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ABSTRACT Infrared and visible image fusion (IVIF) aims to generate a fused image with both salient
target and rich textures from two different complementary modality images. To better integrate valuable
edge information into the fused image, we first propose a novel two-stream network based on Auto-
Encoder (AE) framework, which extracts deep hierarchical detail information at coarse scale from base
stream by multi-level wavelet decomposition progressively and incorporates them into detail stream for
information compensation. The aggregation of edge information ranging from coarse to fine facilitates a
more comprehensive representation of contours and textures. Then, we propose a new feature fusion strategy,
termed as Structural Feature Map Decomposition (SFMD). The first step is to decompose local patches
of feature map with each modality into three independent components by Structural Patch Decomposition
(SPD). In the second step, appropriate fusion rules are carefully designed for each component and the fused
patch can be derived by inverse SPD. Our extensive experiments on several benchmark datasets show that
our method outperforms seven compared state-of-the-art methods, especially in human visual perception.

INDEX TERMS Image fusion, wavelet decomposition, edge information, multi-scale analysis.

I. INTRODUCTION
Image fusion plays an important role in the field of
image process [1]. The definition of image fusion is
to integrate multiple images acquired from the same or
different modalities into one single image which carries all
complementary information from all images [2]. The fused
image is more informative and accurate than any of the
source images. Image fusion not only reduces the amount
of data [3], but also facilitates subsequent tasks, such as
semantic segmentation [4] and object tracking [5]. In recent
years, sensor technology has been rapidly developed [6] and
researchers are increasingly interested in acquiring compre-
hensive descriptions of a scenario using multiple sensors,
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which distinctive information from various modalities can be
provided.

Different types of images, such as multi-exposure images,
multi-focus images and infrared/visible images are all
typical images for fusion. Among these types, IVIF is the
most promising and widely used for civilian and military
applications, like fruit detection [7] and night-vision object
tracking [8]. Source images can provide different properties
of the same scene since they come from two modalities.
Infrared images capture thermal radiation from objects,
which are robust to illumination and all weather conditions.
Targets can usually be clearly distinguished from the
background in infrared images, as indicated by the high gray
value [2]. However, infrared images often have low resolution
and poor textures due to the limitations of imaging sensors.On
another hand, visible images provide high-resolution and
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enriched texture details, making them suitable for human
visualization. But visible images are highly sensitive to
illumination conditions and harsh environments, which
makes it difficult to observe targets in low-light or foggy
environments. By combining themerits of each source image,
a fused image can highlight targets while retain the most
edge information, resulting in a comprehensive and accurate
description of the image scene.

Key challenges in IVIF task are how to extract features
from different source images effectively and design appro-
priate fusion strategies. To solve these challenging issues,
various fusion methods have been proposed and can be
categorized into traditional and deep-learning methods. In the
early stages, traditional methods relied on some priors, such
as multi-scale [9], [10], [11], sparsity [12], [13], [14], [15]
and saliency [16], [17], [18], to extract features from infrared
and visible source images and maximum or average fusion
rules are employed. However, too many priors challenge
the effectiveness and robustness of such methods. Recently,
deep-learning methods [19], [20], [21], have been gradually
applied to IVIF task. Noteworthy, the high-quality, large-
scale and paired infrared and visible images are uneasily
accessible, thus limiting the performance of deep learning
methods. On the other hand, most deep-learning methods
solely focus on the spatial domain, whereas ignoring that
the transform domain can capture structural information in
compact way and provide better visual perception [22], [23].
For instance, GAN-based methods like FusionGAN [24] only
constrained the discriminator to judge whether the fused
image is similar with visible image in the style. Some
inherited work [25], [26] designed special loss functions of
discriminator to preserve textures in the fused image. But
the results are still blurred and unsatisfactory. The structural
details of features are not fully exploited in the existing
methods. Consequently, it is worthwhile to investigate how
to integrate the structural details in the feature level to the
neural networks, which further improves the quality of the
fused image.

In this paper, we introduce a two-stream edge-aware
network with multi-level decomposition for feature extrac-
tion. Additionally, we propose a novel fusion strategy to
strategically fuse these features. The overall framework of our
method is illustrated in Fig. 1. Specifically, we adopt Auto-
Encoder (AE) processing framework and initially decompose
the input image into base and detail bands by discrete
wavelet transform (DWT). Different network modules are
designed in two streams to deal with base and detail
image bands separately. The prior structural knowledge
can be naturally embedded into the network architecture.
Subsequently, multi-level DWT is utilized to progressively
extract edge information at coarser scales in deep network
layers from base stream and interact them into detail stream
since the base bands still cover most information from the
image and coarse contour edges are salient after one-level
decomposition. By fully extracting latent edge details and
enabling the detail stream to derive comprehensive edge

FIGURE 1. Framework of the proposed method.

FIGURE 2. The procedure of 2D-DWT.

information across multiple scales from shallow to deep, the
network capacity for representing detail features is greatly
improved in our method. Consequently, it retains abundant
edge information in the fused image and achieves good fusion
performance with high visual quality.

Given that it is too simple to merge features by common
average or L1-norm fusion strategies [27], this article
decomposes each patch of feature map into three indepen-
dent components by Structural Patch Decomposition (SPD)
theory [28]. We carefully design appropriate rules to fuse
each component according to their modality characteristics.
Experimental results show that salient targets can be better
highlighted and textural edges is more natural in the fused
image by our proposed fusion strategy.

In summary, the main contributions are listed as follows.
• We present a two-stream edge-aware network that
incorporates deep hierarchical edge feature information
at coarse scales and deep network layers in base stream
into detail stream through multi-level wavelet decom-
position. Only one level decomposition is insufficient to
capture coarse details such as contours in the transform
domain. Meanwhile, information loss is also avoided by
invertible DWT operation.
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• A novel fusion strategy, Structural Feature Map Decom-
position (SFMD), is proposed to fuse the extracted
features. Different from naive weight-averaged, chosen-
max and L1-norm fusion strategies, SFMD explores
inherent statistical relationships between each pair of
extracted features from infrared and visible modalities
and divides each patch into three independent compo-
nents. Appropriate fusion rules are designed for each
component to highlight thermal salient targets and keep
natural textures in the fused image.

• Extensive ablation and comparative experiments have
demonstrated that our proposed method is effective
and transcends most of the state-of-the-art (SOTA)
fusion methods. Qualitative and quantitative results
on TNO and RoadScene datasets validate the strong
generalization ability of our proposed model and feature
fusion strategy.

The rest of this paper is organized as follows. In Section II,
the related work is briefly described. In Section III, the
proposed network model and the fusion strategy will be
explained in detail. In Section IV the fusion performance
of the proposed method is analyzed and compared with
other methods extensively. In Section V, the effectiveness
of our proposed method is also demonstrated in the field
of medical image fusion. Limitations of our method are
discussed in Section VI. Finally, conclusions are drawn in
Section VII.

II. RELATED WORKS
A. MULTI-SCALE DECOMPOSITION FUSION METHODS
Multi-scale decomposition is one of the most popular

techniques in the image fusion [7]. The scale refers to the
spatial resolution of the image. The core idea is that different
scale spaces represent different information in the image.
Fine scales represent more local textural information of
the image and coarse scales represent global and semantic
information. The coarse to fine characteristic of multi-scales
has been demonstrated that it is consistent with human visual
system, enabling a good visual effect [22], [29]. Classical
multi-scale decomposition methods are usually pyramid
transform [30], [31], discrete cosine transform [32] and
non-subsampled contourlet transform [33], [34]. Generally,
the basic steps of multi-scale decomposition fusion are
as follows. Firstly, a group of filter banks are used to
decompose the image to transform domain with different
scales. Secondly, the coefficients of different scales in
transform domain are fused by given fusion rules. Finally, the
inverse transform is applied to reconstruct the fused image.

B. 2D DISCRETE WAVELET TRANSFORMATION (2D-DWT)
Wavelet transform has long been a powerful tool in image

processing due to its strong time-frequency analysis and
energy compaction [35], [36]. As illustrated in Fig. 2, high-
pass and low-pass filter banks are applied along with rows
and columns to extract approximation coefficients (LL) and

FIGURE 3. An example of 2D-DWT. From top left to bottom right are
approximation coefficient,vertical detail coefficient, horizontal detail
coefficient and diagonal coefficient respectively in the right part.

detail coefficients in horizontal (LH), vertical (HL) and
diagonal directions (HH) in four sub-bands. The resolution
of sub-bands are downsampled by two factor compared
with that of input image, preventing information redundancy.
An example of 2D-DWT decomposition in one level is as
shown in Fig. 3. It should be noted that 2D-DWT is invertible,
which four sub-bands images can be inverted into original
image by 2D inverse discrete wavelet transform (2D-IDWT)
without loss.

In image fusion, the input image is usually decomposed
by 2D-DWT in multi-levels, which means the approximation
and detail information separated in one level are decomposed
again, forming a set of approximate and detail coefficients
with different resolution. The reason is that much information
still exists in the approximation coefficients in one-level [37].
Hence, multi-level 2D-DWT is used to extract approxima-
tion and detail information sufficiently. Then, approximate
sub-band and detail sub-bands with same resolution are
fused by given fusion rules respectively. Finally, the set
of fused sub-bands are recovered to achieve fused image
by 2D-IDWT. Wavelet-variants like curvelet [38], dual-
tree wavelet [39], contourlet [40] and non-subsampled
contourlet [33] were proposed later to improve the ability
of anisotropy representation from image at the sacrifice of
processing time. In this paper, the Haar wavelet kernel is
adopted due to its efficiency and fast-implementation.

C. DEEP LEARNING-BASED FUSION METHODS
Currently, methods based on AE is still very popular in the

field of IVIF. The AE methods usually train an autoencoder
to extract features. Then, the intermediate feature fusion is
realized according to carefully-designed fusion rules. Finally,
the autodecoder reconstructs the fused image by the fused
features. Li and Wu [27] firstly utilized dense network as
encoder for feature extraction. Except for introducing the
dense connection, he also proposed l1−norm fusion rule and
attained better performance than the traditional fusion rules.
Zhang et al. proposed a unified fusion network known as
IFCNN, which dynamically selects the fusion strategy for
the deep features according to different fusion tasks [41].
Recently, Zhao et al. [42] adopted transformer architecture as
the encoder for better modeling the long-range dependence
in the feature domain. Xu et al. [43] used two pairs of
encoders to extract shallow and deep features and decompose
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them into common and unique parts respectively. After that,
different fusion rules can be applied according to the flexible
requirements.

III. PROPOSED METHOD
The network architecture of the proposed method is

illustrated in Fig. 4. In the training phase, the encoder
is trained to extract features from the input image and
the decoder learns how to reconstruct the original image
by corresponding features. To ensure that the encoder is
well adapted to both modalities, we use an equal number
of visible and infrared images as input for training. The
encoder consists of base and detail stream, with each stream
appropriately processing global and local detail information
respectively. The resulting base and detail feature maps
are then channel-concatenated and sent to the decoder.
In the testing phase, two identical trained encoders are
used to extract features of the visible and infrared images
separately. SFMD fusion strategy is then applied to fuse
base and detail features from visible and infrared images
respectively. Finally, the trained decoder generates the fused
image from the resulting fused feature maps. In the next part,
we will analyze encoder-decoder architecture, loss function
and SFMD fusion strategy.

A. ENCODER-DECODER ARCHITECTURE
The architecture details of the encoder part are illustrated

in the upper part of Fig. 4, consisting of base and
detail streams. The input image is firstly decomposed into
approximation and detail coefficients with 2D Haar wavelet
transform which is given as follows,

A = (a+ b+ c+ d)/4
B = (a− b+ c− d)/4
C = (a+ b− c− d)/4
D = (a− b− c+ d)/4,

(1)

where a, b, c, d are four pixels in every 2 × 2 block, and A
is the resulting approximation sub-band and B, C and D are
the resulting detail sub-bands. The resolution of A, B, C, D
is the quarter of the input image. Next, the approximation
sub-band is the initial input for base stream and the three
detail sub-bands are input for the detail stream.

U-Net architecture [44] is adopted in the base stream
since it is proved that is very suitable for extracting global
information of an image and its multi-scale characteristic
caters for our multi-level wavelet decomposition design.
Instead of simple downsampling and upsampling operations
in a normal U-Net, pairs of forward and inverse Haar
wavelet transforms are used in our scheme. The wavelet
transform avoids information loss due to its invertibility
and the sparse wavelet coefficients have more compact and
directional structural edge representation than down-sample
images directly. Different kernel sizes are used to enlarge the
receptive filed and extract scale information more effectively.

A four layer denseblock [45] is designed for the detail
stream to keep detail features from shallow to deep. The dense
concatenation has three advantages. Firstly, it preserves more
information by feature reuse. In low-level image processing,
the shallow and deep detail information are both valuable.
Secondly, the problem of gradient degradation is solved
by channel concatenation to some extents. Therefore, the
training is easy to convergence. Thirdly, the dense connection
reduces the overfitting effect due to its regularity. Details
in different decomposition scales and depth, which are
separated from base stream, are concatenated with different
feature maps in the detail stream for subsequent operations.
In the detail stream, the kernel size of 3 × 3 is adopted,
focusing on local detail information. And the size of feature
maps is unchanged to avoid information loss.

The decoder has six sequential convolutional blocks
to reconstruct the original image from the feature maps
produced by base and detail streams. The last convolutional
block, Conv without batchnorm and parametric rectified lin-
ear activation is adopted, generating the wavelet coefficients
of reconstructed image. Finally, a 2D-IDWT is applied to
reconstruct the original image, corresponding to the initial
2D-DWT in the encoder.

B. MULTI-LEVEL WAVELET DECOMPOSITION
The motivation for us to interact hierarchical multi-scale

edge information in base stream into the detail stream
is that only one-level decomposition is not sufficient to
separate all base and detail information of an image since the
approximation sub-band includes most main information of
the image. The initial detail sub-bands are at finest scales,
which only carries some local details information. Therefore
we progressively use DWT in base stream to extract latent
feature edge information at coarse scales from shallow to
deep layers, and interact them into detail stream for detail
information aggregation. There are totally four-level wavelet
decomposition and a set of hierarchical multi-scale feature
edge information is shown in the green box in Fig. 4, which
forms a comprehensive representation for contour and local
details. It is worthy noted that the hierarchical edge feature
information is copied, not destroying the feature integrity of
image information in base stream.

Specifically, let H denote as the Haar wavelet decompo-
sition process. The multi-level wavelet decomposition in the
proposed encoder is formulated as follows,

H
(
I i,j

)
=

[
I i+1,j
LL , I i+1,j

LH , I i+1,j
HL , I i+1,j

HH

]
, (2)

where i is the level order of decomposition and j is the jth

channel from feature maps that to be decomposed in base
stream. I0,0 is the input grayscale image.
The approximation coefficients I1,0L,L decomposed from I0,0

is the input for base stream and it passes a convolution block
with kernel size 7×7 . The I2,0L,L is concatenated with the out-
put of the first convolutional block. The resulting feature map
is represented asB1=

[
F

(
I1,0L,L

)
, I2,0LL

]
, whereF represents the
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FIGURE 4. Flowchart of our proposed model. In the training phase, we first adopt U-Net architecture for base stream to process image information at
coarse scales. Then, downsampling and upsampling are replaced by DWT and IDWT operation to extract hierarchical multi-scale edge information in base
stream. Finally, the hierarchical multi-scale edge information is incorporated into the detail stream for detail information aggregation.In the testing
phase, we propose a SFMD fusion strategy to fuse base and detail feature maps from different modalities, highlighting thermal salient targets and
keeping natural textures in the fused image.

process of reflected padding, convolution, batch-norm and
parametric rectified linear unit operations. Then, the feature
maps pass another convolution block with kernel size 7× 7 ,
denoted as F (B1) =

[
I2,0 · · · I2,15

]
. A 2D-DWT is applied to[

I2,0 · · · I2,15
]
, denoted as H{

[
I2,0, · · · , I2,15

]
}. The results[[

I3,0LL , I3,0LH , I3,0HL , I3,0HH

]
, · · · ,

[
I3,15LL , I3,15LH I3,15HL , I3,15HH

]]
are

processed in the next level of the U-Net architecture.[[
I3,0LH , I3,0HL , I3,0HH

]
, · · · ,

[
I3,15LH , I3,15HL , I3,15HH

]]
, the three detail

sub-bands generated in the base stream are copied, upsampled
and incorporated into the detail stream. The similar steps are
repeated in the second and third level of the U-Net. As the
resolutions are decreased by quarter in the next levels, 5× 5
and 3 × 3 kernel size are adopted respectively to keep
the same receptive field. In the expanding path of U-Net,
deconvolution operations are replaced with 2D-IDWT.

C. LOSS FUNCTION
The loss function is designed for reconstructing original

image in the training phase. Mean-Square-Error (MSE) loss
is often the main part of loss function in the low-level

image processing task, which evaluates average mean square
difference of pixel intensity between reconstructed image and
input image. However, the MSE loss function is not sensitive
enough to detail information and it usually results in a smooth
reconstructed image. Structural Similarity Index Measure
(SSIM) measures similarity between two different images
by luminance, structure and contrast, which is proven to be
consistent with human visual perception on the image quality.
Considering that infrared image may be kind of noisy, Total-
Variation Loss (TV) is introduced as regularization term. The
total loss function is defined as follows,

Ltotal = LMSE (X , X̂ ) + λ1LSSIM (X , X̂ ) + λ2LTV (X̂ ), (3)

where X is the input visible/infrared image, and X̂ is the
reconstructed image and λ1, λ2 are hyperparameters which
controls the trade-off.
LMSE computes the mean square intensity difference

between input and reconstructed images, defined as follows,

LMSE =
1
HW

H∑
i=1

W∑
j=1

(
Xij − X̂ij

)2
, (4)
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where H is the number of pixel in each column and W is
the number of pixels in each row. Xij, X̂ij denote the pixel
value in the ith row and jth column in the input image and the
reconstructed image respectively.
SSIM [46] is the structural similarity index whose value is

usually between 0 and 1. The formula of SSIM is as follows.

SSIM (X ,Y ) =
(2µXµY + C1) (2σXY + C2)(

µ2
X + µ2

Y + C1
) (

σ 2
X + σ 2

Y + C2
) , (5)

where µ and σ are mean intensity and standard deviation of
the image. σXY is the correlation coefficient of two images.C1
and C2 are small constants, which are set to avoid instability
when µ, σ of two images are close to zero. A larger SSIM
means the luminance, structure and contrast of two images
are more similar. The term LSSIM is optimized in the loss
function. It is the dominant loss function term in our model.
The formula of LSSIM is as follows,

LSSIM = 1 − SSIM (X , X̂ ). (6)

Total Variation Loss (TV loss) [48] is used to suppress the
noise in the reconstructed image as a regularization term. The
formulation of TV loss is as follows,

LTV =

∑
i,j

(
∥X̂ (i, j+ 1) − X̂ (i, j)∥2/W

+∥X̂ (i+ 1, j) − X̂ (i, j)∥2/H
)

, (7)

where ∥∥2 is L2-norm, and X̂ (i, j) denotes the pixel value in
the ith row and jth column in the reconstructed image. H and
W are the numbers of rows and columns respectively.

D. FUSION STRATEGY
In the testing phase, the fusion layer is inserted to fuse feature
maps of infrared and visible images from encoders. It fuses
feature maps from base and detail stream separately. The
mathematical representation is as follows.

BF = Fusion (BI ,BV ) , (8)

DF = Fusion (DI ,DV ) , (9)

where BI and BV are infrared and visible feature maps from
base stream respectively. DI , DV are infrared and visible
feature maps from detail stream respectively and BF , DF are
fused results.

The common fusion strategies for feature maps include
average, chosen-max and L1-norm [27]. Average and
chosen-max strategies process each pixel with same weight
map, ignoring characteristics of feature maps from different
modalities. They are too naive to deal with complicated
fusion cases. L1-norm strategy is based on channel-attention
mechanism, simply designing weight maps by summing
each channel. Most existing fusion strategies ignore the
local structural relationship between different modalities.
Therefore, it is necessary to develop an approach for
fusing feature maps from infrared and visible images more
reasonably.

Inspired by Structural Patch Decomposition (SPD) pro-
posed byMa et al. [28] and the inherited work by Li et al. [47]
in multi-exposure fusion, we develop Structural Feature
Map Decomposition (SFMD) for fusing feature maps from
infrared and visible images. In SPD, a local image patch is
decomposed into three parts: signal strength, signal structure
and mean intensity.

x = ∥x − µ∥ ·
x − µ

∥x − µ∥
+ µ

=
∥∥x̃∥∥ ·

x̃∥∥x̃∥∥ + µ

= c · s + µ, (10)

where µ is the mean value of the signal patch, and ∥ · ∥

is the l2 norm of the mean-removed signal patch, and x̃
is the mean-removed signal patch, and c is the scalar of
signal strength and s is the unit-vector of the mean-removed
signal patch respectively. The decomposition operation is
also invertible, which means the original signal patch can be
recovered by three independent components.

The mean intensity, signal strength and signal structure
represent the luminance, contrast and texture information of
an image patch. Similar concepts can be applied to the patches
of feature maps. From a statistical perspective, the signal
strength is analogous to the standard deviation of the patch
which indicates the degree of dispersion of data distribution.
The signal structure represents the mean-removed data
distribution. In image processing, a larger standard deviation
of the patch usually means that more enriched details are
presented. Although CNN is still a black-box, the feature
maps can also be disentangled by statistical information and
appropriate fusion rules are designed for each component to
achieve the goal of fusing infrared and visible images. This
leads to our SFMD feature fusion strategy.

As shown in Fig 5, sliding window of size 31 × 31 is
used to divide patches in each feature map. Then each patch
is decomposed into three independent components by SPD.
Different fusion rules are designed for fusing each component
respectively. Finally, fused patch is derived by inverse SPD.

For fusion of mean intensity in SFMD, softmax rule is
proposed to assign fusion weights between infrared and
visible feature map patches. Mean intensity reflects average
brightness in each patch, which is very closely related to
thermal target region. Softmax function is used to enlarge the
difference between fusion weights, which ensures the target
region to be salient after fusion. Meanwhile, the extreme
fusion rule like maximum is not adopted because brightness
information of the other modality should also be retained
in fused image. Denote µi

IR and µi
VIS as the local mean

intensity of the ith channel of feature maps from infrared
and visible images, µ̂i

FUSE as the local mean intensity of the
fused ith channel in the feature map. The formulas are as
follows.

µ̂i
FUSE = α1 · µi

IR + α2 · µi
VIS , (11)
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FIGURE 5. Flowchart of our SFMD Fusion Strategy. We firstly use 31 × 31 sliding window to divide the whole feature map into
local patches. Secondly, we decompose each patch into signal strength ck , signal structure sk and mean intensity µk three
independent components by SPD [28]. Thirdly, we design appropriate rules for fusing each component. Finally, we derive the fused
local patch by inverse SPD and the final fused feature map can be derived by patch aggregation [47].

α1 =
exp

(
k · µi

IR

)
exp

(
k · µi

IR

)
+ exp

(
k · µi

VIS

) , (12)

α2 =
exp

(
k · µi

VIS

)
exp

(
k · µi

IR

)
+ exp

(
k · µi

VIS

) , (13)

where k is scaling factor, controlling the degree ofmagnifying
the difference between weight coefficients. The value of k is
set as 8 empirically.

For fusion of signal strength in SFMD, maximum fusion
rule is used to pick the larger one. Signal strength represents
the contrast of local region in image. Corresponding to the
feature map patch, it represents the standard deviation, i.e.
the richness of variation in data distribution. The scalar signal
strength does not involve the variability between different
modalities, so the maximum value fusion strategy is used
to ensure that the fluctuating changes in information are
reflected in fused feature map to the greatest extent, bringing
better visibility and higher contrast in fused image. The
maximum fusion rule is as follows.

ĉiFUSE = max
{
ciIR, c

i
VIS

}
= max

{∥∥∥x̃ iIR∥∥∥ , ∥x̃ iVIS
∥∥∥}

, (14)

where ciIR and ciVIS are the local signal strength of i
th channel

of feature maps from infrared and visible image and ĉiFUSE is

the local signal strength of fused ith channel in feature map.
x̃ iVIS is the mean-removed signal patch in the ith channel.
For fusion of signal structure in SFMD, an enhanced power

function is adopted. There are two principles to follow. First,
the fused signal structure should be a unit-vector. Second,
the signal structure with larger signal strength should also be
dominant in the fused signal structure. But it should be in a
softer manner rather than softmax fusion since valuable detail
information from two modalities is expected to be reflected
in the fused image as much as possible. Therefore, a soft
power function is used. Meanwhile, signal strength is used
to guide the signal structure fusion. The formulas are shown
as follows.

s̃iFUSE =
β1

β1 + β2
· siIR +

β2

β1 + β2
· siVIS , (15)

β1 =

∥∥∥x̃ iIR ∥∥∥p β2 =

∥∥∥x̃ iVIS∥∥∥p , (16)

ŝiFUSE =
s̃iFUSE∥∥s̃iFUSE∥∥ , (17)

where siIR and s
i
VIS are the local signal structure unit vector of

ith channel of feature maps from infrared and visible image,
and ŝiFUSE is the local signal structure unit vector of fused ith

channel in feature map and p ≥ 0 is an exponential parameter.
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A greater p means the patch with stronger signal strength is
more transferred into the final fused signal structure. p is set
to 4 empirically in our paper.

The final fused patch can be derived by the inverse SPD
operation, which is illustrated as follows. The fused channel
can be derived by patch aggregation.

x̂iFUSE = ĉiFUSE · ŝiFUSE + µ̂i
FUSE . (18)

IV. EXPERIMENTS
In this section, we firstly introduce the experimental

settings. Specifically, datasets and preprocessing details,
seven state-of-the-art methods with evaluation metrics and
hyperparameters setting are covered. Secondly, qualitative
and quantitative experimental results of various fusion meth-
ods on two datasets are demonstrated. Finally, we conduct
multiple ablation experiments to analyze the effectiveness of
our model and the SFMD fusion strategy.

A. EXPERIMENTAL SETTINGS
1) DATASETS AND PRE-PROCESSING
The training dataset consists of 180 randomly selected pairs
of infrared and visible image pairs from RoadScene [49]
dataset. To augment the limited amount of training data,
we randomly crop the images to a size of 256 × 256 and
transform them into grayscale. The validation set consists of
52 pairs of infrared and visible images fromNIR [50] dataset.
The first test dataset includes 47 typical pairs of infrared and
visible images from TNO [51] dataset, and the second test
set includes 40 additional pairs of infrared and visible images
from the RoadScene dataset. All these datasets are publicly
available.

2) COMPARISONS AND EVALUATION
Seven state-of-the-art methods are selected to compare
with our proposed methods, namely, SDNet [52], SwinFu-
sion [21], GANMcC [25], U2Fusion [53], UNFusion [19],
IPLF [20] and CDDFuse [42]. The objective metrics selected
are entropy (EN) [54], standard deviation (SD) [55], edge
intensity (EI) [56], visual information fidelity (VIF) [57],
Chen-Blummetric (QCB) [58] andMS-SSIM [59]. Larger EN
mean the richer information transferred from source images
to fused image. SD measures the visual contrast of fused
image. EI measures the abundance of texture information.
VIF and QCB are consistent with human perception. MS-
SSIM measures the similarity of source images and fused
image. The fusion performance is better if all metrics are
larger.

3) HYPERPARAMETERS SETTING
The training epoch is set to 160 with the batch size of 32. The
learning rate is 10−3 at first 80 epoches and decays by half
for the last 80 epoches. The hyperparameters of loss function
are adjusted by the fusion performance in the validation set.
Experimental results of different groups of hyperparameters
are illustrated in Table 1. The number in bold implies the best

TABLE 1. Validation performance of different groups of hyperparameters.

FIGURE 6. The cost evaluation over training process.

TABLE 2. The average values of six metrics of 47 source image pairs from
TNO dataset with different fusion methods.

value in each metric. It is clearly reflected that when λ1 is
equal to 5 and λ2 is equal to 0.1, the model achieves the best
validation performance. Therefore, λ1 and λ2 are set to 5 and
0.1 in the experiment respectively.

4) CONVERGENCE SPEED
As illustrated in Fig. 6, the network converges after about
80 epoches. The time of convergence is about 2 hours in one
GPU. The hardware platform is NVIDIA TITANX PASCAL
GPU of memory size 32G and Intel i7-9700K CPU.

B. EXPERIMENTS ON TNO DATASET
1) QUALITATIVE EVALUATION

Three typical infrared and visible image pairs from TNO
dataset, named Nato Camp, Solider Behind Smoke and
Bunker are selected for qualitative evaluation. We marked
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FIGURE 7. Qualitative comparisons on three typical image pairs from TNO dataset. The first two rows are the fusion results of Nato Camp image pair. The
third and fourth rows are the fusion results of Solider Behind Smoke image pair. The last two rows are the fusion results of Bunker image pair.

salient target and texture region with red and green
boxes respectively. The texture region is zoomed in
the bottom right corner of the image for better visual
comparison.

Fig. 7 shows the visual results of different methods.
In Nato Camp image, U2Fusion loses the salient thermal

target information which should be clearly reflected in the
fused image. The fused image of GANMcC seems to be
blurred in target and some local areas, such as the texture
of the road. The fused images of SDNet, SwinFusion and
IPLF are over-sharpened, and the image style bias to infrared
modality. Most fusion methods fail to recover the contour and
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FIGURE 8. Qualitative comparisons on examples from RoadScene dataset. The first two rows are the fusion results of FLIR_06570 image pair. The third
and fourth rows are the fusion results of FLIR_08859 image pair.

TABLE 3. The average values of six metrics of 40 source image pairs from
RoadScene dataset with different fusion methods.

edge details in the bushes next to the deck, as illustrated in
the green marked area. Thanks for strong ability to preserve
edge details at coarse scales in our method, distinct edge
hierarchy of the bushes are well reflected in our fused image.
Ourmethod also retains the target to be salient well. In Solider
Behind Smoke image, GANMcC, SDNet, and IPLF lose
most smoke information from source visible image, though
they keep target to be salient well. CDDFuse, SwinFusion
and our method transfer sufficient information from both
modalities. However, the target is a little hard to identified
by human perception in the fused image of CDDFuse and

SwinFusion. In Bunker image, how to recover the complex
and abundant edge levels of bushes in the visible image is a
challenge for fusion methods. The fused image of GANMcC,
SDNet, U2Fusion and IPLF are heavily contaminated by
the infrared image. By comparison, our method not only
integrates useful information from sour images, but also
reflects the hierarchy of edge information and the brightness
well.

2) QUANTITATIVE EVALUATION
We evaluated the performance of different fusion methods

in TNO dataset by six objective metrics, as shown in Table 2.
Bold and underlined value are the best and second-best results
in eachmetric respectively. Ourmethod is superior to all other
methods in terms of SD, VIF,QCB andMS-SSIM. It indicates
that our method can not only high contrast and good visual
effects, but also preserves the representative structures of both
modalities. Our method also ranks the second in EN, lagging
behind UNFusion with a narrow margin. It implies that our
method can transfer useful and complementary information
to the fused image effectively. It is noted that the EI value
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FIGURE 9. Hierarchical detail layers from shallow to deep. (a): original
visible image; (b): detail features after 1-level wavelet decomposition;
(c): detail features after 2-level wavelet decomposition; (d): detail
features after 3-level wavelet decomposition. (Different scales are
interpolated to same size for visualization).

of IPLF is too high, corresponding with the over-sharpened
visual result in the qualitative evaluation. By contrast, our
method retains abundant edge information with better visual
perception.

C. EXPERIMENTS ON ROADSCENE DATASET
1) QUALITATIVE EVALUATION

Fig. 8 shows two examples of different fusion methods
in RoadScene dataset. In ‘‘FLIR_06570’’ image pair, only
CDDFuse, SwinFusion and our method preserve the sky
region to be bright. The fused images of GANMcC, SDNet
and UNFusion are bias to infrared modality, losing much
detail information from the visible image. Salient targets in
the fused image are not highlighted in U2Fusion. Compared
with SwinFusion, our method retains high image contrast,
presenting better visual results. In ‘‘FLIR_08859’’ image
pair, UNFusion, SwinFusion and our method recover the
details of vehicles well, as shown in green boxes. Similar
to TNO dataset, the fused image based on GANMcC is
blurred again. Fusionmethod based on IPLF carries excessive
brightness information, which does not conform to human
eye perception. By contrast, our method not only integrates
useful complementary information from different modalities
into the fused image, but is also more suitable for human
observation.

2) QUANTITATIVE EVALUATION
Table 3 shows the objective performance of different

fusion methods in RoadScene dataset. The proposed method
achieves the optimal value in EN, SD, VIF andMS-SSIM and
lags the optimal of QCB by a narrow margin, manifesting that
our method generates the fused image with high dependence
without introducing of noise and artifacts, consistent with
human visual perception. Although the proposed method
ranks third in terms of EI, it is still within acceptable
range. Quantitative evaluation in two datasets validates
the superior performance and strong robustness of our
method.

D. ABLATION EXPERIMENTS
1) EFFECT OF MULTI-LEVEL WAVELET DECOMPOSITION

In this section, we discuss the impact of decomposition
levels on the entire network. Specifically, 1-level means that
only detail features after one-level decomposition in base
stream are interacted with detail stream. 2-level means details

FIGURE 10. Different level decomposition on ‘‘Man’’ image.

TABLE 4. Ablation study on 47 image pairs from TNO dataset.

after one and two-level decomposition are interacted with
detail stream and so on.

A typical group of hierarchical coarse-to-fine detail layers
is shown in Fig. 9 for intuitive visualization. From left to right
are input image and detail features from shallow to deep,
which are derived by multi-level wavelet decomposition in
base stream. The granularity of image features is larger with
the increment of decomposition level and network depth.
In (d), features reflect more rough details of main objects,
such as the contour of house, the shape of windows and the
trunk. In (b), shallow features reflect more details on common
information in the image, such as leaves and grass. The detail
features from shallow to deep with multiple levels form a
complete structural representation for the image.

We present the qualitative and quantitative fusion results
of different decomposition levels in Fig. 10 and Table 4
respectively. In (c), it is clearly shown that the quality of fused
image is close to that of the infrared image and the target is
not salient enough if we do not apply wavelet decomposition
completely. With the addition of decomposition levels, the
textures in the fused image are more abundant and the
target becomes more salient. The sky also gets brighter
progressively, which proves each level details contributes
to the fusion network. While there exists noise in the
sky and artifacts around the tree regions in 1-level and
2-level decomposition, these artifacts are removed with the
incorporation of more details at coarse scales. Most objective
indicators exhibit upward trend as the decomposition levels
increase, which indicates that details at coarse scales and deep
network layers are vital to image contrast, entropy and visual
fidelity.

2) EFFECT OF SFMD FUSION STRATEGY
The impact of different feature fusion strategies on the
fused image is discussed in this section. In Fig. 11, only
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FIGURE 11. Different fusion strategies on ‘‘Kaptein_1654’’ image.

TABLE 5. Ablation study of fusion strategies on 47 image pairs from TNO
dataset.

L1-norm and our SFMD fusion strategies preserve the texture
of street lamps well, which is reflected in the green boxes.
Compared to L1-norm, SFMD achieves more appropriate
brightness information in the local areas and maintain high
contrast in the fused image, benefiting from the local patch
decomposition in SFMD. The thermal information is also
highlighted well in the fused image. On another hand, SFMD
outperforms other fusion strategies in four objective metrics,
as illustrated in Table 5. SFMD also achieves the second rank
in two other metrics. Combined with the subjective analysis
in Fig. 11, it shows that SFMD is more suitable for feature
fusion because it utilizes the inherent statistical relationship
in each feature patch well.

V. EXTENSION TO MEDICAL IMAGE FUSION
In this section, we apply our method to the medical image

fusion to further demonstrate the effectiveness of our method.
Medical images of different modalities provide information
from different aspects [60]. Specifically, Magnetic Reso-
nance Imaging (MRI) is structural imaging modality which
shows soft tissues with high contrast, as illustrated in Fig. 12
(b). While Positron Emission computed Tomography (PET)
is functional imaging modality that shows blood flow and
metabolic activities occurring inside the body [61], which is
as illustrated in Fig. 12 (a). Therefore, it is meaningful to
merge structural data with functional data, which preserves
salient functional information and anatomical information
for a better diagnosis of the disease. We select 263 pairs of
registered PET and MRI images from the Harvard dataset,
set aside 31 pairs for testing.

A. QUALITATIVE EVALUATION
We compare our method with GANMcC, SDNet,

U2Fusion, CDDFuse and SwinFusion 5 state-of-the-art

FIGURE 12. Visual comparison of our proposed method with
5 state-of-the-art fusion methods on the Harvard medical image fusion
dataset (https://www.med.harvard.edu/aanlib/home.html).

TABLE 6. The average values of six metrics of 31 source image pairs from
Harvard medical image fusion dataset with different methods.

fusion methods. The visual results are shown in Fig. 12.
Intuitively, GANMcC and U2Fusion fail to preserve the
brightness of anatomical structures in MRI images. SDNet
and CDDFuse produce the fused image with low contrast.
The details of the fused image are blurred in SwinFusion.
By contrast, the fused image from our method not only attains
high contrast, but also highlights the key details from theMRI
source image.

B. QUANTITATIVE EVALUATION
The objective performance evaluation is reported on the

Harvard dataset is reported in Table 6. Clearly, our method
ranks the first in terms of EN and VIF, indicating the fused
image of our method contains abundant information and
retains good visual quality. The suboptimal valve of SD is
achieved by our method, implying our method can keep high
contrast in the fused image. Other metrics of our method are
still comparable with the optimal methods. In conclusion,
our method can also achieves competitive performance in the
medical image fusion.

VI. DISCUSSION OF LIMITATIONS
The limitation of our method is the poor fusion perfor-

mance in low-light or nighttime environments. We provide
a typical example to illustrate this intuitively, as shown in
Fig. 13. The reason is that our method utilizes multi-level
wavelet transform to extract hierarchical details from source
images and it fails to work when abundant details in the
visible image are obscured in the darkness. Consequently,
the fusion quality is unsatisfactory. A possible solution is
that we can firstly enhance the low-light visible images by
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FIGURE 13. Failure case. The fused image has weak texture details and
poor visual perception due to the illumination degradation.

image enhancement algorithms and then fuse it with the
infrared image. But the problem of color distortion may be
introduced in the stage of enhancement. Another solution
is that we can design an illuminance adjustment module to
strip the illumination degradation in nighttime visible images
while preserving informative features of source images in the
future.

Another limitation is that we use Harr-wavelet transform
tool only for computational efficiency in our method.
However, the disadvantage of Harr-wavelet is that it lacks
shift-invariance. Other wavelet transform tools like curvelet
and contourlet can also be considered. In the future, we will
explore how different wavelet transform tools influence
the fusion performance of the network and provide some
insights on how to select the most appropriate wavelet
transform tool for decomposition according to the network
architecture.

VII. CONCLUSION
In this paper, we propose a novel two-stream edge-aware

fusion network with multi-level wavelet decomposition.
The network consists of base stream and detail stream,
which deal with different levels’ information of source
images. The detail features at coarser scales from base
stream are extracted and incorporated into detail stream by
multi-level wavelet decomposition. More latent structural
edge information can be processed in detail-stream. In the
testing phase, the extracted features from the infrared and
visible image pair are fused by the proposed Structural
Feature Map Decomposition (SFMD) feature fusion strategy,
outperforming than common fusion strategies. Ablation
experiments demonstrate that the proposed network model
and fusion strategy are both effective. The comparative
experiments also show that our proposed model outperforms
other SOTA methods. Furthermore, the proposed model can
be applied to a series of other tasks like medical image
fusion. The combination of multi-scale decomposition in
wavelet domain with neural network can also inspire other
researchers.
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