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ABSTRACT This paper presents a novel warping based method to stitch videos from unstructured camera
arrays. Our approach adopts a two-step energy optimization for video stitching. In the first step, we perform
an initial stitching on keyframes, and then extract the boundary vertices and warped vertices as constraints for
further optimization. In the second step, we design a global optimization to effectively propagate the stitching
from the keyframe to other frames while ensuring the feature alignment, boundary regularity and temporal
coherence. The optimization can be efficiently solved by a linear system, and the final stitching results
are produced by warping and blending. Experimental results and comparisons show that our method can
efficiently stitch multiple videos from unstructured camera arrays, and outperforms state-of-the-art methods.

INDEX TERMS Video stitching, unstructured camera arrays, boundary regularity, temporal coherence,

optimization.

I. INTRODUCTION
With the rise of VR/AR, videos with large field of view
have become more and more popular due to their immersive
and interactive experiences. However, our consumer-level
cameras, such as smart phones and digital cameras, usually
have limited field of view, making the video viewing less
immersive. In recent years, many professional cameras
can shoot videos with extremely large field of view, e.g.
Nokia OZO, Samsung Gear 360, GoPro, Vuze etc., which
can capture 360-degree panoramic videos. Unfortunately,
these professional devices are very expensive and far from
being as popular as consumer-level cameras. Therefore,
stitching multiple input videos together to obtain a wide-
angle panoramic video is a good choice for ordinary users,
and has been widely researched in recent years.

Stitching aims to solve the field of view (FOV) limitation
of images/videos, and has been used in various fields such
as sports broadcasting, video surveillance, street view [1].
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Recently, many researches [2], [3], [4] focused on stitching
videos captured by several freely hand-held cameras, which
are challenged by the shakiness of captured videos, large par-
allax between videos, complex foreground and background
etc. Although successful in many freely captured videos,
video stitching still suffers from many drawbacks: (1) the
combined stabilization and stitching are very difficult to
optimize, and the process is extremely time-consuming; (2)
it is hard to collaborate the shooting process of each hand-
held camera; (3) the final stitched video usually has very
jittery irregular boundaries, which may greatly reduce the
video contents after cropping.

Compared with the freely hand-held video capture, camera
arrays that fix multiple cameras on rigs, see Fig. 1, can better
collaborate the shooting of multiple cameras, and largely
reduce the difficulty of stitching. Perazzi et al. [5] proposed
a method to generate panoramic videos from unstructured
camera arrays. Lai et al. [6] further proposed a wide baseline
video stitching algorithm for linear camera arrays. Although
seamless and visually pleasing, the stitched videos always
have irregular boundaries, due to the unstructured camera
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arrays, and there might be much video content loss after
cropping. To preserve the video content after the geometric
warping, Zhang et al. [7] formulated image stitching and
boundary regulation in a unified optimization framework, and
further applied it to videos captured by unstructured camera
arrays. However, they used the same parameters across
neighboring frames, which cannot ensure accurate feature
alignment. Inspired by [8], Wu et al. [9] recently proposed
a warping-based approach for rectangling irregular videos.
Although effective in many examples, their method suffers
from the seam insertion in video mesh placement, which
is extremely time-consuming. In addition, the video meshes
may contain regions outside the stitched video frames,
leading to “holes” in result videos after rectangling.

In this paper, we propose a temporal-spatial coherent warp-
ing to stitch videos from unstructured video arrays. Unlike
videos from freely hand-held cameras, videos captured from
fixed camera arrays are much easier to stitch, because the
relative position between cameras remains unchanged. Our
key observation is that continuous video frames undergo
similar mesh transformation in stitching and rectangling.
Thus, we first perform the stitching on a keyframe (e.g.
the first frame) using the method in [7], and the warped
vertices will be used as a reference for other frames. Then,
we construct a global energy function for video stitching, with
mesh propagation, feature alignment, rectangular boundary
as constraints, and the warped meshes are obtained by the
energy optimization. Finally, the video stitching result is
obtained by texture mapping and video blending.

Compared with previous stitching and rectangling meth-
ods [7], [9], our method can reach a good balance between
efficiency and visual effects, and the main contributions can
be listed as follows:

o We propose the first warping-based optimization to
stitch videos captured by unstructured camera arrays,
which can produce temporally coherent and visu-
ally pleasing video stitching results with rectangular
boundaries.

o For efficient and content-preserving video stitching,
we design a two-step optimization scheme. We first
perform stitching and rectangling on a keyframe, then
propagate the mesh on the keyframe to neighboring
frames by designing a global optimization with feature
alignment, mesh propagation, rectangular boundary as
constraints.

The organization of this article is as follows. We first
briefly review the techniques related to our work in Section II.
Then we describe the detailed algorithm of video stitching
and rectangling as well as the implementation details in
Section III, and evaluate the performance of our method in
Section IV. Finally, we conclude the paper in Section V.

Il. RELATED WORK
Image and video stitching has been extensively researched in
the field of computer graphics and computer vision to solve
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the problem of limited field of view in images and videos [1].
In this section, we briefly review the techniques most related
to our work.

A. IMAGE STITCHING

Image stitching refers aligning, blending multiple images
with overlapped regions to generate a new image with wide
field of view, which has been widely researched for decades,
and successfully applied to many portable devices, such as
smart phones, digital cameras. In general, image stitching
approaches can be divided into two main categories: warping-
based and seam-driven methods. In the warping-based
methods, multiple models are usually used to represent the
corresponding relationship between images, and the feature
alignment, local and global similarity are achieved by the
grid warping guided by the global and local optimization. Lin
et al. [10] proposed a smoothly varying affine transformation
for locally adaptive image stitching, which also preserves the
global similarity. For better alignment, Zaragoza et al. [11]
proposed an As-Projective-As-Possible warping to adjust
local regions that are inconsistent with the global projective
model. To reduce the distortions introduced by the warping-
based stitching, Chen et al. [12] proposed a local warping
model with the global similarity as constraint, which makes
stitching results more natural. Li et al. [13] proposed
robust elastic warping, which can tolerate parallax in image
stitching. The seam-driven method aims to find an optimal
seam in the roughly aligned regions, so as to deal with the
large parallax in stitching. Zhang et al. [14] believed that the
overlapped regions do not need to be precisely aligned. They
proposed a homography and content-preserving warping
to deal with large parallax, and further put forward a
method to find an optimal seam in the overlapping regions.
In view of the shortcomings of previous seam estimation
after the feature alignment, Lin et al. [15] proposed a seam-
estimation to guid the optimization in local feature alignment,
and improved the stitching result iteratively. To diminish
the large parallax, Xue et al. [16] proposed a stable hybrid
actor-critic to estimate stable seam measurements in the
overlapping region. Recently, the deep learning framework
has been applied to image stitching. Zhao et al. [17]
proposed a deep neural network to accurately estimate the
homography of image stitching with small parallax, and a
new stitching loss function for content preserving. To deal
with the limitations of few features and lack of labeled
data, Nie et al. [18] proposed an unsupervised deep image
stitching framework, which can generate comparable results
to supervised methods.

B. VIDEO STITCHING

According to the configuration of multiple cameras, video
stitching methods can be divided into two types: relatively
stationary and freely moving. When cameras are relatively
stationary, videos are globally stitched by pre-calibrating
the relative positions of cameras. Li et al. [19] proposed
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FIGURE 1. Two types of camera arrays. Left: unstructured camera arrays
constructed in [5]; Right: structured camera arrays to capture 12K
resolution videos, refer to https://ymcinema.com/2022/01/31/worlds-
first-red-v-raptor-8k-aerial-camera-array/.

an efficient video stitching method by using fast structure
deformation. Jiang et al. [20] proposed a spatial-temporal
content-preserving warping to stitch multiple synchronized
videos. Perazzi et al. [5] proposed a weighted extrapolation
of warps for panorama videos stitching from unstructured
camera arrays. Compared with video stitching from relatively
stationary cameras, stitching videos from freely moving
cameras is more complex due to the Intra and inter frame
motions. Lin et al. [4] proposed to stitch videos captured
by hand-held cameras by warping, which is achieved by
optimizing the temporal stability and alignment quality.
To reduce the spatial and temporal artifacts when stitching the
shaking videos, Guo et al. [3] proposed a unified framework
to jointly perform video stitching and stabilization. Nie
et al. [2] improved the unified stitching and stabilization by
identifying the background and eliminating the false feature
matches.

C. RECTANGLING THE STITCHING RESULTS

Rectangling aims to generate rectangular images from the
stitching results with irregular boundaries. He et al. [8§]
are the first to propose a warping based rectangling to
generate rectangular images from the stitched images with
irregular boundaries. Inspired by [8], Wu et al. [9] further
proposed a spatio-temporal warping based rectangling to
rectify the videos with irrecgular boundaries. Different
from [8] and [9], which take the stitched results as input,
Zhang et al. [7] combined image stitching and rectangling in
a global optimization, which can produce panoramic images
with natural alignment and regular boundaries. Recently,
Nie et al. [21] proposed the first deep learning solution to
image rectangling, which can produce rectangular images
in a residual manner, and preserve linear and non-linear
structures. Following [21], Nie et al. [22] further proposed a
learning-based method to correct rotation in images without
angle prior, which can automatically correct tilted images by
regressing the mesh deformation.

lll. ALGORITHM

Previous video stitching methods can provide spatial aligned
and temporal coherent results [2], [3], however, their methods
are too complicated and extremely time-consuming and
cannot preserve rectangular boundaries, which limits their
practical use. In this paper, the videos to be stitched are
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shot by unstructured cameras, and we assume that there
is unnoticeable shakes and relative movement in cameras,
thus the stitched video frames usually have fixed boundaries.
The naive extension of image stitching to video frames may
introduce discontinuities between frames, see Fig.5. In this
paper, we propose a novel and effective solution for efficient
stitching. Fig. 2 gives the pipeline of our video stitching
method. The input to our method is a number of videos with
partial content overlaps, and the goal is to obtain a panoramic
video with rectangular boundaries. Like previous warping-
based stitching, we also place a quad mesh on each frame, and
the stitching result is obtained by warping the meshes guided
by the constraints on them. We first divide video frames into
several blocks with overlaps, and select a keyframe in each
block (the first frame by default), and perform stitching and
rectangling using an energy optimization on quad meshes.
After obtaining the warped mesh on keyframes, we further
propagate them to other frames of the block while ensuring
the feature matching and boundary regularity, and the final
mesh of each frame can be efficiently calculated by the energy
optimization in each frame.

A. KEYFRAME STITCHING AND RECTANGLING

Fig. 3 shows the flowchart of keyframe stitching and
rectangling. Inspired by [7], the keyframe is first initially
stitched using traditional mesh-warping based optimization
method [12], which aims to obtain the warped mesh
of each stitched image. Then, the irregular boundary of
the stitching result is obtained by the polygon Boolean
union operation [23] of each warped mesh, and we further
construct the rectangular boundary constraint based on this.
Finally, we construct a global optimization with feature
matching, shape preserving, rectangular boundary preserving
as constraints, and the final warped mesh is obtained by
solving a linear system whose number of unknowns is
proportional to the number of mesh vertices.

1) INITIAL STITCHING

Similar to many warping-based methods [2], [3], [12],
we place a quad mesh on each image to be stitched. Let
V = {Vi} and E = {E'} be the set of vertices and edges
of the keyframes captured from different cameras, where
i=1,2,...,N,and N is the number of cameras. We aim to
obtain the warped vertices of the quad mesh by minimizing
the energy functions with feature alignment, local and global
similarity as constraints. Inspired by [7] and [12], we define
each energy term as follows.

2) FEATURE ALIGNMENT

Traditional methods may fail to match features in textureless
or ambiguous regions, and they also consume much time
and memory for the complex calculation. For robust and
accurate feature alignment, we use state-of-the-art learning-
based method [24] for feature matching between images, and
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FIGURE 2. Flowchart of our method. The input to our method is a number of videos with partial overlaps, and the goal is to obtain a
panoramic video with a rectangular boundary. We first divide video frames into several blocks with overlaps, and select a keyframe in
each block (the first frame by default), and perform stitching and rectangling using the energy optimization on quad meshes. After
obtaining the warped meshes on the keyframe, we further propagate them to other frames of the block while ensuring the feature

alignment and rectangular boundary constraints.

the energy term is defined as

CaignV) =D D 106D —O@I7, (D)
{i.j} (5£,5£)€Ai.j

where {i, j} refers to all matching image pairs with overlaps.
A'J enumerates all matched features between image i
and j. To constrain the feature alignment between images
on the quad mesh, we represent each matched feature
using the interpolation of the vertices of the mesh grid that
contains the feature point. E.g. ®(8,i) refers to the bilinear
combination of the vertices of the mesh grid that contains the
feature S,i.

a: LOCAL AND GLOBAL SIMILARITY

In addition to feature alignment, we also keep the local and
global similarity to reduce unwanted distortions and make
the stitching as natural as possible. Local similarity aims to
preserve the shape of the quad mesh. Similar to [25], we split
each quad mesh into 2 triangles, and constrain the shape of
triangles, which can be easily implemented as:

N
Coc_sim(V) = D D Vi = Vi =W (Vi = VDIP, @

i=1 yi

where the scaling factor n = ||V,£ — V,il ||/||V,§0 — V,él || and W
is a 90° rotation matrix. To make the stitching as natural as
possible, global similarity is used to optimize the rotation and
scaling factors of each image in stitching. We use the energy
term defined in [12], and the desired scaling s; and rotation
angle ¢ are calculated w.r.t. the reference image (normally
the first image), and the energy term is defined as:

N
Lot sim(V) = D D y(e)(lIwe(el) — sicos(@)|>
i=2 (icEi
)

+ lIwy(€)) — si sin(@)1), 3)

21780

where wx(ej’:) and wy(e]‘:) are the weights of grid edges to
ensure a similarity transform in x and y directions, and y(-)
is used to emphasize the edges in overlapping regions.

Finally, the energy functions can be defined by simply
combining the feature alignment and local&global energy
terms above in a linear weighting manner:

Sinit(V) = ,Baé-align(v) + ﬁl{loc_sim(v) + ﬁg(gl_sim(v)s “)

where B,, B, B, are used to balance the importance of each
energy term.

b: KEYFRAME RECTANGLING

After the initial stitching step, images are well stitched but
always have irregular boundaries. To obtain the stitching
results with rectangular boundaries, we have to further
consider the boundary constraint in stitching. Similar to [7],
we first obtain the outer boundaries of each mesh, and
take them as a polygon Q' then we obtain the outer
boundary vertices €2 of the stitching result by polygon union
operators:

Q=& (5)

=

Il
-

1

Finally, we set the bounding rectangle Q(fzi) for the outer
boundary, and select 4 vertices {I',},p € {1,2, 3,4} from
Q2 that are closest to the 4 corners of Q(fli).

With the outer boundary vertices €2 and the four corners
{I'p}, we can easily classify the vertices on the outer boundary
into four different sides (top, bottom, left, right), and the
rectangling is achieved by dragging the vertices on each side
to the corresponding outer rectangle Q(Qi). We record the
target value and direction of the outer boundary vertices 2
as e(£2) and D(L2).
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initial stitching irregular boundary

rectangular boundary

global stitching and rectangling

FIGURE 3. Keyframe stitching and rectangling flowchart. The images of the keyframe are first stitched by traditional image stitching method, which
produces irregular boundaries, then the irregular boundary is extracted by the polygon Boolean union operator, and the rectangling is achieved by

enforcing the rectangular boundary constraint in the energy optimization.

Similar to [7], the rectangular boundary constraint is
defined as:

M
(V) = D 1@ - D) — @I, (6)

k=1
where M is the number of vertices on the outer boundary, and
D(L2y) is used to project 2 on x or y directions by setting it
to [1, 0] or [0, 1] respectively, and (£2x) records the target
values of each vertex on left, top, right, or bottom directions.

B. TEMPORAL COHERENT VIDEO STITCHING BY MESH
PROPAGATION

In [7], video stitching with rectangular boundaries is simply
achieved by appling the same parameters to a set of
continuous frames, which does not consider the temporal
coherence in video stitching. To keep the motion coherence
in neighboring frames, a direct idea is to track features
in consecutive frames, however, it is time-consuming to
track feature trajectories in several video frames, and the
constraints would be too complex to be optimized. In this
paper, we propose a simple and effective method to ensure
the temporal coherence of video stitching results. For the
keyframe of each block, we further perform rectangling based
on the initial stitching result using the SOTA method [7],
and obtain the final warped mesh vertices {V'}. With the
stitching and rectangling result in the keyframe of each block,
we further propagate their mesh vertices to the following
frames of this block, by enforcing that the mesh vertices of
each frame are close to that of the keyframe, and define it as
follows:

N
GV =D > Vi = Vi @)
i=1 j

Finally, the meshes of video stitching result can be obtained
by optimizing the following energy function:

Sinat(V) =D (Ba-Cat By Go+Bp-5p)s  (8)
t

where B, B, are the weights to specify the importance
of the rectangular boundary and temporal coherence terms.
{V'} is updated after stitching each frame. ¢ enumerates
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FIGURE 4. Failure case. Our method may fail when there is large content
missing or salient structure near the boundary.

all frames in a block. In this step, the local and global
shape preserving energies are not required due the use of
the temporal coherence term, which not only simplifies
the optimization but ensures an robust and easy-to-control
stitching.

C. IMPLEMENTATION DETAILS

In the initial stitching step, we set 8, = 1, g = 0.75,
B¢ = 20 and all examples work well. In the temporal
coherent stitching step, we set 8, = 1, B = 20, B, =
5 for all frames. For more robust and coherent results,
we split video frames into several blocks with overlaps
in the temporal dimension, and each block contains 30 to
40 frames. We select the first frame of each block as the
keyframe, and the keyframe images of different views are
stitched using SOTA stitching method [7]. To obtain temporal
coherent results, we further linearly interpolate the warped
mesh of frames in the overlapping area of adjacent blocks,
and the final stitching results are produced by mesh based re-
rendering and image blending.

IV. EXPERIMENTS AND EVALUATIONS
In this section, we show video stitching results of our
method and comparisons with SOTA methods. Then,
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frame-by-frame - Wuetal Zhanget al.

input video frames

.

input and mask for Wu et al.

% v v V4

FIGURE 5. Results and comparisons with SOTA methods. The left column shows input video frames, the right columns present stitching result of different
frames by different methods. We also provide zoom-in views for detailed comparisons, and use indices and colors to identify different boxes.

input of Wu et al. 2-nd 5-th 10-th

‘183 N

Sino

[

FIGURE 6. Comparison with Wu et al’s method [9]. The left column shows the input frames our method, and the initial stitched frames and masks of Wu
et al's method [9]. The right 3 columns give stitching results of different frames by different methods, and the zoom-in views further provide the
comparisons.

we further report the performance and qualitative evalu- our method. We make use of the video data from [5]
ations, and ablation study to show the effectiveness of for all experiments in this paper, and the comparisons
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FIGURE 7. More results. The 15t column shows the source videos of different views, and the 2™ to 4" columns present the stitching results of different
frames.

set-up of the cameras

=Rl REL-JPS

software for video stitching

stitching result with irregular boundary

our stitching result

FIGURE 8. Stitching videos shot by smart phones. The two smart phones are fixed on a bracket, and videos are shot simultaneously through the two
smart phones. We also developed a software for the video stitching, and gave stitching result with irregular and rectangular boundary.

are produced by the source code provided by their
authors.

A. RESULTS AND COMPARISONS

Fig. 5 shows video stitching results by our method and
comparison with frame-by-frame stitching, Zhang et al.’s
method [7] and Wu et al.’s method [9]. The input video frames
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are from 5 cameras, which are fixed as unstructured camera
arrays. For Wu et al.’s method [9], the input video are initially
stitching results by traditional video stitching method and the
corresponding masks. For Zhang et al.’s method [7], video
frames are stitched by the warping parameters of keyframes.
We perform stitching using 4 different methods, and the
results and zoom-in views vividly show the advantages of our
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w/o alignment

w/o boundary

w/o mesh propagation

1-st

10-th 20-th

FIGURE 9. Ablation study. To show the effects of each energy term, we give stitching results of different frames without the feature alignment,

rectangular boundary and mesh propagation constraints, respectively.

method. The frame-by-frame method may produce temporal
discontinuous results; Wu et al.’s method [9] cannot ensure
rectangular boundaries; Zhang et al.’s method [7] can not
ensure good feature alignment due to the parameter sharing
in continuous frames.

In Fig. 6, we further compare our method with
Wau et al. [9]. Comparisons and zoom-in views in the red and
green boxes show that our method outperforms [9] in terms
of structure preserving and regular boundary preserving.
More video stitching results provided in Fig. 7 show that
our method can produce high-quality video stitching results
while preserving the rectangular boundaries, and well adapt
to different kinds of scenes.

To stitch videos shot by smart phones, we designed a
special camera set-up, which can fix several smart phones on
a bracket, see Fig. 8. In this camera set-up, videos of different
views can be shot simultaneously by the well-designed apps
on each cellphone. We also developed a software system
to stitch videos from smart phones, and stitch videos with
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irregular and rectangular boundaries. Comparisons show that
our stitching with rectangular boundary has better wide-angle
and visual effects.

B. ABLATION STUDY

We conduct an ablation study to test the effects of each
energy term for video stitching. As shown in Fig. 9, without
the alignment term, video are not correctly stitched in
the overlapping regions; without the rectangular boundary
term, we cannot expect the stitching results with rectangular
boundaries; without the mesh propagation term, the stitching
results cannot well preserve the shape.

C. PERFORMANCE

We report the performance of our method on an Intel
Core i7 12700H 2.3GHz laptop with 32G RAM. Take the
experimental results in Fig. 5 as an example, which contains
input videos from 5 different cameras, and each video has
30 frames with a resolution of 800 x 600. The total time cost is
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TABLE 1. Comparison of running time (Sec.). We compare our method
with the frame-by-frame, Zhang et al. [7] and Wu et al. [9] using the
examples in Figs. 5 and 6. We give the running time for the examples by
each method. For Wu et al’s [9] method, their running time consists of the
seam searching and video warping.

frame-by-frame  Zhanget al. [7] Wu et al. [9] ours
Fig.5 188.8s 45.1s 2550s+288s 181.1s
Fig.6 161.56s 42.6s 1983542475 142.6s
Fig.7-1 153.1s 51.6s 2180s+235s 146.2s
Fig.7-2 162.2s 31.5s 2360s+225s 135.7s
Fig.7-3 135.4s 41.9s 2410s+245s 120.1s

181.1 sec. We give the comparison of running time in Table 1,
which shows the performance of examples in this paper.
To make a fair comparison, the number of pixels of each
image frame is normalized to be 800 x 600, and the number
of frames is 30 for all examples. The first column shows the
performance of results by frame-by-frame stitching, and the
second and third column give performance of stitching by [7]
and [9]. From comparison we find that the method of [7] is
the most efficient due to the stitching parameter sharing in
neighboring frames. The most time-consuming method is [9],
and the running time consists of two parts: seam searching
and temporal consistent video warping, in which seam
searching consumes a significant amount of time. Compared
with the frame-by-frame method, our method is more
efficient, because our energy function considers the temporal
coherence by mesh propagation that makes it easier to
optimize.

D. USER STUDY

To evaluate the quality of video stitching results, we invited
30 students from our university aging from 20 to 23,
and asked them to give scores for stitching results by
Perazzi et al. [5], and rectangular stitching (frame-by-frame,
Wau et al. [9] and our method) in terms of wide-angle effects
and visual effects. In order to give scores more objectively
and accurately, we first told them the main indicators for
visual effect evaluation of video stitching, which include
distortions, structure preserving, temporal coherence. Then,
we gave the cropping ratios of each stitching result, which
is the average ratio of the cropped content by a rectangle
to the whole stitched panorama. With the cropping ratios
as reference, they can evaluate the wide-angle effects more
easily and accurately. In our user study, each indicator is given
by an integer ranging from 0 to 5 (worst to best). We give
average scores of all participants for all examples in Table 2.
In terms of the wide angle effects, the method in [5] has the
worst performance, due to not considering the regularity of
boundaries, and thus less content are preserved after being
cropped by a rectangle. For the visual effects, the frame-by-
frame method fails to make satisfied results due to the failure
to preserve the temporal coherence. The statistical data in the
user study indicates the advantages of our method over the
SOTA.
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TABLE 2. User study of different methods. We give average scores of all
participants for each examples by different methods, and each score
includes wide-angle effects and visual effects.

Perazzietal. [5] frame-by-frame  Wuetal. [9] ours
Fig.5 3.54/4.01 4.22/3.89 4.36/4.46 4.71/4.68
Fig.6 3.21/4.12 4.36/4.23 4.51/4.49 4.81/4.72
Fig.7-1 3.75/4.35 4.33/4.25 4.41/4.50 4.49/4.55
Fig.7-2 3.68/4.11 4.13/4.33 4.42/4.51 4.52/4.63
Fig.7-3 4.01/4.11 4.21/4.16 4.22/4.51 4.75/4.81

V. CONCLUSION

This paper proposes a novel video stitching method to
stitch videos taken from several unstructured camera arrays.
We first divide videos into several blocks with tempo-
ral overlaps. Then, we perform initial stitching for the
keyframe of each block, and further rectangling them using
SOTA method. We further construct an energy function
by enforcing feature alignment, rectangular boundary, and
temporal coherence constraints, and obtain the optimized
meshes for high-quality video stitching. Finally, the video
stitching result is produced by mesh-based re-rendering and
image blending. Different from previous video stitching
methods [2], [9], which consume much computation and
memory to stitch several frames together, our method only
optimizes a single frame in the energy function, which is more
efficient and easy to control. Experiments and comparisons
on several examples show that our method is advantageous
over existing SOTA methods in terms of speed and visual
effects.

Our method still suffers from some limitations: (1) it is
limited to stitching videos captures from unstructured camera
arrays; (2) Our method cannot avoid large distortions near the
stitching boundaries, and the distortion is severe when there
is large content missing, see Fig.4.

In the future, we will turn to study the data-driven video
stitching in the learning based framework, and a large dataset
is required, and the network should be carefully designed
which considers constraints, like feature alignment, structure
preserving and temporal coherence.
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