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ABSTRACT This research paper presents a novel approach to current control in Grid-Connected Inverters
(GCI) using Deep Reinforcement Learning (DRL) based Twin Delayed Deep Deterministic Policy Gradient
(TD3) method. The study focuses on addressing the limitations of traditional control techniques and state
of the art techniques, particularly Proportional-Integral (PI) control and Model Predictive Control (MPC),
by leveraging the adaptive and autonomous learning capabilities of DRL. The proposed novel modified
TD3-based DRL method learns an optimal control policy directly from raw data, enabling the controller
to adapt and improve its performance in real-time. The research includes a comprehensive analysis of the
implementation and validation of the modified TD3-based DRL control in a grid-connected three phase three
level Neutral Point Clamped (NPC) inverter system with Inductor-Capacitor-Inductor (LCL) filter. Real-
time validation experiments are conducted to evaluate the control performance, power transfer capability
in grid compliance. Furthermore, a detailed comparison is presented with experimentation, highlighting the
advantages of the TD3-based DRL control over PI and MPC control techniques. Robustness checking is
performed under various operating conditions, including parameter variations and dynamic conditions in the
grid. The results analysis demonstrates that the TD3-based DRL control outperforms traditional PI control
techniques in terms of static, dynamic response, and robustness. Additionally, The DRL based grid connected
inverter current control method is validated in Renewable Energy Source (RES) solar PV grid integration
application.

INDEX TERMS Current control technique, deep reinforcement learning, grid-connected inverters, model
predictive control, PI control, real-time validation, twin delayed deep deterministic policy gradient method,
robustness.

I. INTRODUCTION

The increasing adoption of renewable energy sources, such as
solar panels and wind turbines, has led to a growing interest
in grid-connected inverters. These inverters play a crucial role
in efficiently converting DC power from renewable sources
into AC power that is compatible with the grid [1], [2], [3].
Among various inverter configurations, the three-level NPC
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topology has emerged as a preferred choice over traditional
two-level inverters for medium-voltage applications. This
preference is primarily due to its advantages, including lower
switching losses and reduced Total Harmonic Distortion
(THD) [4]. In Figure 1, the three-level NPC converter is
widely used in grid-connected applications such as renewable
energy systems, electric vehicle charging, and industrial
motor drives due to its superior performance and efficiency.
For instance, they can be connected directly to medium
voltage systems without the need for a power transformer,
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FIGURE 1. Three phase three level NPC converter with LCL filter is considered as popular configuration in many grid interfacing

applications.

and they can operate at a relatively high effective switching
frequency, which reduces the THD in the grid/load [5].
Furthermore, compared to a conventional two-level VSI,
an NPC inverter typically requires a smaller power filter for
a similar application. Additionally, the NPC converter offers
lower dv/dt values, higher efficiency, and less strain on the
components, which are all considered significant benefits
over the conventional two-level topology.

To ensure enhanced performance and grid compliance, the
utilization of LCL filter configuration has gained prominence
in grid-connected inverters. The LCL filter provides reduced
size, superior harmonic filtering capabilities, mitigates res-
onance issues, enhances stability and robustness, reduces
current ripple, and effectively suppresses electromagnetic
interference [6], [7], [8].

In the context of grid-connected inverters, effective current
control plays a vital role in managing power flow and
mitigating harmonics [9], [10]. The inverter adjusts its
current output based on the power demand from the grid
or the available power from renewable energy sources.
Precise control of the injected current facilitates efficient
power transfer, ensuring optimal operating conditions while
delivering generated energy to the grid [11]. Moreover, grid-
connected inverters must limit the presence of harmonics
in the injected current to maintain a clean and sinusoidal
waveform, thereby enhancing power quality and reducing
potential disturbances [12].

DPC enables direct control of active and reactive power
flow between the converter and the grid [13], [14]. By min-
imizing the power error between desired power references
and measured actual power, DPC adjusts control signals such
as voltage vector selection or switching pattern to achieve
the desired power sharing [15], [16]. Traditionally, PI control
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is widely employed for current control in GCIs. PI control
regulates the converter current by comparing the reference
current (obtained from the power control algorithm) with the
actual current feedback. The PI controller adjusts the control
signals, such as modulation index or switching frequency,
to minimize current error and achieve the desired active and
reactive power sharing with the grid [18], [19]. However,
PI controllers have limitations in terms of dynamic response,
adaptability to varying system conditions or disturbances,
and handling non-linearities in the system, where as GCI
demands faster response for current control when it is
used in nested loop. While PI controllers are practical for
many control scenarios due to their simplicity, robustness,
and cost-effectiveness, more advanced control techniques
are required to meet stringent performance requirements or
address complex operating conditions [20].

Advanced control techniques, including Sliding Mode
Control (SMC), Model Predictive Control (MPC), Adap-
tive control, and Deep Reinforcement Learning (DRL),
have emerged as potential solutions to overcome the
limitations of traditional control techniques and address
the  challenges  associated  with  grid-connected
inverters [12].

SMC is a robust control technique that ensures fast
response and robustness against parameter variations and
disturbances [21]. It uses a sliding surface to guide control
actions for regulating active and reactive currents in the
converter, enabling desired power sharing with the grid [22],
[23], [24]. While SMC exhibits resilience to uncertainties
and parameter variations, it can introduce chattering, high-
frequency voltage or current oscillations, and control signal
saturation, which may impact the achievable control perfor-
mance [25], [26], [27], [28], [29].
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MPC, as an advanced control technique, employs mathe-
matical models to predict the future behavior of the converter
and optimizes control signals to achieve desired perfor-
mance [30], [31], [32], [33]. In the context of GCls, MPC
facilitates control of both active and reactive power sharing
while considering constraints, such as grid code require-
ments, voltage and current limits [34], [35], [36], [37]. How-
ever, the real-time solution of complex optimization problems
in MPC imposes computational demands and requires
accurate modeling, real-time optimization algorithms, and
expertise in control engineering [38], [39], [40], [41].

Adaptive control techniques adjust control parameters
based on real-time estimation of system parameters or
disturbances, ensuring optimal power sharing and stability
under varying operating conditions [42], [43], [44], [45].
However, adaptive control relies on accurate parameter
estimation, sophisticated algorithms, and additional compu-
tational resources, with a trade-off between adaptation and
stability [46], [47].

DRL has gained attention in power electronics converter
control, offering the ability to learn optimal control policies
directly from raw data. DRL techniques find utility in
power converter control, including voltage regulation in
DC microgrids feeding constant power loads [48], [49],
[50], [51], MPPT algorithms [52], [53], smart hybrid
power systems coordinated load frequency control [54]
and motor drive control [55], [56], [57], [58], [59]. DRL
combines deep learning and reinforcement learning to enable
autonomous learning and decision-making, accommodating
changes in renewable energy generation, load demand, or grid
conditions. DRL excels in handling complex and nonlinear
power sharing scenarios, optimizing performance based on
rewards and penalties obtained from the environment [60].

Within the domain of DRL, a variety of algorithms exists,
including Deep Q-Learning (DQN), Deep Deterministic
Policy Gradient (DDPG), and the TD3 method. Notably,
DQN is aptly designed for discrete action spaces, whereas
both DDPG and TD3 are well-suited for continuous action
spaces. In the context of our implementation, the TD3 method
was selected due to its recognized efficacy in applications
involving continuous action spaces. This strategic choice
aligns with the specific requirements of power electronic
converter controllers, where continuous action spaces are
often imperative for achieving optimal performance [61].

This article makes the following contributions to the
literature:

o It introduces a DRL-based control architecture for
direct current control of a grid-connected three-phase
three-level NPC inverter. Conduct a comprehensive
assessment of grid current stability under varying con-
ditions, encompassing training, testing, and fluctuating
reference scenarios.

o The DRL-based controller has been implemented in
real-time using OPAL-RT and a DSP processor in
Hardware-in-the-Loop (HIL) mode.

22280

o The robustness analysis is performed on introduced
method under parameter variations, grid dynamic con-
ditions, showcasing enhanced performance compared to
conventional and state-of-the-art control techniques.

o The DRL-based GCI current controller has been suc-
cessfully validated in the context of solar PV grid
integration applications.

The organization of the article is as follows. Section I
discusses the role of GCls in various applications, highlights
the importance of NPC converters, explores LCL filter
configurations, addresses the necessity of current control
techniques, and reviews existing control techniques in the
literature. Section II establishes the mathematical approach
to GCI, presents the PI controller, and outlines the MPC
control structure. Section III explains the DRL structure,
its constituent elements, and the training methodology
employed. Section IV delves into the performance evaluation
of DRL under both training and testing conditions, along with
a comparative performance analysis. Section V focuses on
the implementation of a DRL-based grid-connected inverter
in a solar PV grid interfacing application, taking into
account varying irradiance conditions. Section VI concludes
by summarizing the key findings in grid-connected current
control methods using DRL and explores potential future
research directions in this field.

Il. MATHEMATICAL REPRESENTATION OF THE CONTROL
STRUCTURE FOR THE GRID CONNECTED INVERTER WITH

LCL-FILTER

The schematic representation of the GCI with LCL filter
topology can be observed in Fig. 2, which consists of four
switches and two clamped diodes per leg. In this configura-
tion, various components are involved. V. corresponds to the
voltage of the direct current (dc) link, while iyz. represents
the supply current generated by V.. The dc-link support
capacitors are denoted as C; and C;, and they fulfill the
role of supporting the dc-link. A fundamental assumption
made within this context is the consistent nature of the dc-
link voltage. This assumption finds support in the dc-link
voltage regulator, which maintains the voltage stability even
in scenarios of variations. This stability is achieved through
the implementation of mechanisms such as a dc-link chopper
in case of renewable solar energy sources, or under voltage
protection. As such, the premise of a constant dc-link voltage
is deemed realistic and justified. This pivotal assumption
consequently allows for the independent operation of the
grid- and solar-side components, decoupled from one another.
Additionally, the inverter-side filter inductor is represented
by Ly, while Cy denotes the filter capacitor. The grid-side
filter inductor is referred to as Lp and R;, Ry are parasitic
resistances.

To further describe the system, specific currents are
defined. The inverter-side three-phase currents are repre-
sented as iy4, i1p, and ije. On the other hand, the grid
three-phase currents are denoted as i, i2p, and ir.. These
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FIGURE 2. Grid connected three phase three level NPC VSC with LCL filter.

currents play crucial roles within the GCI with LCL filters
topology. The characterization of grid current and voltage
vectors is a fundamental aspect of this study are given by

.2 . ) .
l=§(la+a-lb+a - 1)

2
Vape = S (a0 + @ vpo + a* - veo)

2 2
Ve = g(Vca'f‘a'Vcb"f‘a “Vee)

2
Vg = g(vga'i‘a'vgb'i‘az‘vgc) (1

where a assumes the value ¢/27/3 and the subscripts a, b, and
c correspond respectively to grid phase currents, vy, inverter-
switching voltages, v, voltage across capacitor and v, grid
line voltages.

With a balanced state of capacitor voltages and a consistent
dc-link voltage, the voltages generated by the NPC at inverter
terminals can be determined by

Sy - Vae .
- if -1,1
by = 5 if sy € {—1,1} ?)

Va if sy =0

Here, x assumes values from the set {a,b,c}, and Sy
represents the switching function that depends on the
switching signals of the individual leg switches, v, capacitors
difference voltage.

In operation, the three-level GCI can produce three distinct
switching states across the abc phases, labeled as “N”’, “O”’,
and “P”. These states are represented by the switching vector
S, defined as follows:

S = {saa Sh, SC}

where s, sp, and s, are each within the range (—1,0, 1),
corresponding to the switching states “N”’, “O”, and “P”,
respectively. Consequently, the three-level GCI encompasses
a total of 27 unique combinations of switching states,
equivalent to 27 fundamental voltage vectors, each with its
specific magnitude distribution as explained in [62].

The state space representation of the above system is given
by

diy L

7 - Y o4 7 007 ['vx
“Gl=| o0 _f_; LLZ b|+[000[[0] (3
c 1 1
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The primary focus of this analysis is directed towards
the NPC grid-side converter and its associated controller.
The d-q frame, also known as the synchronous reference
frame, is a mathematical coordinate system commonly used
in the analysis and control of three-phase power systems.
By transforming the three-phase current signals into the d-q
frame, the control of the converter becomes more manageable
as it allows independent control of the active and reactive
power components.

In this configuration, the closed-loop current control aims
to regulate the currents flowing through the converter’s power
switches. The main objective is to achieve accurate and
precise control of the output currents while maintaining
synchronization with the grid voltage. This control is crucial
for various reasons, including maintaining power quality,
ensuring efficient energy transfer, and providing robust
and stable operation of the converter. The integration of a
low-bandwidth Synchronous Reference Frame Phase-Locked
Loop (SRF-PLL) plays a crucial role in synchronizing the
converter with the Point of Common Coupling (PCC) voltage.
The PI controller can be easily implemented in dq-frame
about a linear operating region. The reference voltage control
vectors from PI controller implementation are given by

Eg=Vi+(@-L-ip)+ (Kp, - er(t) + Ky, -/el(t»

By =Vy— (@ L i)+ Kny- 20+ K- [ ex)

where, V4.V, are grid voltage in dg-frame Kp ,Kp, are
proportional gains, K;, K}, Integral gains, ej () d-axis current
error, ex(t) gq-axis current error. The PI controller operates
only after the error signal occurs and also the tuning of
the control loops are difficult. This can be overcomed
by using the predictive control implementation using mpc
technique.

FCS-MPC is crucial in applications where control inputs
are constrained, such as power electronics converters control,
as it optimizes a finite set of possible inputs, ensuring
adherence to physical limitations. The FCS-MPC control
method is an advanced control strategy used to optimize
the performance of dynamic systems. The first crucial step
in designing an MPC system is to develop a mathematical
model that accurately captures the dynamics of the controlled
process. This model describes how the system responds to
changes in inputs over time and serves as the foundation for
predicting future behavior. The continuous time mathemati-
cal model is represented in (3).

Once the continuous-time model is established, the next
step involves discretizing it to align with the control intervals.
Discretization allows the formulation of a discrete-time
model, which is essential for the subsequent optimization
process. The choice of an appropriate sampling time is
critical in this phase to strike a balance between accuracy
and computational efficiency, the sampling time of one micro
second is considered here. The discretization process is
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explained using (5)-(7).
di(t)

L—= = () = ve()—Ri(t) o)
di(t) _ V(1) — ve(t) .
= 7 —R-i(t) (6)
ik +1) — ik (k) —ve(k) R-i
itk + 1) —itk) _ valk) —ve(k) R-i )
Ts L L
. 75 - R . Ts
itk+1) = (1 - ) Hik) + - k) — ve(k)

®)

The heart of MPC lies in the formulation of a cost function
that quantifies the control objectives and constraints. The
cost function typically comprises terms related to control
effort, deviation from desired setpoints, and any other specific
performance goals relevant to the application. The cost
function is represented using the (9) for addressing the
tracking problem which deals with deviation from desired
setpoints. The prediction horizon, representing the duration
over which future system behavior is anticipated, and the
control horizon, specifying the length of time over which
control inputs are optimized, are essential parameters in
this formulation. For this power electronic control problem
statement, the prediction horizon and control horizon both are
set to one for reducing the computational complexity.

. , 2 . . 2
cost = (igref — Idactual)” + (igref — igactual) 9

In FCS-MPC, the optimization problem is structured to
operate on a finite set of possible control inputs. This is
a distinctive feature of this approach, especially beneficial
in systems with physical constraints on the control input
space, such as power electronics. The Finite Control Set
has 19 switching states out of 27, achieved by reducing
redundancy for the three-phase three-level inverter. The
optimization problem is solved online at each control interval,
ensuring real-time adaptability to the dynamic nature of the
system

The final step is the iterative online implementation
of the MPC algorithm. In flowchart Fig 3, the system
follows these steps: it measures the current state, predicts
future values through computation, solves the optimization
problem, and applies the first optimal control input at each
time step. This iterative process continues, allowing MPC
to continuously adjust and optimize control inputs based on
real-time measurements, making it a powerful and adaptive
control strategy in various applications.

The performance of the model predictive control depends
on the accurate mathematical modelling, cost function and
prediction horizon. But the grid interfaced inverters demands
model free operation due to inaccurate prediction with
various factors like programmed filter parameters differs with
actual values during operation which leads to poor static and
dynamic performance. The DRL based controller overcomes
these challenges by offering a model-free approach.
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FIGURE 3. Flow chart of model predictive control showing prediction
equation, cost function and online optimization.

lIl. METHODOLOGY

The DRL framework is a sophisticated approach that com-
bines deep learning and reinforcement learning techniques
to develop intelligent control policies for complex systems.
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FIGURE 4. Deep reinforcement frame work illustrating
agent-environment interaction and the control structure representation.

This framework involves several key components and steps
as shown in Fig. 4:

A. FRAME WORK

1) ENVIRONMENT

The environment represents the system or process that
the DRL agent interacts with. It provides the agent with
observations or states and receives actions in return. In the
context of grid connected applications, the environment could
be the grid connected three phase NPC inverter with LCL
filter, the load it operates on.

2) AGENT

The agent makes the decision by taking the observation
as input and gives actions as output using a deep neural
network. A deep neural network is used as the function
approximator within the DRL framework. It takes the current
state as input and outputs the action to be taken by the
agent. The deep neural network consists of multiple layers of
interconnected nodes that learn to approximate the optimal
control policy through training. The neural network takes
actor-critic structure from algorithm and it’s configuration is
mentioned in Table 1.

3) STATE SPACE

The state represents set of observations made in that the
current situation or condition of the system. It includes
relevant information such as error signal of d-gxis (e4 (%)),
q-axis (ey(r)), their integral values ([ eq(2), [eq()), the
grid voltages (Vyg(1), Vge(2))and the output current of the
inverter(/4(¢), I;(t)) in d-q frame. The observations set
is typically represented using numerical values or sensor
measurements and is given by

S=[ed(t),eq(t),/ ed(t),/eq(t),ld(t),lq(t), Vag (1), ng(t)]

(10)

where, eq(1) = 1j(1)—1a(t), eq(t) = 17(t) —14(t), I ()&14 (1)
is the reference and actual current of the inverter in along
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FIGURE 5. DRL frame work illustrating agent-environment interactions,
the key components and workflow involved in TD3 algorithm.

d-axis, 1 ;(t)&lq(t) is the reference and actual current of the
inverter in along g-axis, V()& Vy,(¢) are the grid voltages
in dg-frame.

4) ACTION SPACE

The action space defines the set of actions that the DRL
agent can choose from. The actions are of two types
i.e discrete actions, continuous actions. In inverter current
control scenario, the actions can include estimation of
continuous time d-q axis voltage signals (E4, E;) which will
be converted as reference signals in abc frame for PWM
pulses generation as shown if Fig. 5. The action space is
designed to cover a range of possible control actions that
the agent can take to influence the system’s behaviour. The
limited action space can help the DRL converges very fast
and the knowledge on action space limitation can be obtained
from dynamics of the environment or conventional control
techniques. Here, The action space could be reduced by
taking the observation values in per unit basis.

5) REWARD FUNCTION

The reward function defines the quantitative measure of
success or performance for the DRL agent. It provides
feedback to the agent based on its actions and the resulting
system behaviour. The reward function can be designed
to encourage desired system behaviours, such as effective
tracking performance while penalizing undesired behaviours
or control actions that deviate from optimal performance. The
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design of the reward function is very crucial step in DRL
and is reffered from the paper [63]. The reward function r(t)
considered for training is given by

L—le®?,  ifle(®)] <0.001

oy = 1001 - le())>,  if 0.001 < |e(r)] < 0.01
0.001 — |e(t)[%, if 0.01 < |e(r)| < 0.1
—5le()?, if 0.1 < le(t))]

(11)

Here, e(t) is the error signal defined as the difference
between the desired current and the actual current of the
dg-axis. When the reward is calculated along the dg-axis,
the error is assigned as e(t) < eq4(t) for the d-axis and
e(t) < ey(t) for the g-axis.

B. TRAINING PROCESS

The training process involves iteratively updating the deep
neural network to improve its performance. The DRL
agent interacts with the environment, observes the current
state, selects actions based on the current policy, and
receives rewards. These experiences are used to update the
neural network parameters through back-propagation and
optimization algorithms such as stochastic gradient descent.
The training process continues until the agent’s control policy
converges to an optimal or near-optimal solution. By utilizing
this DRL framework, the agent gets ability to learn optimal
control policies directly from data and interactions with the
environment.

C. ALGORITHM: TD3

The TD3 algorithm is an advanced DRL technique used
to train agents in complex decision-making tasks. TD3
builds upon the DDPG algorithm and introduces several
enhancements to improve stability and sample efficiency.
The TD3 algorithm is given in algorithm 1 and is illustrated
in Fig. 5. The algorithm consists of the following key
components and involves several steps to train an agent in
a reinforcement learning task:

1) KEY COMPONENTS

o Actor-Critic Architecture: TD3 utilizes an actor-critic
architecture, where the actor network learns the policy
(the action selection strategy), and the critic network
evaluates the value of the chosen actions. Both the actor
and critic networks are deep neural networks that learn
to approximate complex functions.

o Delayed Actor Updates: TD3 introduces delayed actor
updates to address overestimation issues in DDPG.
Instead of updating the actor network at every time step,
TD3 delays the update by a fixed number of steps. This
helps to decorrelate the actor’s updates from the critic’s
evaluations and stabilizes the learning process.

o Twin Critics: TD3 employs two critic networks instead
of a single one used in DDPG. This helps to mitigate
the overestimation bias and leads to more accurate
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Algorithm 1 Twin Delayed Deep Deterministic Policy
Gradient (TD3)

1: INPUT: initial policy parameters 6, Q-function parameters
@1, ¢, empty replay buffer D
2: Set target parameters equal to main parameters: Oarget <
0, Orargetl < o1, Drarget2 < P2
3: repeat
4: Observe state and select action a =
€, dLow > AHigh » where € ~ N
Execute a in the environment
Observe next state s’, reward r, and done signal d to indicate
whether s’ is terminal
Store (s, a,r,s, d) in replay buffer D
If 5’ is terminal, reset environment state
If it’s time to update then
for j in range(however many updates)
Randomly sample a batch of transitions, B =
{(s, a,r,s, d)} from D
d (s) =

12: Compute
clip ('uemrget (s") + clip(e, —c, ©), aLow , AHigh ) L€ ~
N, o)

13: Compute targets y(r,s',d) =

omin

d) Zi=1 Qd’targcl,i (S/, Cl/ (S/)) .

14: Update Q-functions by one
step of gradient descent using: in 1,2

V¢illﬁl Z(x,a,r,s’,d)eB (Q¢i(s’ a)— y (r’ S/’ d))2 for i

15: If j mod policy delay = 0

16: Update policy by one step of gradient ascent
using:

clip (ng(s)+

AR

TeY e

—

target  actions

r + y@

Vot Syen (5.@) =y (1.5, d))? Qg; (s, 1o(s))

17: Update target networks with
¢target Ji <~ P¢tmget i+ A = p)o
etarget <~ pelarget + (1 —p)o

18: end if
19: end for
20: end if
21: until convergence

value estimations. The two critic networks have separate
parameters and are trained independently.

o Target Networks and Polyak Averaging: TD3 utilizes
target networks to provide stable value estimations.
These networks are copies of the actor and critic
networks and are updated slowly by polyak averaging.
The target networks are used to calculate target values,
which are then used for training the actor and critic
networks.

« Exploration and Noise: To encourage exploration during
training, TD3 adds noise to the selected actions. This
noise is typically drawn from a probability distribution,
such as Gaussian noise, and helps to discover new
actions and avoid getting stuck in local optima.

« Replay Buffer: TD3 employs a replay buffer, which is
a memory structure that stores past experiences (state,
action, reward, next state). The replay buffer is used to
randomly sample and provide training data to the actor
and critic networks. By utilizing past experiences, TD3
improves sample efficiency and reduces the correlation
between consecutive samples.
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TABLE 1. TD3 neural network configuration parameters.

Category  Parameter Value
Actor Layer wise neurons L1 =64,Ly =32,L3 =1
Activation function ReLU
Learning rate 00.001 s
Critic Layer wise neurons Ly =64,Lo =32,L3 =1
Activation function Tanh
Learning rate 0.0001 s
General Discount factor 0.95
Mini batch size 512
Experience buffer length ~ 2X 106
Action space Continuous
Sampling time le-4 sec

o Loss Functions and Optimization: TD3 uses appropriate
loss functions and optimization algorithms to update the
actor and critic networks. The actor network is trained
to maximize the expected cumulative reward, while the
critic networks are trained to minimize the temporal
difference error between the estimated value and the
target value.

2) STEPS INVOLVED

« Initialization: The training process begins by initializing
the actor and critic networks with random weights.
Additionally, target networks, which are copies of the
actor and critic networks, are created and initialized with
the same weights as shown in step 1 & 2.

o Interaction with the Environment: The agent interacts
with the environment by selecting actions based on the
current state and the learned policy. These actions are
sent to the environment, which provides the agent with
the next state and a reward signal as shown in as shown
in step 3-5.

o Replay Buffer Update: The experiences of the agent,
consisting of the state, action, reward, and next state, are
stored in a replay buffer as shown in step 6-8. This replay
buffer serves as a memory that holds past experiences,
which will be used for training.

e Training Batch Sampling: From the replay buffer,
a batch of experiences is randomly sampled for training
as shown in step 9-11. These experiences are used to
update the actor and critic networks. The batch size is
typically a fixed number of samples.

o Actor Network Update: The actor network is updated by
maximizing the expected cumulative reward as shown
in step 13. This is done by computing the gradients
of the expected cumulative reward with respect to the
actor network’s parameters as shown in step-14. These
gradients are then used to update the actor network’s
weights through an optimization algorithm, such as
stochastic gradient descent.
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o Delayed Actor Update: Instead of updating the actor
network at every time step, a delay is introduced in
the actor update. This delay allows for decorrelation
between the actor updates and the critic evaluations. The
delay can be a fixed number of steps, ensuring more
stable learning.

e Twin Critic Update: The twin critic networks are
updated by minimizing the temporal difference error
between the estimated value and the target value. The
target value is computed using the target networks and
is based on the discounted sum of future rewards. The
gradients of the temporal difference error are then used
to update the critic networks’ weights as shown in step-
16.

o Target Network Update: The target networks, which
provide stable value estimations, are updated slowly
using a technique called polyak averaging. This involves
updating the target network’s weights as a fraction of the
current network’s weights as shown in step-17. The slow
update helps in achieving a smoother learning process
and avoids over-fitting.

« Exploration and Noise: To encourage exploration during
training, noise is added to the selected actions. This
noise can be sampled from a probability distribution,
such as Gaussian noise. The noise injection promotes
exploration and helps the agent discover new actions and
policies beyond local optima.

o Repeat: Steps 2 to 9 are repeated iteratively until the
agent’s performance reaches a satisfactory level or a
specified number of iterations is completed.

Through this process, the agent learns an optimal policy that
maximizes cumulative rewards and improves its performance
in the given reinforcement learning task.

IV. RESULTS AND DISCUSSION

This section focuses on presenting the outcomes of direct
current control of a three-phase NPC inverter connected to
the grid. The control methods employed are based on DRL
utilizing the TD3 algorithm and conventional PI control and
mpc techniques. The PI controller gains are tuned by using
Ziegler Nicholas method and are given by

Kp, =5, Kj; =5000, Kp,=5, Kj,=5000 (12)

In mpc techniques, the finite control set technique has been
implemented. For DRL, the agent training simulations are
conducted in the MATLAB 2021a environment using a Dell
Precision 5820 workstation equipped with 32GB RAM and a
16GB NVIDIA RTX A4000 GPU. The Real-Time validation
process is carried out using the OPAL-RT OP4512 target
simulator. A comprehensive hardware setup, as depicted in
Fig. 6, was utilized for the complete implementation of Real-
Time operations.

In the experimental verification, a precise validation of
proposed control system is done utilizing a suite of hardware
components, including the OPAL-RT OP4512 Target simu-
lator, TMS320F28379D Launchpad, and a high-performance
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44 Py 1/ -
FIGURE 6. Real time hardware implementation setup using OPAL-RT,
Texas Instruments C2000 LaunchXL-F28379D.

Host computer as shown in Fig. 8. The OPAL-RT simulator,
equipped with an Intel Xeon E3 processor featuring four
cores at a clock speed of 3.7GHz, 16GB RAM, and a 256GB
SSD memory, serves as the basis for executing real-time
simulations. Its extensive set of 2 x 16 Analog In, 2 x Analog
Out, 2 x 16 Digital In, and 2 x 16 Digital Out channels
provides a versatile interface for seamless data exchange.

The Real-Time simulation verification is coordinated
using the RT-LAB 2023.1 software platform, ensuring
seamless coordination and synchronization across the OPAL-
RT simulator, TMS320F28379D Launchpad, and the Host
computer—a Dell Precision 5820 workstation provided with
32GB RAM and a 16GB NVIDIA RTX A4000 GPU.

The TMS320F28379D Launchpad, featuring a 200MHz
processor speed, dual C28xCPUs, dual CLAs, 1MB Flash,
and advanced functionalities such as 16-bit or 12-bit ADCs,
comparators, 12-bit DACs, and PWMs, plays a pivotal
role in executing the proposed controller. The Real-Time
experimentation unfolds through a structured series of steps.

Initiating with the offline training of the DRL-based TD3
agent in MATLAB, the process yields an optimal agent
through the MKL-DNN library. During the training process,
a sampling period of one micro second for environment and
a sampling time of 0.1 msec for agent is considered. Transi-
tioning to Real-Time execution, the designed environment—a
3-phase 3-level grid-connected inverter with an LCL filter—is
executed on the OPAL-RT simulator. Concurrently, the DRL
controller is executed on the TMS320F28379D Launchpad.

As shown in the Fig. 7, the organization of hardware
connections facilitates a seamless exchange of information,
with the OPAL-RT transmitting three inverter currents
and three grid voltages via analog output channels. The
Launchpad, in turn, receives and processes these signals
through ADC channels, generating 12 PWM pulses conveyed
through Digital output channels. The OPAL-RT, functioning
as the central coordinator, receives these PWM pulses
via Digital input channels. The Real-Time execution is
explained as shown in flowchart in 7. In the first step,
open MATLAB simulated files in accordance with RT-
LAB 2023.1 standards on the Host computer in edit mode.
Subsequent to successful executions in edit mode then set
the configuration for the processor as OPAL-RT Linux
(x64-based). The model is then built onto the processor,
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I/O configurations are established on the OPAL board,
and the target is assigned as OPAL-Linux (x64-based)
with rt-server, leveraging hardware-synchronized execution
properties. At the same time, the DRL agent has to deploy
onto the C2000 Launchpad through MATLAB. The final
step involves loading the model onto the OPAL-RT target
and initiating the execution of the entire system, thereby
validating the effectiveness of the control strategy in a real-
time environment.

The results obtained from both training and testing
conditions using TD3 method are discussed in Case-I.
In Case-II, the efficacy of the proposed DRL-based TD3
method is compared with other control methods and validated
the results using the OPAL-RT experimental setup in real-
time. In case-1III, the proposed control method is tested for
fluctuating reference tracking which reflects practical sce-
narios. In Case-IV, a comprehensive analysis is conducted to
compare and assess the dynamic responses of all controllers
to determine their respective levels of superiority under
normal operating condition and parameter variations. Finally,
in case-V, The tracking stability of the dg-currents is assessed
under dynamic grid conditions. To facilitate reproducibility,
the parameters of grid connected NPC inverter with LCL
filter configuration are derived from established real-time
research practices, as documented in [64] and [65] and are
outlined in Table. 2.

A. CASE-I: ABILITY OF DRL BASED CONTROLLER TO
TRACK REFERENCE CURRENT

The agent undergoes training over 890 episodes using the
TD3 algorithm on a three-phase NPC inverter with an LCL
filter, incorporating dq-reference current variations as defined
by (13) - (14).

—160A 0<r=<0.2

igt)=3 —100A 02<tr<04 (13)
—60A 04<r=<05
ig(t) = {OA 0<t<05 (14)

The training statistics, depicted in Figure 8, illustrate that
the training has reached the optimal policy, as evidenced
by the constancy of the average reward over more than
50 episodes. Following successful training, the agent is
subjected to testing using a different set of reference
current variations (deviation from the training values)
defined by (15) - (16).

—150A 0=<r=<0.2

ia(t)=1-704 02<r1<04 (15)
—100A 04<t<5
i=[0a 0<r<05 (16)

The waveforms illustrating Grid currents, dq axis current
variations, and the total harmonic distortion (THD) of
the three phase NPC inverter with LCL configuration are
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FIGURE 7. Online experimental verification method of the proposed algorithm.

TABLE 2. Three phase NPC inverter with LCL filter configuration
parameters.

S.No  Parameter Value

1 Inverter power rating 100 KVA

2 DC Link voltage 800 volts

3 Output voltage 415V,

4 Frequency 50 Hz

5 Switching frequency 10 KHz

6 Resonating frequency 1 KHz

7 Inductance 1.5 mH

8 Capacitance 100 micro Farad
9 Sampling Time 1 psec

presented in Fig. 9-11 under the training condition, as well
as in Fig. 12-14 under the testing condition. From these
graphs, It is can be observed the grid currents could track
the reference currents effectively and the THD of the grid
currents is within IEEE 519 grid code condition. It is also
evident that the agent has successfully acquired knowledge of
the underlying patterns and relationships within the training
data and can effectively generalize this knowledge to unseen
data.
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FIGURE 8. The training statistics illustrate that the training has reached
the optimal policy.

L L L
0 100 200 300

B. CASE-II: REAL-TIME HIL VALIDATION OF DRL BASED
CONTROLLER, PI AND MPC CONTROL TECHNIQUES

In order to validate the DRL algorithm as a Real-Time
controller, simulations are conducted on the OPAL-RT plat-
form and Texas C2000 launchpad. The results pertaining to
output grid current regulation and dg-axis current regulation
using the TD3 method are presented in Fig. 15- Fig. 16.
Additionally, the corresponding outcomes obtained with the
PI method and MPC control technique are depicted in
Fig. 17 - Fig. 20. The THD graphs of all three methods
are shown in Fig. 21 - Fig. 23. All controllers exhibit
satisfactory steady-state and dynamic performance under
normal operating conditions, however, their robustness, static
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FIGURE 9. Three phase grid side currents using TD3 method with training
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FIGURE 10. Tracking performance of dq axis current using TD3 method
with training case.
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FIGURE 11. The THD of Three phase grid currents using TD3 method with
training case, 3.34%.

and dynamic performance characteristics are compared in the
subsequent case.

C. CASE-III: ABILITY TO TRACK FLUCTUATING REFERENCE
CURRENT

GCI systems are commonly employed to establish connec-
tions between wind turbines and solar photovoltaic arrays
with the electric power grid. The challenge arises from the
fact that the power output from these sources fluctuates con-
siderably due to varying weather conditions. Consequently,
the reference current for the GCI system experiences constant
variations over time. For instance, within periods shorter than
an hour, wind speed can be approximated by considering a
slowly varying mean speed, denoted as V,,, along with N
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sinusoidal components featuring frequencies w;, amplitudes
Aj;, and random phases ¢;, as detailed in (17).

N
vae(t) = Ve + D _ Ancos(ont + ¢n) (17)

n=1

In the context of this fluctuating and gusty wind scenario,
the power from a wind turbine is generated with a dynamic
negative d-axis current values. Simultaneously, the g-axis
reference current is set to zero, indicating a lack of reactive
power. This configuration aligns with the typical behavior of
wind power production under such turbulent wind conditions.

Furthermore, the depicted Fig. 24 highlights the impressive
performance of DRL based controller in effectively tracking

VOLUME 12, 2024



A. Rajamallaiah et al.: DRL Based Control of a GCI With LCL-Filter for Renewable Solar Applications

IEEE Access

MS05204 Sat July 15 18:43:33 2023

RIGOL s H 50.0ms ’ " D 2.694s T # @oov &
€«

Grid currents with proposed DRL controller

140 A/div

ARSARAAMA AR AR ARSI ARNAAS AR
N \

AN AR AR AN A
I | L
| {

| Y
11588141 |

FU T s m s i s o
A VYV VY VY VYYY VY
| AR i

Liadahy

f

AARAARR
TR
IRV AY

140 ms/division

1 Y 2 = 100v = 100m 234
0.00v 0.00v 0. 21314 " \Sa T < 18:42
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FIGURE 17. Three phase grid side currents waveforms using Pl method
under real-time validation.

the variable reference current within the power converter
switching environment.

D. CASE-IV: ROBUST PERFORMANCE EVALUATION OF

PROPOSED METHOD UNDER PARAMETER VARIATION

Stability analysis for tracking performance has long been
a central concern within traditional control systems, par-
ticularly in the context of GCIs. Research in this domain
typically delves into the performance of GCIs when subjected
to variations in system parameters or when dealing with
unbalanced or distorted AC system conditions. To illustrate,
[66] conducts a sensitivity analysis employing a small-signal
model to assess GCI behavior amidst changing system
parameters. Similarly, [67] introduces a control strategy
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FIGURE 20. Tracking performance of dq axis currents using MPC method
under real time validation.

aimed at enhancing GCI performance when confronted with
varying system conditions.

In this case, a comprehensive comparison is conducted
among the proposed TD3 method, the conventional PI
control and MPC methods to check the performance facing
dynamic changes in parameters. The study focused on two
specific variations: changes in the resistance and inductance
of the grid filter. The results showed a fine impact on the
controller, with noticeable effects from shifts in grid-filter
inductance rather than alterations in resistance. Notably, the
controller remained robust in the face of changes in grid-filter
resistance. An interesting observation emerged, indicating
that the controller was less affected when the grid-filter
inductance exceeded the nominal value. Conversely, adverse
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FIGURE 21. The THD in grid side currents using TD3 method, 2.93%.
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FIGURE 22. The THD in grid side currents using Pl method, 3.94%.
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FIGURE 23. The THD in grid currents using MPC method, 4.69%.

effects occurred when the inductance fell below the nominal
value. The evaluation focuses on aspects such as effectiveness
in static and dynamic performance, as well as grid code
conditions. Figure 25 a) illustrates the dq-axis current regu-
lation achieved with the TD3 method, the PI controller, MPC
controller and their comparison under nominal operating
conditions. Figure 25 b) & c¢) shows the current tracking
performance under filter inductance parameter below 50% to
nominal value and above 25% to nominal value respectively.
The steady state and the dynamic performance analysis is
tabulated in Table. 3 for all the three cases,

The key findings from the Table. 3 indicate that when
the actual inductance is reduced to 50% below the nominal
value, the DRL-based controller meets the IEEE 519 Grid
code conditions by maintaining Total Harmonic Distortion
(THD) below 5% while the PI control and MPC techniques
yields exceeding 5% under such conditions. However, when
the actual inductance exceeds the nominal value by 25%,
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the THD of the DRL controller remains within grid code
specifications whereas the other two exceeds the limits.
Importantly, if the actual inductance falls more than 50%
below the nominal value, significant adverse effects emerge,
leading to pronounced distortion and imbalance in the grid
current. The inferences from the Table. 3 are given as follows.

o In terms of Overshoot, the order of robustness from
most to least robust is DRL > MPC > PI. The
DRL controller demonstrates the lowest percentage
overshoot, consistently at 0% during increased step
change under all parameter variations. It is highly robust
in terms of overshoot.

« For Settling Time, the order is DRL < MPC < PI, with the
DRL controller having the fastest response. The settling
time of the DRL controller is the shortest among the
three controllers, indicating rapid response to set point
changes.

« Regarding Steady State Error, the order is DRL < MPC
< PI, with the DRL controller showing the best steady-
state performance. The DRL controller maintains a
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TABLE 3. Static and transient performance metrices for PI, MPC, DRL
control techniques under various conditions.

Controller ~ Parameter variation ~ % Overshoot  Settling time (msec)  steady state error ~ THD

PI 50 % below 52.6 10 8.5% 6.04 %
Nominal 56 % 15 4.2% 3.19 %
25 % above 493 % 10 10% 1525 %

MPC 50 % below 18 % 15 11.4% 8.49 %
Nominal 153 % 25 7.14% 4.69 %
25 % above 16 % 35 14.2% 11.01 %

DRL 50 % below 10.4 % 25 4.2% 4.29 %
Nominal 9% 5 1.4% 2.93%
25 % above 10.1 % 25 5.7% 4.09%
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FIGURE 26. Stability of the dq-current demonstrated under dynamic grid
voltage conditions.

consistently low steady-state error, indicating excellent
steady-state performance.

¢ In terms of THD, the order is MPC < DRL < PI, with
the MPC controller generally maintaining lower THD
values. The THD of the DRL controller is moderate and
relatively consistent, making it a robust choice in terms
of THD.

This comparative study underscores the superior stability
and performance of the DRL-based controller, outperforming
both conventional PI and MPC control methods when
confronted with variable grid-filter inductance conditions.

E. CASE-V: ROBUST PERFORMANCE EVALUATION OF
PROPOSED METHOD UNDER GRID DYNAMIC
CONDITIONS

In this case, the controller’s stability is rigorously assessed
under dynamic grid voltage conditions, where voltage fluctu-
ations range between 0.9 and 1.1 volts per unit. This dynamic
scenario is deliberately induced from time t = 0.05 sec
to t = 0.35 sec, simulating both voltage rise and voltage
sag conditions. The Figure 26, illustrates that the controller
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FIGURE 27. THD of grid currents under dynamic voltage rise condition.
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FIGURE 28. THD of grid currents under dynamic voltage dip condition.

exhibits stability, effectively tracking the reference current
even under voltage swell and sag dynamics. Furthermore, the
THD measured under these conditions adheres to the IEEE
519 grid code specifications as shown in Fig. 27 - Fig. 28.
This comprehensive evaluation underscores the controller’s
adeptness in maintaining stability and performance across
diverse and dynamic operational scenarios.

V. EVALUATION OF DRL BASED CONTROLLER IN SOLAR
GRID INTEGRATION APPLICATION
In various applications related to renewable energy and
microgrids, the control strategy for Grid-Connected Convert-
ers (GCC) often adopts a nested-loop structure comprising an
inner faster current control loop and a slower outer voltage
control loop. This architecture generates d-axis and g-axis
current references, denoted as iy, i;‘l respectively, which
are fed into the current loop controller. The d-axis loop is
employed for regulating the dc-link voltage, while the g-axis
loop serves for reactive power or grid voltage support control.
The control operation involves a PI controller that generates
the d-axis current reference through error signals between
measured and reference dc-link voltages, along with a q-axis
current reference derived from the difference between actual
and desired reactive power.

To illustrate the concept further, Figure 29 provides
a schematic representation of the DRL based controller
within nested-loop control configuration. This configuration
typically corresponds to the integration of distributed energy
resources into the grid, as depicted in Fig 1. The grid is
depicted on the right, while a RES, such as a solar power
with boost converter, is depicted on the left. The power
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TABLE 4. Boost converter parameters for solar PV system.
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dg-axis currents in PV grid integration (A)

S.No  Parameter Value

1 Maximum power (Pmp) 100 KW
2 Maximum voltage (Vmp) 290V

3 Maximum current (Imp) 3455 A
4 Boost Inductor 14.5 mH
5 Capacitor 3227 uF
6 DC link voltage 800 V

7 DC switching frequency 10 kHz

FIGURE 29. DRL based grid connected inverter current controller is used
for solar PV grid integration application.
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FIGURE 30. DC-Link voltage maintained at 800v using DRL based control
technique.

flow involves transfer from the RES to the grid through the
dc-link capacitor and the GCI. For ease of reproducibility, the
parameters of the boost converter and grid-side inverter are
derived from common real-time research practices [68], [69],
[70] and are detailed in Table. 4. Evaluating the performance
of the DRL based control approach in the nested-loop
structure, Fig 30 showcases its effectiveness.

Prior to t=0.2 seconds, the RES generates an active power
of 100 kW at solar irradiance of 1000W / m?2, and the GCC’s
reactive power reference is 0 Var, indicating that the GCI
should absorb a small reactive power from the grid. Initially,
the dc-link voltage is set at 800V. Despite the absence of
synchronization control at the system’s outset, the DRL
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FIGURE 31. dq-currents tracking performance in solar PV grid integration
application under varying irradiance condition.
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FIGURE 32. Three phase grid currents in solar PV grid integration
application under varying irradiance condition.
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FIGURE 33. Active and reactive power waveforms in solar PV grid
integration application using DRL based controller.

based control swiftly adjusts both the dc-link voltage and the
GCI reactive power around their reference values. Notably,
oscillations are minimal. t=0.2 seconds, the RES’s irradiance
shifts to 500W /m?, leading to reduced active power delivery
to the grid through the dc-link and GCI. While the reactive
power reference remains unchanged, the dc-link voltage falls.
The DC-link vlotage profile is given in Fig.30 Yet, the DRL
based controller rapidly regulates the dc-link voltage around
the reference value. Further changes are demonstrated: at
t=0.4 seconds with RES’s irradiance shifts to 750W /mz,
the dg- current tracking performance in solar grid connected

VOLUME 12, 2024



A. Rajamallaiah et al.: DRL Based Control of a GCI With LCL-Filter for Renewable Solar Applications

IEEE Access

application is given in Fig.31. The grid currents and the
active reactive power wave forms are given in Fig.32-
Fig.33. All the figures illustrating that the DRL controller
consistently exhibits excellent performance in meeting the
requirements of nested-loop control, successfully adapting
to various reference changes and efficiently regulating both
dc-link voltage and reactive power. This reinforces the DRL
based control approach’s efficacy in ensuring stable and
precise grid-connected converter operations.

VI. CONCLUSION

The research paper contributes significantly to the literature
on GCIs by introducing and validating the TD3-based DRL
control architecture for direct current control of a three-phase
three-level NPC inverter. The assessment of grid current
stability has been conducted under conditions involving
training, testing, and fluctuating reference scenarios. The
proposed technique has been experimentally validated. Real-
time implementation in Hardware-in-the-Loop (HIL) mode
using OPAL-RT and a DSP processor further confirms the
feasibility of the DRL-based controller. The proposed control
technique has undergone robustness analysis under parameter
variations, grid dynamic conditions, showcasing enhanced
performance compared to conventional and state-of-the-art
control techniques such as the PI control and the MPC
control method. It should be noted especially the successful
validation of the DRL-based GCI current controller in solar
PV grid integration applications. The study provides valuable
information on the application of DRL in power electronics
and demonstrates its effectiveness in achieving superior
control performance. The findings pave the way for future
research and development of advanced control strategies for
grid integration of renewable energy sources. The outer loop
PI controller can also be replaced by using multi-agent deep
reinforcement learning control techniques as a future scope.
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