient-specific ECG classification by 1D self-operational neural
networks,’’ IEEE Trans. Biomed. Eng., vol. 69, no. 5, pp. 1788–1801,
May 2022.

[3] X. Tang, Z. Ma, Q. Hu, and W. Tang, ‘‘A real-time arrhythmia heartbeats
classification algorithm using parallel delta modulations and rotated linear-
kernel support vector machines,’’ IEEE Trans. Biomed. Eng., vol. 67, no. 4,
pp. 978–986, Apr. 2020.

[4] S. Kiranyaz, T. Ince, and M. Gabbouj, ‘‘Real-time patient-specific
ECG classification by 1-D convolutional neural networks,’’ IEEE Trans.
Biomed. Eng., vol. 63, no. 3, pp. 664–675, Mar. 2016.

[5] S. M. Abubakar, W. Saadeh, and M. A. B. Altaf, ‘‘A wearable long-term
single-lead ECG processor for early detection of cardiac arrhythmia,’’
in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2018,
pp. 961–966.

[6] J. Duforest, B. Larras, D. John, O. Martens, and A. Frappé, ‘‘Slope-based
event-driven feature extraction for cardiac arrhythmia classification,’’
in Proc. IEEE Biomed. Circuits Syst. Conf. (BioCAS), Oct. 2021,
pp. 1–4.

[7] X. Tang and W. Tang, ‘‘An ECG delineation and arrhythmia classification
system using slope variation measurement by ternary second-order delta
modulators for wearable ECG sensors,’’ IEEE Trans. Biomed. Circuits
Syst., vol. 15, no. 5, pp. 1053–1065, Oct. 2021.

[8] Y. Li, A. L. Mansano, Y. Yuan, D. Zhao, and W. A. Serdijn, ‘‘An
ECG recording front-end with continuous-time level-crossing sampling,’’
IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 5, pp. 626–635,
Oct. 2014.

[9] T. Marisa, T. Niederhauser, A. Haeberlin, R. A. Wildhaber, R. Vogel,
J. Goette, and M. Jacomet, ‘‘Pseudo asynchronous level crossing ADC for
ECG signal acquisition,’’ IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 2,
pp. 267–278, Apr. 2017.

[10] N. Ravanshad, H. Rezaee-Dehsorkh, R. Lotfi, and Y. Lian, ‘‘A level-
crossing basedQRS-detection algorithm for wearable ECG sensors,’’ IEEE
J. Biomed. Health Informat., vol. 18, no. 1, pp. 183–192, Jan. 2014.

VOLUME 12, 2024 25197



M. Saeed et al.: ECG Classification With Event-Driven Sampling

[11] M. Tlili, M. Ben-Romdhane, A. Maalej, F. Rivet, D. Dallet, and C. Rebai,
‘‘Level-crossing ADC design and evaluation methodology for normal
and pathological electrocardiogram signals measurement,’’ Measurement,
vol. 124, pp. 413–425, Aug. 2018.

[12] J. Van Assche and G. Gielen, ‘‘A 10.4-enob 0.92–5.38 µw event-
driven level-crossing ADC with adaptive clocking for time-sparse edge
applications,’’ in Proc. IEEE 48th Eur. Solid State Circuits Conf.
(ESSCIRC), Sep. 2022, pp. 261–264.

[13] R. Wei, F. Lin, and Q. Chen, ‘‘A continuous time level-crossing ADC
with adaptive sampling for biomedical application,’’ IEICE Electron. Exp.,
vol. 19, no. 7, 2022, Art. no. 20220072.

[14] X. Tang, M. Renteria-Pinon, and W. Tang, ‘‘Second-order level-crossing
sampling analog to digital converter for electrocardiogram delineation
and premature ventricular contraction detection,’’ IEEE Trans. Biomed.
Circuits Syst., vol. 17, no. 6, pp. 1342–1354, Dec. 2023.

[15] S. Lin, C. Lin, and Q. Chen, ‘‘A low-power level-crossing ADC for
biosignal acquisition,’’ J. Phys., Conf., vol. 2524, no. 1, Jun. 2023,
Art. no. 012022.

[16] X. Tong, Y. Wei, W. Mao, and X. Xin, ‘‘A 200 Hz-to-10 kHz
bandwidth 11.83-ENOB level-crossing ADC with single continuous-time
comparator,’’Microelectron. J., vol. 126, Aug. 2022, Art. no. 105482.

[17] M. Saeed, Q. Wang, O. Martens, B. Larras, A. Frappe, B. Cardiff,
and D. John, ‘‘Evaluation of level-crossing ADCs for event-driven ECG
classification,’’ IEEE Trans. Biomed. Circuits Syst., vol. 15, no. 6,
pp. 1129–1139, Dec. 2021.

[18] M. Tlili, A. Maalej, M. Ben-Romdhane, M. C. Bali, F. Rivet, D. Dallet, and
C. Rebai, ‘‘Level-crossing ADC modeling for wireless electrocardiogram
signal acquisition system,’’ in Proc. IEEE Int. Instrum. Meas. Technol.
Conf., May 2016, pp. 1–5.

[19] A. M. Price-Whelan, M. A. Agüeros, A. P. Fournier, R. Street, E. O. Ofek,
K. R. Covey, D. Levitan, R. R. Laher, B. Sesar, and J. Surace,
‘‘Statistical searches for microlensing events in large, non-uniformly
sampled time-domain surveys: A test using palomar transient factory
data,’’ Astrophysical J., vol. 781, no. 1, p. 35, Jan. 2014.

[20] A. Aldroubi and K. Gröchenig, ‘‘Nonuniform sampling and reconstruction
in shift-invariant spaces,’’ SIAM Rev., vol. 43, no. 4, pp. 585–620,
Jan. 2001.

[21] G. Hennenfent and F. J. Herrmann, ‘‘Seismic denoising with nonuniformly
sampled curvelets,’’ Comput. Sci. Eng., vol. 8, no. 3, pp. 16–25,
May 2006.

[22] P. Babu and P. Stoica, ‘‘Spectral analysis of nonuniformly sampled
data—A review,’’ Digit. Signal Process., vol. 20, no. 2, pp. 359–378,
Mar. 2010.

[23] G. Plonka, D. Potts, G. Steidl, and M. Tasche, ‘‘Fast Fourier transforms for
nonequispaced data,’’ in Numerical Fourier Analysis. Cham, Switzerland:
Springer, 2018, pp. 377–419.

[24] L. Greengard and J.-Y. Lee, ‘‘Accelerating the nonuniform fast Fourier
transform,’’ SIAM Rev., vol. 46, no. 3, pp. 443–454, Jan. 2004.

[25] J. A. Fessler and B. P. Sutton, ‘‘Nonuniform fast Fourier transforms using
min-max interpolation,’’ IEEE Trans. Signal Process., vol. 51, no. 2,
pp. 560–574, Feb. 2003.

[26] F. Melchert, U. Seiffert, M. Biehl, B. Hammer, T. Martinetz, and
T. Villmann, ‘‘Functional approximation for the classification of smooth
time series,’’ in Proc. GCPR Workshop New Challenges Neural Comput.,
2016, p. 4.

[27] M. Saeed, O. Märtens, B. Larras, A. Frappé, D. John, and B. Cardiff,
‘‘Event-driven ECG classification using functional approximation and
Chebyshev polynomials,’’ in Proc. IEEE Biomed. Circuits Syst. Conf.
(BioCAS), Oct. 2022, pp. 595–599.

[28] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials. Boca Raton,
FL, USA: CRC Press, 2002.

[29] N. Ahmed, T. Natarajan, andK. R. Rao, ‘‘Discrete cosine transform,’’ IEEE
Trans. Comput., vol. COM-100, no. 1, pp. 90–93, Jan. 1974.

[30] N. V. Chawla, K. W. Bowyer, L. O. Hall, andW. P. Kegelmeyer, ‘‘SMOTE:
Synthetic minority over-sampling technique,’’ J. Artif. Intell. Res., vol. 16,
pp. 321–357, 2002.

[31] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov,
R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley,
‘‘PhysioBank, PhysioToolkit, and PhysioNet: Components of a new
research resource for complex physiologic signals,’’ Circulation, vol. 101,
no. 23, pp. 215–220, Jun. 2000.

[32] EC57, Testing and Reporting Performance Results of Cardiac Rhythm
and ST Segment Measurement Algorithms, Assoc. Advancement Med.
Instrum., Arlington, VA, USA, 1998.

[33] S. D. Greenwald, R. S. Patil, and R. G. Mark, Improved Detection and
Classification of Arrhythmias in Noise-Corrupted Electrocardiograms
Using Contextual Information, 1990, pp. 461–464.

[34] Y. Zhao, Z. Shang, and Y. Lian, ‘‘A 13.34 µW event-driven patient-
specific ANN cardiac arrhythmia classifier for wearable ECG sensors,’’
IEEE Trans. Biomed. Circuits Syst., vol. 14, no. 2, pp. 186–197,
Apr. 2020.

[35] M. Janveja, R. Parmar, M. Tantuway, and G. Trivedi, ‘‘A DNN-based low
power ECG co-processor architecture to classify cardiac arrhythmia for
wearable devices,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 4,
pp. 2281–2285, Apr. 2022.

[36] M. Saeed, D. John, and B. Cardiff, ‘‘Accurate reconstruction of ECG
signals using Chebyshev polynomials,’’ in Proc. 29th IEEE Int. Conf.
Electron., Circuits Syst. (ICECS), Oct. 2022, pp. 1–2.

[37] S. A. H. Sabzevari, N. Ravanshad, and H. Rezaee-Dehsorkh, ‘‘An
ultra-low-power QRS-detection system based on level-crossing sam-
pling,’’ in Proc. Electr. Eng. (ICEE), Iranian Conf., May 2018,
pp. 1456–1461.

MARYAM SAEED (Member, IEEE) received the
B.S. degree in telecommunication engineering
from the National University of Computer and
Emerging Sciences, Lahore, and the M.S. degree
in electrical engineering from the National Univer-
sity of Sciences and Technology, Islamabad. She
is currently a Ph.D. Scholar with the University
College Dublin and a Schlumberger Faculty for
the Future Fellow. Her current research interests
include designing arrhythmia classifiers for low

power circuits using event-driven ADCs, signal processing, and machine
learning. Previously, she has worked on neural spike sorting for implanted
brain circuits and EEG data acquisition for biomedical applications.

OLEV MÄRTENS (Senior Member, IEEE) was
born in Tallinn, Estonia, in 1960. He received
the Diploma in Engineering degree (cum laude)
in electronics and the Ph.D. degree from the
Tallinn University of Technology (TalTech), in
1983 and 2000, respectively. He has experience
in the industrial research and development, and
since 2000, in academy, being a Senior and
Lead Researcher and he is currently an Associate
Professor in measurement electronics with the

Thomas Johann Seebeck Department of Electronics, TalTech.

BENOIT LARRAS (Member, IEEE) was born in
Nancy, France, in 1988. He received the Engi-
neering degree, the master’s degree in telecom-
munications, and the Ph.D. degree in electrical
engineering from IMT Atlantique, Brest, France,
in 2012 and 2015, respectively. He is currently
an Associate Professor with the Electronics Team,
Junia, Lille, France. His research interests include
analog/mixed-signal IC design and the circuit
implementation of neural networks and associative

memories, in the context of ‘‘near-sensor computing’’ and ‘‘edge com-
puting.’’ He is a co-recipient of a Best Paper at the IEEE AICAS2020
Conference.

25198 VOLUME 12, 2024



M. Saeed et al.: ECG Classification With Event-Driven Sampling

ANTOINE FRAPPÉ (Senior Member, IEEE)
received the Graduate degree from Institut
SupÉrieur d’Electronique du Nord (ISEN), Lille,
France, in 2004, and the M.Sc., Ph.D., and H.D.R.
(French highest academic) degrees in electrical
engineering from the University of Lille, France,
in 2004, 2007, and 2019, respectively. Since
2004, he has been a member of the Silicon
Microelectronics Group, Institute of Electronics,
Microelectronics, and Nanotechnologies (IEMN),

Villeneuve d’Ascq, France. He obtained a Fulbright Grant, in 2008, to pursue
research in communication systems with the Berkeley Wireless Research
Center (BWRC), UC Berkeley, CA, USA. He is currently an Associate
Professor with Junia ISEN, Lille, France, leading the Electronics Team.
His research interests include digital RF transmitters, high-speed converters,
mixed-signal design for RF and mmW communication systems, energy-
efficient integrated systems, event-driven, and neuro-inspired circuits for
embedded machine learning. He was a co-recipient of the Best Student Paper
Award at the 2011 Symposium on VLSI Circuits, the Best Paper Award at
the 2020 IEEE AICAS Conference, and the Industrial Best Paper Award
at the 2021 IEEE RFIC Symposium. He plays an active role as a Board
Member of the France Section of the IEEE Circuits and Systems Society
and a Counselor of the IEEE Lille Student Branch.

DEEPU JOHN (Senior Member, IEEE) received
the B.Tech. degree in electronics and communi-
cation engineering from the University of Kerala,
India, in 2002, and the M.Sc. and Ph.D. degrees
in electrical engineering from the National Uni-
versity of Singapore, Singapore, in 2008 and 2014,
respectively. He is currently an Assistant Professor
with the School of Electrical and Electronics
Engineering, University College Dublin, Ireland.
He was a Postdoctoral Researcher with the Bio-

electronics Laboratory, National University of Singapore, from 2014 to 2017.
Previously, he was a Senior Engineer with Sanyo Semiconductors, Gifu,
Japan. He is a recipient of the Institution of Engineers Singapore Prestigious
Engineering Achievement Award, in 2011, the Best Design Award at
the Asian Solid-State Circuit Conference, in 2013, and the IEEE Young
Professionals, Region 10 Individual Award, in 2013. He served as a member
of the Organizing Committee/Technical Program Committee for several
IEEE conferences, including TENCON, ASICON, ISCAS, BioCAS, and
ICTA. He is a reviewer of several IEEE journals and conferences. He served
as a Guest Editor for IEEE TRANSACTIONS ONCIRCUITS AND SYSTEMS I: REGULAR

PAPERS and IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS. He serves as an
Associate Editor for IEEE TRANSACTIONSONBIOMEDICALCIRCUITSAND SYSTEMS

and International Journal of Circuit Theory and Applications (Wiley). His
research interests include low-power biomedical circuit design, energy-
efficient signal processing, and edge computing.

BARRY CARDIFF (Senior Member, IEEE)
received the B.Eng., M.Eng.Sc., and Ph.D. degrees
in electronic engineering from University College
Dublin, Ireland, in 1992, 1995, and 2011, respec-
tively. He was a Senior Design Engineer/Systems
Architect with Nokia, from 1993 to 2001, moving
to Silicon & Software Systems (S3 group)
thereafter as a Systems Architect in their research
and development division focused on wireless
communications and digitally assisted circuit

design. Since 2013, he has been an Assistant Professor with University
CollegeDublin. His research interests include digitally assisted circuit design
and signal processing for wireless and optical communication systems.
He holds several U.S. patents related to wireless communication.

VOLUME 12, 2024 25199


