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ABSTRACT The precession of a ferromagnet leads to the injection of spin current and heat into an adjacent
non-magnetic material. Besides, spin-orbit entanglement causes an additional charge current injection.
Such a device has been recently proposed where a quantum-spin hall insulator (QSHI) in proximity to a
ferromagnetic insulator (FI) and superconductor (SC) leads to the pumping of charge, spin, and heat. Here we
build a circuit-compatible Verilog-A-based compact model for the QSHI-FI-SC device capable of generating
two topologically robust modes enabling the device operation. Our model also captures the dependence on
the ferromagnetic precision, drain voltage, and temperature with an excellent (> 99%) accuracy.

INDEX TERMS Ferromagnetic, quantum spin hall insulator, superconductor, topological.

I. INTRODUCTION
The advent of transistors has unimaginably revolutionized
the progression of human civilization in the last century.
The consistent miniaturization of the transistor in the last
few decades has made us capable of storing and processing
vast amounts of data [1]. However, the quantity of data to
be processed has also been increasing exponentially side
by side [2]. While this dimensional reduction has taken
place, researchers have already arrived at the theoretically
predicted physical bottleneck [3]. In this context, topolog-
ical materials stand in the spotlight for the exploration of
future low-power and robust computational devices [4], [5].
The gapless surface state in topological insulators has made
it a focal point of research [4], [6]. Although the technol-
ogy is still in a nascent stage, there have been numerous
remarkable efforts with significant research findings [7], [8].
Among them, there have been several propositions of the
topological phenomenon-driven device structures [9], [10],
[11], [12], [13]. Becerra et al. has recently proposed such a
device where a quantum spin Hall insulator (QSHI) adjacent
to a ferromagnetic insulator (FI) and a superconductor (SC)
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can harbor Majorana zero mode in the FI-SC junction [14].
This Majorana fermion (MF) enables topologically protected
perfect Andreev reflection (AR) [15]. The precessing mag-
netization of the FI region enables interrelated and quantized
spin, heat, and charge pumping. Here, the MF enables two
unique topological operation regimes where the pumping of
electrons can be turned on and tuned by external control
parameters. In the low energy suppression regime, pumping is
switched off due to the perfect AR of the electrons interacting
with theMF hosted in the device. The perfection of AR, being
topologically protected, renders this suppression unaffected
by disorder or other imperfections in the device. Conversely,
in the high-energy regime, the pumped charge becomes
quantized due to the topological winding number associated
with the scattering matrix, known as Thouless pumping.
Consequently, operation in this regime is inherently robust
against imperfections as well. Also, the injection of heat, spin,
and charge is exponentially sensitive to the external control
parameters (gate voltage, precession angle) similar to the
conventional transistor behavior. Besides, the device offers
sufficient scalability as QSHI can be patterned with FI and
SC by various deposition methods [16], [17], [18], [19]. For
these characteristic features, further circuit-level exploration
is necessary. Hence, a physics-informed compact model can
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FIGURE 1. (a) The proposed device structure. A QSHI in proximity with the FI with a monodomain
magnetization m(t) that precesses at an angle θ . In proximity to the FI region there is a SC region The
monodomain magnetization m(t) precesses at an angle θ around the axis perpendicular to the QSHI. The QSHI
region injects charge, spin, and heat currents to the drain. The injection can be controlled by the applied
potential at the FI region (Vg), the precession angle (θ), precession frequency (ω) temperature (T) and drain
voltage (Vd ). Zero energy Majorana Fermion (MF) is harbored in the FI-SC interface that controls the pumped
currents. (b) Circuit schematics for our simulation process. (c) Methodology flow for compact modeling.

serve as a handy tool to explore and generate valuable insights
about the device that will leverage future research endeavors.

In this work, we develop a physics-informed compact
model for the QSHI-FI-SC device. We simplify the rigorous
mathematical expression of the injected spin, heat, and charge
to a closed-form equation suitable for compact modeling. The
piecewise linear approximation method is used to reduce the
mathematical complexity. The deduced expression captures
the dependency of the heat, spin, and charge injection on
the external control parameters with great precision. Using
the deduced closed form equation, we build a Verilog-A-
based compact model. Our model can perfectly capture the
proposed transistor behavior of the two topological regimes
reported in [14]. Our model will enable the device and
circuit-level exploration of the device. Besides, our modeling
approach provides a pathway for future device modeling with
a high level of mathematical complexity.

II. MODELING METHODOLOGY
To describe the system, the Bogoliubov-de Gennes Hamilto-
nian is considered as,

HBdG(t) = [νFpσz − µ (x)]τz + m(x, t).σ + 1(x)τz (1)

where σ = (σx , σy, σz ) and τ = (τx , τy, τz ) are the Pauli
matrices acting on the spin and Nambu space. νF is the Fermi
velocity andm(x,t) is the time-dependentmagnetization of the
FI region.1 (x) andµ(x) represent the superconducting order
parameter and chemical potential, respectively. Throughout
the whole SC region, 1 (x) is assumed to be constant as 10.
The m(x,t) is periodically driven in the FI region. This results

in the pumping of the charge, spin, and heat in the left
lead of the device (Fig. 1). The value of magnetization is
parameterized as

m (x, t)

= m0 (x) [sin θ (t). cosφ (t), sin θ (t). sinφ (t), cos θ (t)]

where m0(x) = m0 is the magnetization in the FI region.
In the scattering matrix formalism, the only nonzero reflec-
tion co-efficient corresponds to the normal and Andreev
reflections. Here, r↑↓

he(eh) (E , θ, φ) represent the reflection
amplitude for the electron (hole) with spin ↓ injected from
the QSHI to be reflected as a hole (electron). Again, r↑↓

ee(hh)
(E , θ, φ) represent the reflection amplitude of the electron
(hole) that has a spin ↓ and injected from the QSHI to be
reflected as an electron (hole). These coefficients are related
as |r↑↓

ee(hh) (E , θ, φ) |2 + |r↑↓

he(eh) (E , θ, φ)|2 = 1. The reflection

coefficients can be expressed as, r↑↓

ee(hh) (E , θ, φ)= r0(E,θ )eiφ

and r↑↓

hh(ee) (E , θ, φ)= − [r↑↓

ee(hh)(−E,θ, φ)]∗. At a sufficiently
low energy, the magnitude of the coefficient representing the
normal reflection is suppressed due to the perfect AR. In other
words, at low energy, |r↑↓

he(eh) (E = 0, θ, φ)| = 1, at low
energy, the φ independent part can be approximated as

|r0(E,θ )|2 ≈
E2/02

1 + E2/02 (2)

Here, 0 is the Majorana linewidth for which the normal
and Andreev coefficients are equal. 0 is defined as-

0 = 210(
ξF (0,θ)

ξF
(
Vg, θ

) )2 ξS

ξF
(
Vg, θ

)
+ ξS

e
−

2L
ξF (Vg,θ) (3)
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FIGURE 2. Drain voltage (Vd ) dependence of the dimensionless charge (Q). The compact model
characteristics are plotted alongside with the device simulation data (dotted data). Compact model
(solid lines) accurately captures the datapoints from the device simulation (dotted brown). The
dimensionless charge Q in the adiabatic limit as a function of Vd for various values of (a) Vg and (b)θ.

(c)-(d). Compact model behavior zoomed into the transition region between two topological modes.

ξF and ξS are the coherence length of FI and SC region
respectively. These can be expressed as, ξF

(
Vg, θ

)
=

h̄νF√
(m2

0 sin
2 θ−(eVg)

2
and ξs

(
Vg, θ

)
=

h̄νF
10

. The chemical poten-

tial of the FI region is controllable by the gate voltage (Vg) and
is denoted as µFI = eVg. The length of the FI region is repre-
sented by L. The injection of charge, spin, and heat pumped
in a single cycle can be described by a single parameter. This
is referred as the dimensionless charge (Q) and is related to
the charge, spin and heat as Qe = eQ, SZ= −

h̄
2Q, and QE

= −
h̄ω
2 Q, respectively. The dimensionless charge Q can be

expressed as:

Q = −
1
2π

∫
dE(

∂f (E)
∂E

)
∫ 2π

0
dφ|r↓↑

ee (E, θ, φ) |
2 (4)

Thus, it depends on the Fermi energy (EF ) via the
fermi function [f (E)] and the reflection coefficient (r↓↑

ee ).
Q is sensitive to the temperature (T ) and the applied drain
voltage (Vd ) via the Fermi function f (E). It is also depen-
dent on the rotation angle (θ) and the gate voltage (Vg)
via |r↓↑

ee |
2.

Now, taking the energy derivative of the Fermi energy
and integrating |r↓↑

ee (E, θ, φ) |
2, in the adiabatic limit, the

dimensionless charge can be expressed as

Q =

∫
E2e

E−(EF+eVd )
kT

kT
(
E2 + 02

) (
e
E−(EF+eVd )

kT + 1
)2 dE (5)

The internal dynamics between the QSHI, FI, and SC are
merged in equation (5) in an integral format. The integral
expression is indefinite and is required to be expressed in
a compact format to develop a circuit compatible Verilog-A
model. To do so, we approximate the exponential component
of the integrand. For simplicity, we are defining three differ-
ent parameters as α = eVd + EF , β =kT, γ =0. Now, the
bell-shaped exponential component of equation (5) can be
approximated as a piecewise linear function as below:

e
E−α

β(
e
E−α

β + 1
)2

=



0;E < −3.8β + α

0.07
E − α

β
+ 0.2660; −3.8β + α < &E < 0

−0.07
E − α

β
+ 0.2660; 0 < E < 3.8β + α

0;E > 3.8β + α

(6)
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FIGURE 3. Precision frequency (ω) dependence of the dimensionless charge (Q). The compact
model characteristics are plotted alongside with the device simulation data (dotted data).
Compact model (solid lines) accurately captures the datapoints from the device simulation
(dotted brown). The dimensionless charge Q in the adiabatic limit as a function of ω for various
values of (a) Vg and (b) θ.(c)-(d). Compact model behavior zoomed into the transition region
between two topological modes.

Now,Q over all possible energy range can be approximated
as the following,

Q =

∫ 0

−3.8β+α

E2

β(E2
+ γ 2)

(
0.07

E − α

β
+ 0.2660

)
dE

+

∫ 3.8β+α

0

E2

β(E2
+ γ 2)

(
−0.07

E − α

β
+ 0.2660

)
dE

(7)

Now, the result of the definite integral describes the
closed form expression of the dimensionless charge as
below,

Q=
1

5000β2 [175γ
2. ln

(
25γ 2

+ 361β2
− 190αβ + 25α2

25
(
γ 2 + α2

) )

+ (350α − 1330β).γ .[tan−1(
α

γ
) + tan−1(

19β − 5α
5γ

)]

+ 175γ 2. ln
(
25γ 2

+ 361β2
+ 190αβ + 25α2

25(γ 2 + α2)

)
+ (350α + 1330β).γ .[tan−1(

α

γ
) − tan−1(

19β + 5α
5γ

)]

+ 2 × 2527β2] (8)

TABLE 1. Device parameters for the QSHI-FI-SC structure.

III. SIMULATION RESULT
We calibrate our model with the geometric and mate-
rial parameters corresponding to the QSHI-FI-SC structure
reported in [14] (Table 1). Using equation (8), we build a
circuit-compatible Verilog-A-based compact model. We val-
idate our model with the device simulation result from [14].
Figure 2(a-d) shows the dependence of Q on Vd keeping
all the other parameters at their nominal values. The device
transforms from the topological suppression regime to the
quantization regime as Vd goes from low to high voltage.
It is evident that the model can capture the basic transistor
behavior and matches with the device simulation results.
Furthermore, the impact of Vg and θ on Q-Vd characteris-
tics is also portrayed perfectly as evident from Figs.2 (a,b).
For a certain Vd , Q decreases for higher Vg and increases
with θ . Figs. 3(a-d) show the temperature dependence
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FIGURE 4. Temperature (T) dependence of the dimensionless charge (Q). The compact model
characteristics are plotted alongside with the device simulation data (dotted data). Compact model
(solid lines) accurately captures the datapoints from the device simulation (dotted brown). The
dimensionless charge Q in the adiabatic limit as a function of T for various values of (a) Vg and (b) θ.

(c)-(d). Compact model behavior zoomed into the transition region between two topological modes.

of Q. Here, Q increases with T and transfers from one
(suppression) to another (quantization) topological regime as
T increases. For a certain T , Q decreases with Vg and θ ,
and our model perfectly matches with the reported device
simulation result (Figs. 3 (a) and (b), respectively). We also
examine the variation of Q with respect to the ferromagnetic
precision frequency (ω) as shown in Fig. 4(a-d). At lower
ω, the device operates in the topological suppression regime
and Q has a negligible value. On the contrary, at higher ω, Q
has a high value owing to the high injection of spin current
at the left lead. The excellent agreement between the theory
and simulation results attests that our model can capture the
ω variation as well. However, our model is limited in scope
as it does not converge at 0 K, contrary to the theoretical
device simulation. However, our model can describe the char-
acteristics of Q for any other value of T and all possible
values of ω and Vd . We set a miniscule nominal value of
T (0.1 mK) for our simulation. As the device functions at a
temperature below the critical temperature of the supercon-
ductor, the application of mV-range gate voltage does not
pose any additional practical concerns. This is due to the
negligible impact of thermal noise within the relevant temper-
ature range (< 4.2 K). From Figs. 2-4, it can be said that our
model matches with the theoretically demonstrated device
simulation behaviors. The worst-case mismatch between
the reported device simulation data and our model is
< 0.5%. s

IV. DISCUSSION AND CONCLUSION
In summary, we developed a compact model in Verilog-A for
a QSHI-FI-SC structure via deriving a closed-form expres-
sion of the injected spin, heat, and charge by a piecewise
linear approximation method. The model behavior is bench-
marked with the device simulation to verify its functional
behavior. Our Verilog-Amodel enables the future exploration
of the circuit and system-level applications of the device. Our
primary focus in this work is the compact modeling of the
specific device discussed in our manuscript. Our objective is
to create a circuit-compatible compact model that accurately
captures the inherent physics of the device. Our circuit simu-
lations serve to showcase the model’s capability in precisely
capturing the behavior related to injected charge, spin, and
heat within the device. This precision enhances the model’s
applicability for investigating potential future applications of
the considered device which remains as a future scope of
research.
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