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ABSTRACT In this paper, a compact matryoshka DGS using dielectric resonator (DR) is proposed. Despite
the use of dielectric resonators to obtain band-stop frequency response not being a new idea, the proposed
compact matryoshka DGS is an original contribution, since only recently the matryoshka geometry was used
in DGS applications. Furthermore, a numerical analysis of the positioning of the DR is presented, which
makes it possible to determine the region of the DGS for which the minimum resonant frequency is reached,
and the resonant frequency range that can be obtained. To the best of the authors’ knowledge, this numerical
analysis is an unpublished result, even more so, for the matryoshka DGS. The matryoshka geometry
was described, including initial design equations. To verify the expected characteristics (miniaturization,
selectivity, and resonant frequency tunability), two compact matryoshka DGSs (DGS1 and DGS2) were
designed using a high permittivity ceramic (MCT-115) as DR. The obtained numerical and experimental
results showed good agreement, and the initial design equations proved to be applicable, which allows
new dimensions to be determined for other resonant frequencies, according to the application requirements.
Resonant frequencies ranging from the maximum value to 33% (DGS1) and 27% (DGS2) were achieved,
depending on the DR position. Considering λ0 the wavelength in free space, corresponding to the resonant
frequency, DGS1 andDGS2 achieved an occupied area of 0.04λ0×0.04λ0, and 0.05λ0×0.05λ0, respectively,
a goodminiaturization. The proposed compact matryoshka DGSmay be especially attractive for applications
that require a very selective band-stop frequency response. If a wider band-stop is required, the proposed
DGS can be cascaded.

INDEX TERMS Defected ground structure, DGS, dielectric resonator, high permittivity ceramic,
matryoshka.

I. INTRODUCTION
The use of dielectric resonators to obtain band-stop frequency
response is not a new idea [1], [2], [3], [4]. However, the
continuous evolution of telecommunications systems, with
new frequency response requirements, low cost, reduced vol-
ume, among other characteristics, drives the search for new
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filter configurations that meet these demands [5], [6], [7], [8].
Especially for applications in wireless communications sys-
tems, defected ground structures (DGS) have been widely
used. In addition to the characteristics already mentioned,
they can be easily integrated into other parts of microwave
circuits, making them more compact.

A DGS is obtained from a planar transmission line
(microstrip, conductor-backed coupled lines, slot-line etc.)
from which part of the metallization layer (ground plane)
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is removed. This removed part disturbs the current distri-
bution in the ground plane, causing changes in the trans-
mission line characteristics, such as line capacitance and
inductance [9], [10], [11]. Since DGS cells have band-
stop properties, many of them have been used in filtering
circuits to improve the frequency response [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17]. Despite the variety
of DGS geometries (dumbbell, spiral head, arrowhead-slot,
H-shaped, slot-shaped, square open-loop with a slot in mid-
dle section, open-loop dumbbell, interdigital etc.), specific
frequency response requirements, as well as new applica-
tions, impose an ongoing challenge for microwave engineers,
demanding new geometries. In this context, a DGS based
on the matryoshka geometry (matryoshka DGS) was intro-
duced in [18], Fig. 1. When compared to a dumbbell DGS,
the matryoshka DGS showed a reduction in dimensions of
approximately 50%, in addition to being more selective.
Despite this result being quite interesting, in this paper these
two concepts, dielectric resonator and matryoshka geometry,
are used to obtain a band-stop filter with even smaller dimen-
sions and more selective frequency response, Fig. 2.

FIGURE 1. Matryoshka DGS geometry.

FIGURE 2. Matryoshka DGS with dielectric resonator (DR).

In addition to the matryoshka geometry, which has only
recently been employed in DGS, the proper location of the
dielectric resonator is discussed in this paper. In this way, it is
possible to identify the location of the dielectric resonator

that allows not only the lowest resonant frequency, but also
intermediate resonant frequencies, which can be very useful
if a tuning process is necessary. It should also be noted that
this paper presents results for only one cell of the proposed
DGS. Frequency responses with a wider rejection band can be
obtained by using cells from the proposed DGS in cascade.

After this Introduction, this paper is organized as follows:
in Section II, the matryoshka geometry is detailed, includ-
ing initial design equations, as well as the MCT-115 high
permittivity ceramic, which is used as the DR, is described.
Section III presents numerical and experimental results.
The two DGSs designed, fabricated, and characterized are
described. The DR position and its influence on the reso-
nant frequency is numerically analyzed. Frequency response
comparisons for compactmatryoshkaDGS,matryoshkaDGS
and dumbbell DGS are also presented in this section. Finally,
a brief conclusion is given in Section IV.

II. PROPOSED MATRYOSHKA DGS DESIGN
The matryoshka geometry was introduced in [19]. Essen-
tially, it is composed of concentric and interconnected rings,
Fig. 3. As the rings are interconnected, the effective length
of the matryoshka ring increases, without increasing the
occupied area, limited to the area of the outmost concentric
ring. This characteristic, when applied to frequency selec-
tive surfaces [19], [20] and filters [18], gives to matryoshka
geometry a multi-resonance and more selective frequency
response, as well as miniaturized dimensions. Although it is
possible to use more than two concentric rings forming the
matryoshka ring, in this work only two concentric rings will
be considered.

FIGURE 3. Matryoshka geometry.

Usually, wxma1 = wyma1 = wma1 and wxma2 = wyma2 =

wma2. As a first approach, the resonant frequency can be
estimated by [18]:

fres(GHz) =
0.3

Lefe
√

εrefe
, (1)

with,

Lefe = 3 ×
(
wma1−avg + wma2−avg

)
. (2)

and,

wmai−avg = wmai − wma, i = 1, 2. (3)

εreff is the effective dielectric constant for the microstrip line
with widthw, substrate thickness h, and dielectric constant εr .
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It should be noted that two different widths are considered:
one for the DGS (wma) and another for the microstrip (w).
Lefe is the effective average length of the matryoshka ring.

wmai−avg is the average side length of the i-th (i = 1, 2)
concentric ring.

Note that (1) is similar to the equation for calculating the
resonant frequency of a loop-type FSS, for which resonance
occurs when the effective length of the loop, herein given
by (2), is approximately one wavelength long [21]. Further-
more, it must be highlighted that (1)–(3) are initial design
equations, and, if necessary, the obtained values can be used
as a first approach for a numerical optimization. Finally, it is
worth mentioning that in a matryoshka DGS, similarly to a
band-pass FSS [22], this matryoshka geometry is detached
from ground plane metallization.

Magnesium Calcium Titanate, MCT [23], is one of the
ceramic materials that is not characterized for resonator
applications, but for bulk, miscellaneous shapes, or sub-
strates. Typical applications include patch antenna substrates,
matching structures for circulators and isolators. MCT series
presents dielectric constant ranging from 18 to 140. In this
work, the MCT-115 (εr = 115) is used.

III. NUMERICAL AND MEASURED RESULTS
In order to verify the expected characteristics (miniatur-
ization, selectivity and resonant frequency tunability), two
matryoshka DGSs were designed, fabricated and character-
ized, using a low-cost fiber-glass FR-4 substrate (εr = 4.4,
loss tangent tg (δ) = 0.02), with overall dimensions of
60mm × 60mm × 1.6mm. The microstrip width is w =

2.8mm. Table 1 presents the matryoshka DGS dimen-
sions. The MCT-115 has 8mm × 9mm × 5mm. Numerical
results were obtained using ANSYS HFSS software, and
the simulated geometry is illustrated in Fig. 4. Lumped
ports were used as excitation, and the radiation box has
75mm× 75 mm× 18 mm.

TABLE 1. Matryoshka DGS dimensions.

Measured results were acquired at the GTEMA/IFPB
microwave measurements laboratory, using an Agilent
E5071C two ports network analyzer, Fig. 5.

Once the matryoshka DGS has been designed, the next
step is to determine the appropriate position of the dielectric
resonator (DR) to obtain a certain frequency response. Com-
paring with the matryoshka DGS without the resonator, one
wants, for example, to know the position that produces the
smallest resonant frequency. As a first step, the DR is posi-
tioned at the center of the matryoshka DGS (dpx = dpy =

0.0mm), Fig. 6. Next, it is displaced over the matryoshka
DGS, varying the resonant frequency until the desired value

FIGURE 4. Simulated geometry.

FIGURE 5. Measurements setup.

FIGURE 6. Matryoshka DGS with DR, bottom view.

is reached. To exemplify this procedure, consider the DGS1,
with dpx and dpy ranging from -12 mm to +12 mm. For the
different DR positions, i.e. for different dpx and dpy values,
resonant frequencies vary from a minimum value, where the
interaction of the DR with the DGS electromagnetic fields
is stronger, to a maximum value, when the DR has a weak
interaction with the DGS. The obtained resonant frequencies
are shown in Fig. 7, with resonant frequencies from 0.74 GHz
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FIGURE 7. Resonant frequencies for different DR positions (DGS 1).

(minimum resonant frequency region) to 2.24 GHz (without
DR resonant frequency region, when the DR is outside the
DGS region). So, in addition to reducing the resonant fre-
quency to 33% of its initial value, it is also possible to adjust
the resonant frequency to intermediate values, between the
minimum (0.74 GHz) and the maximum (2.24 GHz).

DGS1 and DGS2 were fabricated, Fig. 8, with measured
and numerical results presented in Figs. 9 and 10. Three
situationswere considered: without DR, center (dpx = dpy =

0.0mm), and corner (dpx = 0.5×(wma1 − 7.5) , dpy = 0.5×

(wma1 − 8.5)). When compared to measured ones, numerical
results present a good agreement, confirming the expected
results. Some discrepancies, especially after the resonant
frequency, can be attributed to the fact that the DR is not
really fixed over the DGS. Tables 2-7 summarize the obtained
results. It should also be noted that the resonant frequency
values calculated by (1)-(3), for the DGSmatryoshka without
the DR, Table 2, showed good agreement, when compared to
the measured values.

FIGURE 8. Fabricated matryoshka DGS with DR, bottom view.

FIGURE 9. Matryoshka DGS1 with DR, frequency response.

FIGURE 10. Matryoshka DGS2 with DR, frequency response.

TABLE 2. Matryoshka DGS resonant frequencies without DR.

TABLE 3. Matryoshka DGS resonant frequencies DR in the center position.

TABLE 4. Matryoshka DGS resonant frequencies DR in the corner
position.

Aiming to illustrate the miniaturization properties of the
proposed matryoshka DGS, two dumbbell DGSs [24], occu-
pying the same matryoshka DGS area, are considered.
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TABLE 5. Matryoshka DGS bandwidth without DR.

TABLE 6. Matryoshka DGS bandwidth DR in the center position.

TABLE 7. Matryoshka DGS bandwidth DR in the corner position.

FIGURE 11. Dumbbell DGS geometry.

FIGURE 12. DGS1 versus dumbbell DGS (a = 15.5 mm, b = 5.75 mm,
wd = 4.0 mm,gd = 3.0 mm).

The dumbbell DGS geometry is depicted in Fig. 11. Numer-
ical results for the frequency responses are presented in
Figs. 12 and 13, for which it is evident both the reduction
in the resonant frequency and the greater selectivity of the
matryoshka DGS with the dielectric resonator.

FIGURE 13. DGS2 versus dumbbell DGS (a = 12.5 mm, b = 4.25 mm,
wd = 4.0 mm,gd = 3.0 mm).

IV. CONCLUSION
In this paper, a compact matryoshka DGS using dielec-
tric resonator is introduced. The matryoshka geometry was
described, including initial design equations. This DGS
geometry keeps the reduction of the resonant frequency and
selectivity, interesting features previously observed in FSS
and filter applications.With the inclusion of the dielectric res-
onator, it becomes possible to obtain an even more compact
and selective DGS.

The use of the dielectric resonator in a matryoshka DGS is
an original contribution, since only recently the matryoshka
geometry was used in DGS. Another important contribution
is the numerical analysis of the location of the dielectric
resonator, which allowed for determining the region of min-
imum resonant frequency. Furthermore, it was found that,
depending on the position of the dielectric resonator, it was
possible to vary the resonant frequency up to 27% of the
maximum value, an important feature when a tuning process
is necessary.

Two matryoshka DGS, DGS1 and DGS2, using a high per-
mittivity ceramic MCT-115 as dielectric resonator, were fab-
ricated and characterized, with numerical and experimental
results showing good agreement. The initial design equations
proved to be applicable, which allows new dimensions to be
determined for other resonant frequencies, according to the
application requirements. Considering λ0 the wavelength in
free space, corresponding to the resonant frequency, DGS1
and DGS2 reaching an occupied area of 0.04λ0 × 0.04λ0,
and 0.05λ0 × 0.05λ0, respectively, a good miniaturization.
When compared to the dumbbell DGS and the matryoshka

DGS without the dielectric resonator, it is evident that the
compact matryoshka DGS proposed in this paper, in addition
to presenting good miniaturization, is much more selective.
These featuresmake the compact matryoshkaDGS especially
attractive for applications such as suppression of undesired
harmonics, e.g. in mixer and filter circuits, or undesired res-
onances in planar antennas.
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In conclusion, it should be noted that this paper does not
intend to exhaust all design issues of the proposed compact
matryoshka DGS. In fact, what is being presented is a con-
cept. For example, the minimum DR dimensions have not
been optimized and it is an open issue. However, the pro-
posed compact matryoshkaDGS concept is clearly described.
In addition, aiming at a specific application, the procedures
for subsequent optimization are indicated.
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