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ABSTRACT Hydrothermal scheduling is a significant concern in the field of power system economics that
seeks to reduce the overall cost of generation by optimizing the hourly output of generators. However, this
scheduling process suffers from a non-linear and complex problem due to set of uncertainty constraints
from hydro and thermal units. Hence ¥ -constraint method has been proposed in which ramp constraints are
considered that supply a feasible power region of the thermal units and minimize the uncertainty constraints.
In addition, the existing solution techniques of hydro and thermal unit, commitment problems have not
considered thermal constraints and their losses. This results in the frequent swapping of hydro units which
decreases the energy conversion efficiency by a percentage at each repetition and increases the cost of the
system. Therefore, a novel Chaotic geometric programming and chaotic approximation approach has been
proposed that balance water discharge level without frequency swapping based on Armijo’s rule and Hazen
Williams’s rule. Further, dynamic indexing is performed to increase the energy conversion efficiency. These
balanced values are given to multiple-wave neural networks, to solve the hydro and thermal unit commitment
problems. Furthermore, the cost of the system is minimized using Enhanced Ebola Optimization Search
(EEOS) Algorithm in which the Sy parameter has been modified, thereby normalizing the hydrothermal
scheduling problem for matured convergence. The proposed mathematical model has been implemented in
the MATLAB R2022b on a 2.10 GHz, AMD Ryzen 5 3500U with Raden Vega Mobile Gfx processor, 8
GB RAM, 64 bit personal computer, and the results obtained show better performance than the previous
approaches in terms of mean, median and standard deviation.

INDEX TERMS Hydrothermal scheduling, hydro constraints, thermal constraints, Ebola optimization,
mathematical approach, chaotic programming.

I. INTRODUCTION
Hydrothermal scheduling (HTS) which aims to optimize
performance of hydrothermal power plants affects opera-
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tion of power systems. It has a nonlinear objective function
and several constraints [1], [2], [3], [4], [5], [6]. The HTS
issue releases reservoir water hourly and obtains thermal unit
power in a specified time interval to reduce generating costs.
The volume of reservoir in HTS requires constant reservoir
water levels for hydropower generation and it needs to be
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monitored as supply system cannot store energy [3], [4],
[5], [6]. The volume of reservoir is effected by upstream
reservoir’s natural inflow, spillage, and discharge. Hydro
scheduling is effected by floods, draughts, agricultural water
navigational requirements and other natural disasters. The
problem of HTS is complicated due to inclusion of constraints
related to prohibited discharge zones [7], water availability,
power balance, hydro discharge, valve point loading effect,
and generation limits [2]. These constraints make HTS prob-
lems nonlinear, making classical optimization difficult to
solve them [7], [9].

HTS has been solved using dynamic programming
(DP), nonlinear programming (NLP), progressive optimality
algorithm (POA), mathematical decomposition (MD), gradi-
ent search (GS), Newton’s technique, Network flow method
(NFM), Lagrange relaxation (LR), and mixed-integer pro-
gramming (MIP). To address the shortcomings of traditional
optimization methods, the authors proposed evolutionary
algorithms like simulated annealing (SA), genetic algorithm
(GA), evolutionary programming (EP), Hopfield neural net-
work (HNN) [10], [11], [12], and differential evolution (DE).
Using the approximation method, each reservoir needs an ini-
tial workable timetable [13]. While maintaining the schedules
of the other reservoirs, one reservoir is scheduled at a time,
switching between them until the necessary number of itera-
tions or the cost difference between the last two iterations is
within the tolerances [14]. Since it only dispatches one reser-
voir at a time and optimization techniques are uncertain and
expensive, these approaches cannot handle coupling limita-
tions. Integrating neural networks into hydrothermal planning
provides valuable benefits by making the optimization pro-
cess more data-driven and adaptable to changing conditions.
Neural networks can capture complex interactions between
parameters and adapt to dynamic factors such as weather,
water flow and energy demand, improving planning accuracy
and efficiency.

Salkuti et al. [15] proposed multi-function global parti-
cle swarm optimization (MFGPSO) for optimal short-term
hydro-thermal scheduling (ST-HTS). This ideal ST-HTS opti-
mizes hydro and thermal generator generating schedules
to lower thermal power plant fuel costs. The MF-GPSO
algorithm’s performance is assessed using a sample test sys-
tem and three case studies. Crisscross Differential Evolution
(CCDE) algorithm for Constrained Hydrothermal Scheduling
is proposed by Kaur et al [16]. The CCDE algorithm’s global
search is tested on two hydrothermal systems of different
dimensions.

Alquthami et al. [17] proposed ABC algorithm for short-
term hydro-thermal scheduling. This study considers trans-
mission losses and hydro-thermal power plant economic
scheduling. The proposed technique significantly lowers ther-
mal power plant operating costs compared to alternatives
and achieves the fastest convergence, offering cost-effective
optimization methods for hydroelectric power plants and
potential benefits to the power industry. It’s essential to
balance economic benefits with environmental and social
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considerations while meeting energy demands efficiently.
Hence the thermal power plant optimization reduces fuel
costs, while hydropower plant optimization is cost-effective.
Das et al. [18] proposed optimal hydrothermal system
scheduling considering water transportation delay variabil-
ity using Grasshopper algorithm. Hydropower production,
net head, and water discharge rate are nonlinearly related.
The difficult head-sensitive water-to-power conversion and
piecewise output restriction are considered. Zeng et al. [19]
recommended a grasshopper optimization algorithm for
short-term hydrothermal scheduling.

Castafio et al. [20] proposed Short-Term Hydrothermal
Scheduling with Solar and Wind Farms Using Second-Order
Cone Optimization with Chance-Box Constraints. The pro-
posed approach rigorously addresses the nonlinear rela-
tionship between water discharge, reservoir volume, and
hydropower output. Chance-box restrictions robustly model
the effects of wind and solar energy on the electrical
grid. Numerical results show that the chance-box constraint
approach yields a robust solution and that the Second-Order
Cone approximation is more accurate and faster than
recent methods. Fakhar et al. [21] proposed Conventional
and Metaheuristic Optimization Algorithms for Short-Term
Hydrothermal Scheduling. Optimization strategies reduced
STHTS costs. The MOSTHTS algorithms tried to reduce
CO» and gasoline prices. Naik et al. [22] proposed a Mod-
ified Social Group Optimization meta-heuristic algorithm
for Short-term Hydrothermal Scheduling. The acquisition
phase of Modified Social Group Optimization (MSGO) is
enhanced. Fakhar et al. [23] proposed Accelerated Par-
ticle Swarm Optimization (APSO) and improved APSO
for Non-Cascaded and Cascaded Short-Term Hydrothermal
Scheduling. The adaptive and variable local and global search
coefficients greatly improve the suggested APSO’s perfor-
mance in finding the best solution. Helseth et al. [24] pro-
posed Convex Relaxations of the Short-Term Hydrothermal
Scheduling Problem. Starting as a mixed-integer program-
ming problem, it is approximated by employing Lagrangian
and linear relaxation techniques.

From aforementioned literature, it is found that com-
putation capacity and execution time is increased in [15]
and [16] breaks equality requirements while changing the
violated dependent variables, [17] slows multimodal opti-
mization convergence, in [18] swarm does not coalesce to a
single spot, [20] cannot determine optimal scheduling, [21]
does not address the objective function properly, in [22]
algorithm is highly complex, [23] ignores social and cog-
nitive factors for the PSO technique while [24] takes more
computational time. The Hamilton and Egarch algorithm
is a computational approach for optimizing the control of
water flow in hydraulic systems based on certain criteria and
constraints [25], [26]. The Hazen-Williams Rule, a widely
used formula in hydraulic engineering, estimates water flow
in pipelines based on pipe characteristics and fluid prop-
erties and is often used to estimate pressure loss and flow
rate [27].

22421



IEEE Access

P. Mundotiya et al.: Novel Hybrid Approach for Hydrothermal Scheduling

Therefore, this study proposes a novel mathematical model
for hydraulic system scheduling to solve the HTS problem of
time minimization for two constraints. In hydrothermal power
systems, uncertainty in constraints is minimized using the
¥ — constraint method considering the ramp constraint, cost
and speed factors. An Enhanced Ebola Optimization Search
Algorithm is proposed to reduce hydrothermal system fuel
costs. This algorithm works by modifying Syaye. A chaotic
geometric programming and chaotic approximation approach
have been proposed to regulate water discharge and energy
efficiency without net load variations via dynamic indexing.
It utilizes multiple waves neural network to eliminate hydro
and thermal unit commitment problems. The contributions of
this work are summarized as follows:

The ¥-constraint method is utilized to minimize constraint
uncertainty in hydrothermal power systems.

Dynamic indexing with chaotic geometric programming
and chaotic approximation is suggested to regulate water
discharge and energy efficiency. This technique utilizes
multiple-wave neural network to solve hydro and thermal unit
commitment issues.

An Enhanced Ebola Optimization Search Algorithm is pro-
posed to minimize the fuel cost of hydrothermal scheduling
problem.

Metaheuristic Optimization: The primary benefit of the
metaheuristic optimization algorithm EEOS is that it offers
a flexible and effective method for resolving challenging
optimization issues. It can be used to solve a variety of
issues, including task scheduling, transportation routing, heat
scheduling, and more. It makes a substantial contribution by
being able to locate nearly optimal solutions in an effective
computational approach.

Hydrothermal Scheduling: EEOS offers a potent tool for
improving the scheduling of power generation from both
hydroelectric and thermal power plants in the context of
hydrothermal scheduling. Its use in this field may result in
lower costs, better use of renewable energy sources, and
more effective power production. The standard optimization
techniques on which EEOS is based may undergo specific
improvements or adjustments.

The content of the paper has been developed as fol-
lows section II problem formulation, 3 depicts the pro-
posed methodology for hydrothermal scheduling, section IV
chaotic geometric programming and chaotic approximation
approach, 5 deliberates the result and comparison and finally,
section 6 discusses the conclusion.

Il. PROBLEM FORMULATION

Hydrothermal scheduling is a non-linear optimization prob-
lem that is intrinsically non-convex and stochastic. Moreover,
modern power systems include wind and solar generation,
which introduces new challenges such as uncertainty. How-
ever, uncertainty due to the integration of wind power with
hydraulic power increases the cost of reserve and electricity
dissipation in the power system. It is on account of wind
power overestimation and underestimation. Previously most
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of the algorithms attempted to minimize the cost but they have
not even moderately considered the ramp constraints thereby
resulting in the unfeasible working region for thermal unit
and uncertainty constraints. Hence ¥ -constraint method has
been proposed that considers ramp constraints for supplying
a feasible region of the thermal unit and for the minimiza-
tion of uncertainty constraint. Also, it utilizes a function for
minimization of uncertainty by considering factors such as
overestimation cost, underestimation cost, shape factor, scale
factor and velocity of current wind speed.

During the HTS process, hydro and thermal unit com-
mitment problem occurs which is previously solved by
considering the hydro unit dynamic constraints, but they
have not considered thermal constraints and their losses that
cause variability in the net load that was never considered
before resulting in the frequent swapping of hydro units. This
decreases energy conversion efficiency by a percentage at
each repetition. Hence a novel Chaotic geometric program-
ming and chaotic approximation approach has been proposed
in which net load variability from heretofore unconsidered
two-dimensional data are explored with its left endpoint of
the allowable range of water discharge as 0 based on Armijo’s
rule and these constraints are given to convergence for
minimization. While considering the variations, the energy
control dynamic indexing is performed at approximation case
thereby the energy dispersion efficiency does not decrease
for each iteration. Then, water discharge of the hydro unit
during period t is limited using the Hamiltonian and Egarch
algorithm based on the Hazen Williams rule and penstock
water balance. These values are given to multiple wave neural
networks for bringing up a constraint that was never consid-
ered before to solve the HTS problem. Since by applying a
“Multiple Waves Neural Network”, it helps the hydropower
facilities to run more efficiently and control how much water
is released from reservoirs. With the help of these networks,
hydroelectric systems produce energy more effectively and
manage their reservoirs more effectively by analyzing and
simulating the periodic patterns and changes in water flow.

Moreover, the HTS problem, increased fuel cost and as
well as shortcomings in balancing global exploration and
local exploitation still exist in the existing stochastic search-
ing algorithms. Hence to solve these issues a novel Enhanced
Ebola Optimization Search Algorithm is subjected to perform
for the objective function and the constraints stated. The
EEOS Algorithm use more effective search and exploration
techniques, allowing it to locate ideal or almost ideal solu-
tions more quickly. The Ebola Optimization Search (EOS)
Algorithm has been enhanced, and the new algorithm is
called the Enhanced Ebola Optimization Search (EEOS).
Improvements in search tactics, convergence speed, adapta-
tion to changing surroundings, and handling of restrictions
are all included. With these enhancements, the algorithm
should be able to solve optimization issues more quickly
and effectively. Research papers or other relevant documen-
tation may contain specific details. In Ebola optimization,
the parameter Sy, has been modified thereby standardizing
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FIGURE 1. Block diagram of the proposed mathematical model.

the hydrothermal scheduling problem for matured conver-
gence. This optimization algorithm has enhanced exploratory
and exploitative performance, a high convergence rate than
SPPSO with an increase in the diversity of the population. The
choice between Extended Ebola Evolutionary Algorithm,
PSO, or GA for multi-objective optimization depends on
the specific problem, computational resources, desired opti-
mization criteria (e.g., diversity, convergence rate), and the
ability of the algorithm to adapt to changing problem con-
ditions. To make an informed decision, it is important to
evaluate the effectiveness of each algorithm for the specific
problem.

Figure 1 depicts the block diagram of the proposed math-
ematical model for performing the HTS process in which
the hydro and thermal constraints are considered along with
uncertainty factors and ramp constraints. Then, water dis-
charge is balanced by considering variation in net load using
multiple waves neural network and finally, the fuel cost is
minimized by standardizing the HTS problem by modify-
ing the Sy the parameter in enhanced Ebola optimization.
Hydrothermal scheduling involves a combination of two
sources: hydroelectric (which is usually cheaper and more
environmentally friendly) and thermal (which is often more
expensive due to fuel costs). EEOS seeks to strike a balance
between these sources by optimizing the hourly discharge of
reservoirs and the operation of thermal units. This balance
helps in minimizing the reliance on costly thermal power
generation.
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A. OBJECTIVE FUNCTION

The primary goal of HTS is to reduce the total fuel cost
of thermal plants by taking into account several equality
and inequality constraints, including the power balance con-
straint, the availability of water constraints, and generator
operating limits. The Objective function [1] for HTS is to
minimize the total cost of the system which is given in
equation (1);

minF=3" 3" fiPy 1) M

where T stands for the overall quantity of thermal plants. The
power generated by the t the thermal plant at interval i is
represented by P, Ny stands for the total number of intervals.
Equation (2) represents the thermal generator’s quadratic fuel
cost function as [2];

fi(Ps s ) = a; + biPiy + ciP?, @

where, a;, b; and c; are the coefficients of fuel cost for the t
thermal plant at interval i. However, this objective function
is subjected to nonconvex problems due to the consideration
of variable net load parameters and hence, certain essential
constraint has to be considered to minimize the problem in
uncertainty constraints.

B. #-CONSTRAINT METHOD

¥ -constraint method has been used to provide both equal-
ity and inequality constraints with the ultimate objective to
distribute the power generation of hydro and thermal power
plants to the distribution centers to minimize the dispatch
cost, which is essentially the fuel cost of the generating units.
In the HTS problem, the power produced by the thermal
unit and the hourly water discharged from the reservoirs is
received in a predetermined period to lower the cost of overall
generating. By optimizing the hourly discharge of reservoirs,
power system operators can strike a balance between the
cost-effective use of both thermal and hydropower sources,
ultimately reducing the overall cost of electricity generation.
This is crucial for ensuring the efficient and economical oper-
ation of power systems while meeting energy demand. But
while attempting to minimize cost existing techniques failed
to consider ramp constraints in thermal constraints thereby
resulting in the unfeasible working regions for thermal units.
Hence this ©-constraint method considers ramp constraints
in thermal constraints to obtain a feasible working region in
the thermal unit without uncertainty. The essential thermal
constraints in HT'S with the consideration of ramp constraints
are given in equations (3-10).

AC electricity is primarily used in generation, distribution,
and consumption and loss calculations in power systems are
done in AC. Transmission line resistance and transformer
inefficiency are two causes of these losses. In contrast to
DC calculations, which would not adequately account for the
complexity of AC power systems, AC calculations are prac-
tical and in line with industry standards, ensuring accuracy
and compliance with established rules. The power balance
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constraint is given in equation (3) which is the sum of the
output of thermal power units and wind power and that is
equal to the sum of the load and the loss of the network. The
power loss is evaluated by Loss = > (I?.Ri). Where, Loss
represents the total power loss in the network, > denotes
the summation overall network components, 112 is the current
flowing through component I and R; is the resistance of
component I [1], [2].

Ns H
> Pii+ D> Piy =D, + Ploss, 3)
i=1 h=1

where, P v is the output of thermal power units, Py, 1) is the
output of hydropower units, Dy is the load and P(loss); is the
network loss at the time interval t. Ny stands for the total
number of intervals at i and H stands for number of hydro
power units at interval h.

The spinning reserve constraint R; is the amount of unused
capacity in online energy assets r( ) which compensate for
power shortages or frequency drops within a given period
which is given in equation (4) [1], [2], [8], [11]:

Ny H
Dy e+ P+ Phi>Re+Dy+ Ploss; (4)

The constraint for a capacity limit of generating units in the
thermal power plant is the amount of electricity a generator
can produce when it’s running at full blast. This maximum
amount of power P is typically measured in megawatts which
are given in equation (5,6) as [1], [2]:

P<Py, <P 5)
0<Py, <P ©)

Then to maintain a feasible region in the thermal unit,
ramp constraint is considered which is a dynamic constraint
that restricts drastic change in power generation by a unit
in successive time instants. The inclusion of the ramp rate
constraint requires the modification of the range of generated
power for each unit at every time instant which is given in
equation (7) [11]:

(Pir+1—A) <Py < (Pigr1+4A) @)

After the inclusion of the ramp rate constraint, the con-
straint for minimum generation for the first and last hour in
the thermal unit has been given in equation (8) [11].

P, <P 8)

The constraints for minimum up time and minimum down
time in the thermal unit have been given in equations (9)
and (10) [11]:

xi¢ > Tymin; 9)
xi¢ > Tqmin; (10)

where T, and T4 are the uptime and downtime in the thermal
unit and are represented in minimum value as min;. These
constraints are considered in the thermal unit with deter-
mining factors such as overestimation cost, underestimation
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cost, shape factor, scale factor and velocity of current wind
speed thereby minimizing the uncertainty constraint. Then to
solve the hydro and thermal unit commitment problem, hydro
constraints have to be considered with balancing the water
discharge in the hydro unit which is explained.

Effective improvements in power generation optimiza-
tion should take into account market dynamics, better data
quality, improved modeling approaches, and environmen-
tal and regulatory considerations in order to address these
limits. Additionally, successful functioning of such systems
frequently requires real-time monitoring and response to
changing conditions.

The problem is multi-objective because it involves bal-
ancing the cost-effective utilization of both thermal and
hydroelectric sources. There are multiple conflicting objec-
tives: minimizing dispatch cost (fuel cost) and optimizing the
hourly discharge of reservoirs. These objectives are often in
conflict with each other, which is a characteristic of multi-
objective optimization.

The fitness function (or functions) in multi-objective opti-
mization generally changes as the optimization algorithm
investigates the trade-offs between the various objectives.
The method looks for a set of solutions that depict a Pareto
front, where no option is superior to any other simultaneously
across all objectives. In order to balance and optimize the
competing objectives, the fitness function may alter with each
optimization iteration.

The optimization problem involves two concurrent objec-
tives, initially it minimizes dispatch cost by reducing fuel
expenses of generating units, particularly thermal power
plants, to enhance the cost-efficiency of electricity produc-
tion. And secondly it optimizes hourly reservoir discharge
to maximize hydroelectric power generation, aiming to find
the most efficient strategy for releasing water from reservoirs
at specific intervals. Thus it achieves a balance between
minimizing costs and maximizing hydroelectric power gen-
eration, ensuring a cost-effective and sustainable operation of
the power generation system.

Ill. CHAOTIC GEOMETRIC PROGRAMMING AND
CHAOTIC APPROXIMATION APPROACH

In the Chaotic geometric programming and chaotic approx-
imation approach, the hydro constraints are considered to
solve the hydro and thermal unit commitment problem. The
hydro constraints considered in the hydro unit have been
given in the equations. In a hydro unit, the hydroelectric
reservoir volume limit is a large collection of water behind
a hydroelectric dam that makes use of potential energy v; of
water for generating electricity. This water is held back by
the dam and a small amount is allowed to fall down the base
of the dam to generate electricity when it is needed. Hence
the condition for this reservoir volume limit v ) is given in
equation (11):

ymin <y < ymax (11

VOLUME 12, 2024
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At hydropower plants, water flows through a pipe pushes
against and turns blades in a turbine to spin a generator to
produce electricity. Hence there is a need to balance water
flow in the reservoir by using the condition for water flow
balance which also includes the discharge of the hydro unit
(Qq,») and it is given in equation (12);

Vit — Vri—1 + €1 Qr,t+sr,t_ Z (Qm,t—r,,l, +Sm,t—rm,)

meR,u-p
= CiYn (12)

The condition for penstock water balance on each reservoir
is given in equation (13) in which water discharge of hydro
unit during period t is given as qjy.

Nyt

> Gin — Qin =0 (13)
i=1

The hydro units discharged out flow limits constraints with
considering is given in equation (14);

uirt-q?rlin(vrta Ort, Srt, Girt)
= girnn = Mirt-qg}ax(vrta Orts Srt» Girt) (14)

where, Qy is the reservoir r and stage t’s discharged out-
flow (in m3/s), Sy are the reservoir r and stage t’s spillage
(in m3/s), vy is the volume of the reservoir r and stage t
(hm3) and ujy is the binary variable that indicates if unit i
is operating (ujxy = 1) or not (ujyy = 0) during stage t. The
losses of hydropower plants have been calculated by using
equation (15):

Phirt =P Orts O, Srts Gire) + tMlist Ppipe) + 88Lirt Phiire)
=0 (15)

where, the power used by the mechanical friction in the guide
bearings, thrust bearing, and shaft seals is referred to as the
turbine mechanical loss (tml), which is measured in MW.
A set of points (tml, gp) can be obtained through unit field
tests and then a polynomial function is modified which is
given in equation (16).

tml = bo + by.gp + brgp? (16)

where b0, bl, and b2 are constants and gp is the power
output at generator terminals. The generator’s mechanical and
electrical losses are referred to as the global losses which are
denoted as ggl. Through field tests, a set of points (ggl, gp) is
yielded that represent the mechanical losses of the turbine,
from which the exponential function is adjusted which is
given in equation (17).

ggl = ag.e"&P (17)

where a0 and al are constants. Then, the mechanical power
transferred through the coupling of the runner and the turbine
shaft r_pirt is given in equation (18).

Pire = G.0yr.Nigy Gire (18)

VOLUME 12, 2024

where, G = 9.76102*1073 and 7 is the turbine hydraulic
efficiency, and is given in equation (19).

n = Co+ Ci.gin + Co.nhin
+ C3.girt-nhirt + Caqiyy + Cs.nhyy, — (19)

where, nh;., is the net head i.e., the part of the gh that is
available for the turbine which is given in equation (20).

nhip = ghin — (koq® + k14%)
nhiye = folin (V) — trlin(Q, 5) — (kog® + ki1g®)  (20)

where the functions kog? and k1g? represent the head loss
resulting from penstock water friction and the hydraulic
energy lost between the tailrace level and the low-pressure
reference section of the turbine, respectively. Additionally,
net load variability in the form of two-dimensional data is
explored with its left endpoint of the allowable range of water
discharge in Armijo’s rule that determines step size in some
descent methods to solve unconstrained local optimization.
Hence based on the Armijo rule, the allowable range of water
discharge is considered as fact 0. Along with the Armijo
rule, energy control dynamic indexing has been performed
that recreates the index provided from the water discharge
allowable range regularly and if there aren’t many changes
over time, there are enough resources to create a new index
while the old one is still searchable. Thereby, this energy
control dynamic indexing increases energy efficiency in each
iteration. From equations (12) and (13), water discharge of
hydro unit during period ¢ is given as ¢;,, and set up a limit
using the Hamiltonian and Egarch algorithms based on the
Hazen-Williams rule and then calculate the penstock water
balance. This Hazen William rule is given in equation (21).

gipe | 1.852
H_ 4.73*L* (%)
- d4.87

21

where H is friction head loss, L and d are the length and
diameter of the pipe, and C = Hazen-Williams C coefficient,
dimensionless. Hence based on Hazen William’s rule, the
penstocks have been limited with an allowable C factor of
130-140. This model for the hydropower function incorpo-
rates the turbine-mechanical generator’s electrical losses and
takes into account hydraulic losses in the turbine suction
tube and conduits, tailrace functions, hydraulic efficiency
and mechanical losses in the turbine, as well as mechani-
cal and electrical losses in the generator. These calculated
water discharge and balance values are given as input to
multiple waves neural networks to regulate the scheduling
allowing acceptable water discharge. The architecture of
multiple-wave neural networks is shown in Figure 2 [12].
The input Y1,Y2...Yn represents calculated water dis-
charge and balance values and these values are processed
in the hidden layer by considering multiple wavelet func-
tions and updating the weight parameter to choose the best
wavelet function. Then, in the output layer based on these
optimized functional values, the output allowable water flow
is attained as Z1,Z2,....,Zm without a hydro commitment
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problem. Thereby minimizing the hydro unit commitment
problems by providing regulated scheduling of water flow in

all penstock units.

The problem of both hydro and thermal unit commitment
is solved by independently optimizing hydro and thermal
commitment functions A and u via implementing Chaotic
geometric programming with multiple waves neural network.
The flow chart of the Chaotic geometric programming for
solving the combined hydro and thermal unit commitment is

shown in Figure 3.

Feature extraction, multi-resolution analysis, noise reduc-
tion, signal compression, and time-frequency analysis are
some of the unique ways that wavelet functions are applied
in the proposed method’s Multiple Waves Neural Net-
work. Wavelets improve data preprocessing and representa-
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tion, allowing the network to more effectively comprehend
and model complex wave-like patterns and time-dependent
aspects in the data, especially in the context of applications
like hydroelectric power production and signal processing.
For the purpose of resolving hydro and thermal unit com-
mitment, the chaotic geometric programming with multiple
waves neural network’s computational process is divided into
different parts.

i A and p of the system should be initialized at the master
coordinator.

ii Run Thermal Unit Commitment to obtain the commit-
ment per unit and the generating schedules for each
thermal unit.

iii Run the hydro network flow programming for water-
sheds to provide all reservoirs with the water release
schedules.

iv. Run the hydro Chaotic geometric programming with
the reservoir water release schedules derived from
multiple waves neural network flow to initialize the
marginal water values.

v Run hydro unit commitment to obtain the generating
schedules and unit commitments for each hydro unit in
the reservoir.

vi Verify the balance of the reservoir’s input and out-
flow. Additionally, determine if the absolute difference
between the marginal water values at two distinct hours
is less than a predetermined threshold. If so, go to
step 7. If not, adjust water releases and update A.

vii Verify the hydrothermal unit commitment is optimal.
If the number of this phase’s iterations reaches a prede-
termined minimum number and the difference between
the system A and g in successive iterations is small
enough, the chaotic approximation phase ends. If not,
update A and u, then repeat steps 2 to 6.

viii Reallocate flow among units and hours if the system
reserve requirements are met.

ix If not, repeat steps 2 through 8 again.

X Run the system economic dispatch via Chaotic geomet-
ric programming with multiple waves neural network
to plan the committed units’ power generation and halt
computation.

Hence, the water flow discharge is balanced even with net
load variation by the Armijo rule and the losses in penstocks
are limited by the Hazen-William rule. Then, hydro and
thermal commitment problems are solved using Chaotic geo-
metric programming with multiple waves neural networks.
Furthermore, there is a need to reduce the system cost without
the HTS problem with an optimization scheme which is
explained in the next subsection.

A. ENHANCED EBOLA OPTIMIZATION SEARCH
ALGORITHM

In Enhanced Ebola Optimization Search Algorithm, the
short-distance movement has been modified to standardize
the hydrothermal scheduling problem for matured with a
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high convergence rate. The fitness function of this EEOS
algorithm is given in equation (22).
F = min_ f;(P;(i,1) (22)
i,teT ,Ng
Then to update the position of each parameter considered
in the hydro and thermal units, the EEOS algorithm applies
equation (23)

MLICY = MLiCpM (L) (23)

where MLi(tH) and MLi(t) are updated and original position
of calculated unit parameters, p is the scalar factor of dis-
placement of each parameter and M(L) is the movement rate
of water in the hydro unit, and M(T) is the movement rate
of power spinning in the thermal unit and it is denoted in
equation (24,25) as:

M (L) = Srate*rand 0, 1) CM( Sbest) (24)
M (T) = I,ae"rand (0, 1) CM ( Ipest) (25)

Hence, the exploitation stage is built on the presumption
that the allowable water flow as well as power generation
either stays within a distance of zero or is displaced within
a range that does not exceed Srae, Where Srue Stands for
short-distance movement. The fact that the allowable water
flow as well as power generation outside of the typical neigh-
borhood range I, serves as the basis for the exploration
phase. The neighborhood parameter controls the Syqee and Lrage
in such a way that when the neighborhood > 0.5, the unit
parameters have left the neighborhood, causing the excess
water flow and power generation; otherwise, it stays within
the neighborhood, which prevents excess water flow and
power generation. In this EEOS algorithm, this S;, has been
modified by adjusting its limit using equation (26).

VI < Sae < VI (26)

In equation (26), V™" and V™™ are the minimum and
maximum limits for reservoir volume. By modifying the
Srate parameter based on reservoir limits, the best solu-
tions for hydro and thermal units (M (Spest) » M (Ipest)) has
been obtained that standardizes the hydrothermal schedul-
ing problem with matured convergence. Also, the enhanced
exploratory and exploitative performance with suitable neigh-
borhood parameter control provides a high convergence rate.
Since the EEOS algorithm controls and maintains both water
flow and power generation in the allowable range, the fuel
cost of the system is reduced.

Overall, the proposed EEOS-based mathematical approach
for hydrothermal scheduling has been presented to eliminate
the problems in HTS by reducing fuel costs. Initially, the
uncertainty constraints in hydrothermal power systems have
been minimized by considering overestimated and underes-
timated cost functions as well as ramp constraints via the
¥ -constraint method. Then, thermal and hydro constraints are
considered in Chaotic geometric programming and chaotic
approximation approach to eliminate hydro and thermal
commitment problems. Also, this approximation approach
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regulates the net load variability and water discharge based on
Armijo’s rule and Hazen Williams’s rule. Finally, the fuel cost
in HTS has been minimized by enhanced Ebola optimiza-
tion that also eliminates the HTS problem. The next section
explains the result obtained from EEOS based mathematical
approach for hydrothermal scheduling and discusses it in
detail.

IV. RESULTS AND DISCUSSION

A. TEST SYSTEM

The proposed EEOS-based mathematical approach for
hydrothermal scheduling has been tested in Gem 5 simulator,
and obtained optimal results for both hydro and thermal units
without HTS problems. The test system consists of 5 Thermal
units and 5 Hydro units. The scheduled period is divided
into 24 periods with time resolution of one hour in day-
ahead. A thermal unit’s fuel cost function is a quadratic,
hence ¥-constraint method, chaotic geometric programming
and chaotic approximation approach and Enhanced Ebola
Optimization Search Algorithm have been used to solve the
problem. The Thermal unit parameters are set to point, tem-
perature, pressure, mass flow rate and max power attains
at 12.5, 400K, 0.05 to 300 bar, 1000 kg/s, and 300 MW
respectively. Forecasted water inflows are assumed to be
constant across the whole time range. The Vp;, for three
reservoirs are 131hm3, 84hm> and 403hm3. The Vi for
three reservoirs are 246hm>, 133hm® and 280hm?. For ther-
mal power plants, the essential inputs include the generation
capacity, fuel costs, operating constraints (min/max output,
startup/shutdown times, ramping rates), emission constraints,
and the current state of the power plant, all of which play a
critical role in optimizing power generation.

B. SIMULATED OUTPUT

The optimal discharge and power output obtained from the
proposed mathematical model have been presented in Table 1.
The hydro discharge from five hydro plants has been provided
in Table 1. Gem5 simulator is used and the results were found
to lie within optimal limit due to the incorporated Enhanced
Ebola Optimization Search Algorithm in the proposed model
and the Hydropower generation from five hydro plants and
thermal power generation from one thermal plant are deter-
mined in an hourly basis and their values are maintained in
optimum levels using ¥} -constraint method, and Chaotic geo-
metric programming and chaotic approximation approach.

In order to achieve operational criteria such as minimum
and maximum power output levels, environmental restric-
tions, and other requirements, the whole cost of generating,
which may include fuel expenses for thermal generation,
must be kept as low as possible.

Based on these inputs shown in Table 1, the mathematical
model uses mathematical optimization techniques to identify
the ideal schedule for both thermal and hydropower generat-
ing, which eventually results in the ideal discharge and power
output for each source. This aids in striking a balance between
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TABLE 1. Optimal discharge and power output obtained from a proposed mathematical model.

Thermal
generation
Hour Hydro discharges (m3) Hydropower generation (MW) MW)
D1 D2 D3 D4 D5 Hypl Hyp2 | Hyp3 | Hyp4 | Hyp4 | HypS Thpl
1 95010 58020 110000 100215 120654 85 50 59 69 55 65 996
2 93230 60601 115041 102325 121546 83 52 62 73 58 66 998
3 91050 62000 120000 104435 122438 81 54 65 77 61 67 1000
4 89008 64000 125013 106545 123330 79 56 68 81 64 68 1025
5 87000 66000 130000 108655 124222 77 58 71 85 67 69 1050
6 85010 76060 135000 110765 125114 75 60 74 89 70 70 1075
7 86000 75000 230085 112875 126006 72 62 77 93 65 55 1124
8 87000 74000 210000 130254 126898 69 80 80 97 57 58 1173
9 88000 73000 190000 129124 127790 66 81 75 85 49 61 1222
10 58000 72008 170506 127994 156842 63 82 72 84 41 64 1271
11 59000 71000 150000 126864 152156 65 83 69 83 33 67 1320
12 60000 105000 150000 125734 147470 64 84 66 82 25 70 1369
13 61000 101000 160000 124604 142784 63 85 63 81 17 73 1418
14 62005 98012 170000 123474 138098 62 90 60 80 9 89 1467
15 63000 77000 180000 122344 133412 61 86 57 79 75 91 1516
16 64000 75000 190000 121214 128726 60 82 54 78 77 93 1684
17 98000 73000 200000 120105 124040 50 78 51 58 79 95 1852
18 95000 71000 210568 119654 135218 52 74 85 62 81 97 2020
19 92000 102070 220000 119203 136025 54 70 86 66 86 99 1954
20 89000 100000 210000 118752 136832 56 85 87 70 89 101 1888
21 86000 98000 190014 118301 137639 58 88 88 74 92 99 1822
22 83080 96001 170000 117850 138446 60 81 89 78 95 95 1756
23 80015 94000 150000 117399 139253 55 56 90 82 98 97 1690
24 77047 92000 130000 116948 140060 50 31 91 86 101 99 1624

the efficient use of both sources and the maintenance of a
steady supply of power.

The simulated output for maintaining water level without
the commitment problem has been shown in Table 2, in which
the water discharge is maintained in the allowable range
by step response in line search mechanism of Armijo rule.
Thus the optimal values of water level have been obtained
using multiple waves neural network in Chaotic geomet-
ric programming and chaotic approximation approach. The
step response, feasible solution, and optimal solution for
maintaining the water discharge level within the permissible
level have been obtained by Chaotic geometric programming
and chaotic approximation approach which also generate
a penalty rate when the water discharge level exceeds the
permissible level.

Table 3 depicts the simulated output of the Enhanced Ebola
Optimization Search Algorithm with the minimum fuel cost
by performing optimization for 19 iterations. The optimized
objective function and step response of the Enhanced Ebola
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TABLE 2. Simulated output of Chaotic geometric programming and
chaotic approximation approach.

Major Step Feasible Optimal Penalty
0 0.0E+00 1.3E+02 2.4E+00 0.0E+00
1 0.22E-01 5.3E+01 1.3E+00 1.9E-03
2 2.4E-0.1 2.8E+01 3.0E-01 1.9E-03
3 1.0E+00 3.3E+00 1.2E-06 1.9E-03
4 6.9E-08 3.3E+00 8.1E+00 1.9E-03
5 8.5E-01 3.3E+00 4.0E-01 1.6E+04
6 1.0E+00 3.3E+00 6.4E-03 2.7E+04
7 1.0E+00 3.3E+00 2.5E-10 2.7E+04

Optimization Search Algorithm with the best short distance
Srate 18 obtained. Using the classical benchmark function, the
best and worst values are determined for all 16 iterations in
which the 6, 11,16 and 19 produce the best results, and are
found to have minimum fuel cost as per the objective. From
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TABLE 3. Simulated output of enhanced ebola optimization search
algorithm.

Iteration | S,... | Objective Step
6 3 4758139.6091 1.0
11 3 4386497.8528 0.0000017
16 4 4366944.1734 1.0
19 4 4366944.1598 1.0
90
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FIGURE 4. Velocity of the proposed mathematical model.

Table 3, it is clear that Sy, can be modified by adjusting its
limits (minimum and maximum limits for reservoir volume).
Thus by modifying Srae, the best solution is obtained for the
HTS problem. This optimization produces optimum fuel cost
with high convergence by modifying the S, between 3 and
4 based on the reservoir limit.

C. PERFORMANCE METRICS OF THE PROPOSED SYSTEM
The performance calculation is known as the estimation of
the outcome, which provides accurate information on the
efficiency of the method proposed. The parameters such as
velocity, water discharge, energy, reservoir storage volume,
active power, fuel cost, and generation cost are discussed
below to determine the performance of the proposed model.
Thus, the relation between the input value and the output
value of the proposed system is known.

The approximate velocity of the proposed mathematical
model with real velocity and also both the velocities ranges
from 1000 to 7000 but, the attitude range varies from 30 to
90 km as shown in Figure 4. The approximate velocity of the
proposed model rises with the increase in the real velocity.
Hence, the approximate velocity and real velocity values are
more or less the same. It is to be noted that the proposed
mathematical model is improved by Chaotic geometric pro-
gramming and Chaotic approximation approach that solve net
load variability and uncertainty in hydrothermal scheduling.

The water discharge of the proposed model and the
scheduling interval of four units in penstock water flow dur-
ing the period of 5 to 24 hours have been shown in Figure 5.
Each unit of water discharge varies slightly with the schedul-
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ing interval. The water discharge of the hydro unit during
5-hour intervals has been calculated using Hamiltonian and
Egarch algorithms based on Hazen Williams’s rule and then
Penstock Water balance is calculated to balance the water
discharge in all four units thereby solving the HTS problem.
The energy consumption of the proposed model with varying
velocities in which the energy varies from 0.5 to 1 and the
velocity varies from 120 to 240 m/s has been illustrated in
Figure 6. The energy increases with an increase in velocity but
the energy is maintained within the acceptable level by using
Chaotic geometric programming and chaotic approximation
approach in which energy control dynamic indexing regulate
energy level with increasing energy efficiency in each itera-
tion.

The reservoir storage volume of the proposed model during
the period between 1 to 24 hours is shown in Figure 7.
The reservoir storage volume has been maintained between
1.4 x 10% m? to 1.2 x 10° m? for the time interval from 1 to
24 hours. The reservoir storage volume has been maintained
at the optimum level by Chaotic geometric programming and
a chaotic approximation approach in which chaotic geometric
programming upholds reservoir storage limit constraint for
each hour.
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FIGURE 9. Fuel cost of the proposed model.

The active power of the proposed model for time intervals
between 1 to 24 hours is shown in Figure 8. The active power
of the proposed model lies in the range between 1600 to 2000
MYV and it varies for each hour. The active power consump-
tion of the proposed model has been maintained within the
permissible level by using Chaotic geometric programming
and a chaotic approximation approach in which the energy
control dynamic indexing is performed at each time interval
thereby active power is controlled effectively.

The fuel cost of the proposed model for the iterations
ranges from 1 to 200 and is presented in Figure 9. The
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FIGURE 11. Comparison of generation cost.

fuel cost of the proposed model has a minimum value of
2.1 x 10* $ and attain a maximum value of 2.6 x 10* §.
The fuel cost of the proposed model is reduced by increasing
the number of iterations to 100 and after that, the fuel cost
remains constant. The fuel cost of the proposed model is
minimized by using the Enhanced Ebola Optimization Search
Algorithm that increases the convergence rate by modifying
Srate parameter..

The generation cost of the proposed model for the iter-
ations ranges from 1 to 200 is shown in Figure 10. The
generation cost of the proposed model has a minimum value
of 9.21x10% $ and attain a maximum value of 9.28 x 10®
$. The generation cost of the proposed model is reduced by
increasing the number of iterations to 80 and after that, the
generation cost remains constant. The generation cost of the
proposed model is minimized by using Enhanced Ebola Opti-
mization Search Algorithm in which enhanced exploratory
and exploitative performance reduces cost with an increase
in the diversity of the population.

D. COMPARATIVE ANALYSIS
The generation cost comparison of various optimization
methods [1] such as Quantum Random Search Optimization
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TABLE 4. Comparison of the existing model with the proposed model.

Tech- Fuel | Opera- | Gener- | Simul- | Aver- | High | Stan-
nique Cost ting ation ation age no. dard
Cost Cost Time Cost of Devi-

hits | ation
9.223% 24 16%
9.223$ 24 30%
92338 | 21 32%

QRSOS | 1.38% 4.6% 5544% 5.5s
SOS 1.398 4.5% 5545% 6s
TLBO 1.36$ 4.5% 5550% 10s

DE 1.37$ 4.4% 5560% Ts 9.237$ 23 20%
SPPSO 1.35% 4.3% 55358 16s 9.231$ 20 35%
CDE 1358 4.3% 55658 6s 9.2318 23 25%

CCDE 1.348 428 5543% 9s
Proposed | 1.31$ 43 5530% Ss

9.232% 22 24%
9.223% 28 15%

System (QRSOS), Stochastic Optimization System (SOS),
Teaching-Learning-Based Optimization (TLBO), Differen-
tial Evolution (DE), Standard Particle Swarm Optimization
(SPPSO) and Genetic Algorithm (GA) with the proposed
model is presented in Figure 11. The generation cost of
the proposed system at iteration 100 is 5535 $ whereas the
generation cost of the existing techniques [1] such as QRSOS,
SOS, TLBO, DE, SPPSO and GA are 5544, 5545, 5550,
5560, 5565 and 5570 $ respectively. Detailed comparison
of proposed model with existing techniques is provided in
table 4. It is to be noted that the proposed mathematical
model performs well as compared with all other existing
techniques. These better performances are attained due to
the consideration of ramp, hydro and thermal constraints in
the ¥ -constraint method and Chaotic geometric programming
and chaotic approximation approach as well as performing
enhanced Ebola optimization to minimize cost parameters

V. CONCLUSION

Hydrothermal scheduling aims to optimize the use of cheaper
and more environmentally friendly hydroelectric power,
alongside more expensive thermal power, reducing reliance
on the latter’s high fuel costs. EEOS-based mathematical
approach for hydrothermal scheduling has been presented to
address the uncertainty problems, hydrothermal commitment
problems, and HTS problems, while optimizing the system
cost. Findings by using the EEOS-based approach on the
objective function are as follows:

o U-constraint method considers the ramp constraints
thereby minimizing uncertainty with a low standard
deviation of 15 %. Then, Chaotic geometric program-
ming and chaotic approximation approach maintain the
water discharge at an appropriate level by penstock
water balance equation in which four units’ water flow
during the period of 5 to 25 hours are considered
with maintaining water discharge in the acceptable limit
between 5 to 35 x10°m>/hr and also eliminate hydro
thermal commitment problem using Multiple waves
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neural network with optimum reservoir storage limit and
active power of 1.4x10°m? and 2000 MW.

o Furthermore, the system cost is reduced by using
Enhanced Ebola Optimization in which a low fuel cost
of 2.1x10* $, operating cost of 4 $, generation cost
of 9.21x10° $, simulation time of 5 seconds has been
obtained by modifying S;4¢ the parameter that also elim-
inates the HTS problem.

e The proposed mathematical model outperforms the
existing techniques with a low average cost of
922,341.16 $ and a high number of hits to the best
solution of 28.
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