
Received 9 January 2024, accepted 28 January 2024, date of publication 7 February 2024, date of current version 29 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3363222

Online Nonlinear P-Q Droop Estimation
of Distributed Generations Based on
Kalman-Filter Algorithm to
Improve Voltage Stability
SOO HYOUNG LEE 1, (Member, IEEE), DONGHEE CHOI 2, (Member, IEEE),
AND SEUNG-MOOK BAEK 1, (Member, IEEE)
1Division of Electrical, Electronic, and Control Engineering, Kongju National University, Cheonan-si 31080, South Korea
2Department of Electrical and Control Engineering, Cheongju University, Cheongju-si 28503, South Korea

Corresponding authors: Donghee Choi (heechoi@cju.ac.kr) and Seung-Mook Baek (smbaek@kongju.ac.kr)

This work was supported in part by the Research Grant of Kongju National University, in 2023; and in part by Korea Institute of Energy
Technology Evaluation and Planning (KETEP) Grant funded by Korean Government (MOTIE), Development of Synchronous Condenser
Model and Power System Inertia Operating Technology, under Grant 20223A10100030.

ABSTRACT It is expected worldwide that the increase in renewable penetration will worsen the voltage
profile in contrast to the conventional synchronous generators. This is because it is not proper to authorize
all independent power producers’ renewable sources to control grid voltages. Although there has been a
bunch of research to improve voltage stability, each has the problem of huge computational effort, limited
grid reflection, calibration, etc. Thus, the indirect voltage control by droop can be a substantial solution. Then,
it is the very one of the critical issues to determine the proper droop ratio, which might be strongly non-linear
due to the complexity of the power system. This paper proposes the online nonlinear P-Q droop estimation
of distributed generations. It improves voltage stability, which might get worse after the connection of
renewable energies or energy storage devices through inverters. First, power sensitivities between multiple
P and Q are derived and used to determine the initial state of the linear P-Q droop required for the initial
operation that gets data for precise estimation of the P-Q droop. Thus, it enhanced the estimation performance
by reducing the required data yet without the extreme P-Q range. Then, the nonlinear P-Q droop estimation is
conductedwith theKalman-filter algorithm. The performance is verified by applying it to the real distribution
power system of an island in Korea. For the verification, the distribution power system is modeled at the EMT
level and simulated using the power system computer-aided design and electromagnetic transient and DC
(PSCAD/EMTDCTM). The voltage stability was improved by the proposed nonlinear P-Q droop estimation
compared to the cases using fixed droop or Q of zero.

INDEX TERMS Distributed generation, Kalman-filter algorithm, non-linear P-Q droop control, renewable
energy acceptability, voltage stability.

I. INTRODUCTION
Recently, many countries have planned to reach ‘‘net zero
emissions’’ by 2050, which aims to neutralize carbon emis-
sions. It relates to the issues of global warming; to limit
the temperature increase under 1.5oC, the CO2 emissions
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need to achieve at most 45% level of 2010 by 2030 [1].
Previously, the Korean government publicized ‘‘Renewable
Energy 3020’’, which increases the domestic renewable-
energy-based generation dependency by at most 20% by
2030 [2]. To realize this policy, many issues must be dis-
cussed despite many positive aspects. One of them is the
voltage profile. The renewable energy connected to the
distribution system penetrates constant real power without
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responding to grid voltage or frequency. It generally causes
voltage increases so that it sometimes deteriorates voltage
stability by occasionally dropping the voltages due to source
disconnection.

To improve the voltage profile, a model predictive con-
trol strategy has been proposed [3]. This method uses
the elements of the Jacobian matrix to estimate the Q-V
relationship. Getting the Q-V relationship based on the
Jacobian matrix requires power flow analysis of the entire
system, which causes time delay due to substantial compu-
tational effort. Also, it needs accurate pre-information online
impedances. To suppress the voltage change caused by real
power penetration in the weak power system, the output
impedance of the inverter has been analyzed [4]. This method
shows limitations in reflecting the effect of grid impedance,
which continuously changes and is hard to estimate in
real time.

Many pieces of research about voltage profiles/stability
have been based on droop to avoid the practical problem of
obtaining accurate data. An affinely adjustable robust voltage
control [5] has been based on P-Q droop. This requires huge
computational effort and communication due to the droop
ratio being determined by the optimization that requires opti-
mal power flow (OPF). Pamshetti et al. have analyzed the
combined impact of network reconfiguration and volt-var
control devices [6]. However, the modified binary gray wolf
optimization (MBGWO) they proposed is also based on the
power flow analysis. A neural network-based adaptive volt-
age control and a distributed model-predictive-control-based
secondary voltage controls have been proposed for inverter-
based microgrids [7], [8]. These methods focus on secondary
control, but their primary controls remain in conventional
droop control. Also, many research papers report Q-V droop-
based methods [9], [10], [11], [12], [13], [14]. Still, they need
re-calibration between their droop ratios to ensure stability
and fast response when there is a change of configuration of
inverter penetration.

Several centralized methods have been proposed to solve
the conventional droop-causing problems. Real-time volt/var
methods adaptively change the droop ratio under external
disturbances [15]. The object of this method is voltage reg-
ulation for several hours. It cannot be applied to the seconds
or less time voltage control. There are many studies based
on optimization algorithms. An attention-enabledmulti-agent
DRL method gathers information from the entire system and
gives an optimal decision [16]. A distributed inter-phase coor-
dination algorithm controls the voltage with unbalanced pho-
tovoltaic integration in low-voltage systems [17]. A two-layer
volt-var control method has centralized control to optimize
the droops of each photovoltaic source [18]. A study controls
voltage and frequency based on an artificial neural network
for islanded multi-microgrids [19]. A hierarchically coor-
dinated voltage/var control and Multistage Multi-objective
Volt/VAR Control have centralized optimization processes
for PV inverters [20], [21]. Although the centralized methods

can solve the droop ratio problems of the localized droop,
they require massive computational effort to analyze or opti-
mize the entire system. There is a method to mitigate the
voltage deviation using both real and reactive powers [22].
Although it formulates the relationships of real and reactive
powers to voltages, it is valid only in the radial system, not the
mesh system.

There have been a few decentralized methods. H. P. Correa
et al proposed a double pilot node decentralized voltage con-
trol of PV generators [23]. Although the method avoids the
massive computational effort of the centralized one, it can-
not be free from the uncertainty caused by the statistical
approach. Another decentralized approach [24] requires exact
line impedances, so it is useful for small grids but might be
not feasible for large power systems. The existing studies are
summarized in Table 1.
This paper proposes an online nonlinear P-Q droop estima-

tion of distributed generations. It improves voltage stability,
which might get worse after the connection of renew-
able energies or energy storage devices through inverters.
To remove the requirement of extreme data, which is not
expected to be obtained easily, the initial droop is selected by
the power sensitivity. Also, Kalman filter-based P-Q droop
estimation is used for noise rejection from both P and Q
measurements.

This paper is organized as follows. Section II gives a
problem formulation to establish a theoretical context. Then,
Section III describes the nonlinear P-Q droop estimation for
a practical application. Next, a direct bus voltage control
issue is discussed in Section IV to describe why the proposed
method is used. After that, the advantages of the proposed
method are discussed in section IV compared to the direct
bus voltage control. Finally, several case studies are dis-
cussed in Sections V and VI, and the conclusion is given
in Section 8.

TABLE 1. Summary of existing studies.
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II. PROBLEM FORMULATION
Real and reactive powers from distributed generation (DG)
are described in [25] as

Pi =

n∑
j=1

|Vi|
∣∣Vj∣∣ ∣∣Yij∣∣ cos (

θij − δi + δj
)

(1)

Qi = −

n∑
j=1

|Vi|
∣∣Vj∣∣ ∣∣Yij∣∣ sin (

θij − δi + δj
)

(2)

where index i denotes the DG-connected bus, and index j
denotes the adjacent buses. δj and Vj are the phase angle and
voltage on bus j, respectively. θij and Yij denote phase angle
and magnitude components of the admittance matrix related
to the buses i and j.

Based on (1), the derivative of Pi by |Vi| is calculated by

∂Pi
∂|Vi|

= |Vi| |Yii| cosθii +
Pi
|Vi|

(3)

In a general power system, both the reactive and resistive
components are always included in the impedance. Then, θii
is greater than −90o. Let θii = −90o + 1θii in order to
reformulate (3) as

∂Pi
∂|Vi|

= |Vi| |Yii| sin1θii +
Pi
|Vi|

(4)

where 1θii is always positive. Therefore, ∂Pi/∂|Vi| is greater
than zero when the DG supplies real power to the power sys-
tem. In other words, the voltage of bus i increases according
to the real power injection of the DG on bus i.
Based on (2), in the same manner with ∂Pi/∂|Vi|,

∂Qi/∂|Vi| is calculated by

∂Qi
∂|Vi|

= − |Vi| |Yii| sinθii +
Qi
|Vi|

(5)

In the same manner with (4), (5) is reformulated as

∂Qi
∂|Vi|

= |Vi| |Yii| cos1θii +
Qi
|Vi|

(6)

where 1θii is always positive as described before. Then,
∂Qi/∂|Vi| is approximately |Vi| |Yii| + Qi/ |Vi|. In general
power system, |Yii| is very large because of small impedances.
Therefore, ∂Qi/∂|Vi| is generally positive unless Qi is an
unrealistically large negative value. In other words, the volt-
age increase by real power injection can be eliminated by
absorbing proper reactive power, and vice versa.

Equations (1) and (2) constitute a set of nonlinear alge-
braic equations in terms of the independent variables, volt-
age magnitude, and phase angle. Expanding (1) and (2)
in Taylor’s series about the initial estimate and neglect-
ing all higher-order terms results in the following matrix
formula. [

1P
1Q

]
=

[
J11 J12
J21 J22

] [
1δ

1V

]
(7)

The Jacobian matrix gives the linearized relationship
between small changes in voltage angle1δi and voltage mag-
nitude1|Vi|with the small change in real and reactive power,

1Pi and 1Qi. Elements of the Jacobian matrix are the partial
derivatives of (1) and (2). Equation (7) can be transformed to
its inverse form as (8) to focus the sub-matrices, Kij of the
inverse Jacobian [26].[

1δ

1V

]
= J−1

[
1P
1Q

]
=

[
K11 K12
K21 K22

] [
1P
1Q

]
(8)

Then, the voltage changes by the real and reactive power
changes are

1V = K211P (9)

1V = K221Q (10)

Consequently, the reactive power is calculated as (11) for the
elimination of the voltage variation caused by the real power
injection.

1Q = −K−1
22 K211P = D1P (11)

In practice, it is very hard to achieve information of load
changes or other DG generations in real-time. Therefore,
it is reasonable that the DG considers the only bus that it is
connected to. Equation (11) can be simplified to

1Qi = Dii1Pi = −
K21,ii

K22,ii
1Pi (12)

As a result, the voltage variation on bus i by the real power
injection to bus i is eliminated. However, the DG on bus i
does not care about other DG’s power injections and load
variations.

III. NONLINEAR P-Q DROOP ESTIMATION
As shown in (3) and (5), the derivatives of Pi and Qi by
|Vi| are affected by Pi and Qi, respectively. Therefore, the
Pi-Qi droop ratio is not constant, but changes according to
both Pi and Qi, so the P-Q droop ratio maintaining the V
to be constant should be updated according to Pi and Qi.
It results in a nonlinear relationship between the real and
reactive powers even if the voltage magnitude of |Vi| is
maintained constant. In other words, the P-Q droop ratio
of Dii requires recalculation according to the changes of
Pi and Qi, so it might require huge computational efforts
during the system operation. The P-Q droop accuracy can
be improved without a huge increase in computational effort
by estimating the nonlinear relationship. To get an accurate
nonlinear P-Q droop curve, the estimation must be conducted
using measured data while the measurement errors are effec-
tively removed. To deal with this problem, the online P-Q
droop curve estimation algorithm is studied based on the
Kalman filter algorithm. The Kalman filter algorithm [27],
[28], [29] has excellent smoothing properties and the noise
rejection capability robust to the process and measurement
noises. In practical environments (in which the states are
driven by process noise and observation is made in the
presence of the measurement noise), the P-Q droop curve
can be formulated with a linear time-varying state equation.
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In this study, the state model applied for the estimation is
given as

x (t + 1t) = 8x (t) + 0ω (t) , x (0) = x0
y (t) = c (t) · x (t)

z (t) = y (t) + v (t) (13)

where the matrices, 8(∈Rn×n), 0(∈Rn×m), and vector c(∈
R1×n) are known deterministic variables, and the identity
matrix, I(∈Rn×n), is usually chosen for the matrix, 8. The
state vector, x(∈ Rn×1) represents the weight vector. And,
ω(∈ Rm×1) is the process noise vector, z is the measured
output, and v is the stationary measurement noise. Then, the
estimate of the state vector is updated by using the following
steps:

• Measurement update: Acquire the measurements, z(t)
and compute a posteriori quantities.

k(t) = P−(t)c(t)T
[
c(t)P−(t)c(t)T + r

]−1

x̂(t) = x̂−(t) + k(t)
[
z(t) − c(t)x̂−(t)

]
P(t) = P−(t) − k(t)c(t)P−(t) (14)

where k(∈Rn×1) is the Kalman gain, P(∈Rn×n) is a
positive-definite symmetric matrix, and r is a positive
number selected to avoid a singular matrix. Typically,
P− (0) is given as P− (0) = λI(λ > 0), where I is an
identity matrix.

• Time update:

x̂−(t + 1t) = 8x̂(t)

P−(t + 1t) = 8P(t)T + 0Q0T (15)

where Q(∈Rm×m) is a positive-definite covariance
matrix, which is zero in this study because the sta-
tionary process and measurement noises are mutually
independent.

• Time increment: Increment t and repeat.
Thereafter, the estimated output, ŷ is calculated as

ŷ(t) = c(t) · x̂(t) (16)

The P-Q relationship is estimated by the voltages, and real
and reactive powers measured from the DG-connected bus.

The matrices, c(t) and z(t) are determined by

c (t) =
[
1,P (t) , · · · ,P (t)n ,Q (t)

]
(17)

z (t) = 1V (t) (18)

where 1V is the voltage deviation from the original voltage
without the DG connection. Next, the estimated state, x̂ (t) is
determined by the Kalman-filter algorithm described in (14)
and (15) as

x̂(t) = [α0, α1, · · · , αn, β]T (19)

Therefore, the estimated voltage deviation is

ŷ(t) = α0 +

n∑
i=1

αiP(t)i + βQ(t) (20)

To make the voltage deviation zero, the reactive power is
determined by

Q (t) = −
α0

β
−

1
β

n∑
i=1

αiP (t)i (21)

where α0
/
β reflects the effects of external factors. This is

because the reactive power must be zero when the real power
injection of the DG is zero. Therefore, the required reactive
power is determined by (22) when the external factors (i.e.
other DGs and loads, etc.) are neglected.

Q (t) = −
1
β

n∑
i=1

αiP (t)i (22)

As a result, the reactive power is determined instantly accord-
ing to the amount of the real power injection.

FIGURE 1. Block diagram to estimate nonlinear P-Q droop curve based
on Kalman-filter algorithm.

The entire estimation algorithm is shown in Fig. 1. First,
the initial P-Q droop is determined by the equation of (12).
Then, P, Q, and V data are measured from the DG-connected
bus by operating the DG based on the initial P-Q droop. Next,
the state of (19) is estimated by (14) and (15) using (17)
and (18). After that, the required reactive power is determined
by (22). Finally, P, Q, and V data are measured again by
operating the DG based on the updated nonlinear P-Q droop.
The process repeats.

IV. DIRECT BUS VOLTAGE CONTROL ISSUE
So far, the P-Q droop focused on the single bus voltage con-
trol. However, the initial P-Q droop of (11) looks also feasible
for the multiple bus voltage control. Based on that, it will be
discussed why voltage fluctuations caused by external factors
should not be compensated. In other words, the bus voltages
should not be directly controlled.

For the explanation, a real island power system in Korea is
used as shown in Fig. 2. Its operating conditions are given in
Table A.I in Appendix. The rated voltage and size of the origi-
nal system are 6.9kV and 1MVA, and it is powered by several
diesel generators which are connected to two 6.6/6.9kV trans-
formers. Considering the number of buses, 37 in the island
power system, the maximum dimension of matrix D in (11)
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FIGURE 2. Base case model with 37 buses composed of real island power system data in Korea.

FIGURE 3. Reactive power heatmap to offset voltage variation caused by
real power injection of 0.01MW from each 36 bus.

must be 36× 36 excluding slack bus. Also, the actual dimen-
sion of matrix D is related to the number of bus voltages to
be controlled as described in (9)-(11).

Assume that all 36 bus voltages are under control to be
maintained constant. Then, the dimension of matrix D must
be 36×36, and the reactive power requirement of each bus is
affected by not only its real power injection but also those of
all the other buses. It is shown in Fig. 3 that the heatmap of
reactive powers to offset the voltage variation caused by real
power injection of 0.01MW from each 36 bus.

The required reactive power varies from −0.0201MVAr to
0.0107MVAr depending on the buses. The net values of the
reactive power injections are determined by the sum of row
components of Fig. 3. That is, the required reactive powers
can be simply shown using a stacked bar graph as shown in
Fig. 4. The detailed description will be followed by focusing
on the required reactive power generation on bus 2. The
blue part on the top of the bar graph is the required reactive
power to suppress the voltage variation caused by the real

FIGURE 4. Stacked reactive power offset voltage variation caused by real
power injection of 0.01MW from each 36 bus.

power injection from bus 37. In the same manner, the red part
beneath the blue one is the required reactive power to suppress
the effect of real power injection from bus 36. In this base
case model, as a result, the DGs on buses 2 and 3 must supply
about thirty times larger reactive powers than their real power
injections. Also, the DGs on buses from 4 to 37 (except 17)
must absorb reactive power those are larger than their real
power injections. The DG on bus 17 must supply more than
nine times greater reactive power than its real power injection.
In this severe condition, all of the bus voltages are maintained
constant unless there is a load change. In other words, theDGs
are forced to be under severe situations if they directly control
the bus voltages.

From the result, the system condition can be guessed
briefly. The real power injection increases most of the bus
voltages, so reactive power absorption is required. That reac-
tive power absorption causes an excessive voltage drop on
buses 2, 3, and 17. Therefore, reactive powers are supplied
from those buses to complement the voltage drop. The sum
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of negative reactive power is −0.7127MVAr which differs
from the sum of the entire reactive power, −0.0354MVAr.
In other words, most of the supplied and absorbed reactive
powers eliminate each other to control all of the bus voltages
to be constant. Therefore, it might be effective to reduce the
number of controlled buses to solve the excessive reactive
power supply and absorption problem.

In general, it is not reasonable to supply or absorb huge
reactive power that is much greater than the real power of
DG as shown in Fig. 4. To reduce the supplied and absorbed
reactive powers, only two buses 9 and 23 are selected to be
controlled. The heatmap in Fig. 5 shows the required reactive
powers to complement the voltage variations. The left top
value means that bus 9 must absorb 0.0146MVAr of reactive
power due to its real power penetration of 0.01MW. In the
same manner, the right top value means that bus 9 must
supply 0.0055MVAr of reactive power due to the real power
penetration of 0.01MW from bus 23. Therefore, the required
net reactive powers of buses 9 and 23 are −0.0091MVAr and
−0.004MVAr, respectively.

FIGURE 5. Reactive power heatmap to offset voltage variations of buses
9 and 23 caused by the real power injection of 0.01MW from bus 9 and
23 each.

Although the required reactive powers are quite smaller
than those in Fig. 4, the voltages of buses 9 and 23 cannot
be maintained constant if there is at least one DG on the
other buses. In other words, the number of voltage-controlled
buses and the required reactive power are in a trade-off rela-
tionship. Therefore, considering minimal reactive power, and
data transfer between DGs, voltage fluctuations caused by
the other DGs or loads should not be compensated. In other
words, the bus voltages should not be directly controlled. As a
result, equation (12) gives the best results to minimize the
required reactive power.

V. CASE STUDIES WITH LINEAR P-Q DROOP
The initial P-Q droop ratio, Dii of the base case model in
Fig. 2 is calculated as shown in Table 2. Several case studies
are carried out based on those droop ratios to verify the

TABLE 2. P-Q droop ratio of each bus (VAr/W).

proposed method. To include the noises that are included
in the real power system, at most 0.25MW white Gaussian
noises are applied to the real power generation of DG.

A. P-Q DROOP-BASED SINGLE DG
To verify the effectiveness of the proposed method for a
single DG-connected system, a DG is connected to bus 23 in
the base case model of Fig. 2. The real and reactive powers
change from zeros to 1MW and -0.7808MVAr based on the
P-Q droop of bus 23, respectively. In the case of controlled
simulation, only real power changes from zeros to 0.5MW,
and the reactive power is maintained at zero. As shown
in Fig. 6, the increased voltage up to 1.065pu in the controlled
simulation is resolved by the reactive power absorption based
on the P-Q droop. In the case of large real power penetra-
tion, however, the voltage variation is changed to negative
(i.e., below the dashed line). That is, the adequate P-Q droop
is not linear but complex. This is why the nonlinear P-Q droop
curve requires to be estimated. Nevertheless, the initial P-Q
droop is meaningful in itself reducing the voltage variation.
This is becausemanymore samples and extreme case samples
are required if the initial P-Q droop is unknown [30].

FIGURE 6. Voltage variations on bus 23 according to the real power
injection using P-Q droop control (red solid line) and Q=0 (blue dotted
line).
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FIGURE 7. Voltage variations on bus 9 according to the total real power
injection using P-Q droop control (red solid line) and Q=0 (blue dotted
line).

FIGURE 8. Voltage variations on bus 23 according to the total real power
injection using P-Q droop control (red solid line) and Q=0 (blue dotted
line).

B. P-Q DROOP BASED TWO DGs
The P-Q droop ratios in Table 2 are calculated without the
consideration of multiple DG operations. Therefore, it is
reasonable to guess that the voltage regulation performance
might be worse in the multiple DG operation than the single
DG one. To simulate the multiple DG operation, the real
power of each DG changes from zero to 0.25MW. Also,
the reactive powers of the DGs change based on the P-Q
droops of buses 09 and 23, respectively. In the case of
controlled simulation, the reactive powers are maintained at
zero. As shown in Figs. 7 and 8, the increased voltages in
the controlled simulation are resolved by the reactive power
absorption based on the P-Q droop. As guessed, the voltage
drops get serious by two DGs operation. This is because
total reactive power absorption increases compared to the
single DG operation. Therefore, it becomesmore important to
estimate the nonlinear P-Q droop curve in the case of multiple
DGs operation.

FIGURE 9. Real and reactive powers based on the initial P-Q curve (cyan),
which are used for voltage measurement (red) and estimation (blue) in
bus 23.

FIGURE 10. Measured voltage variations (red) and its estimation (blue)
on bus 23.

VI. CASE STUDIES WITH NONLINEAR P-Q CURVE
A. SINGLE DG WITH NONLINEAR P-Q CURVE
To verify the performance of the proposed nonlinear P-Q
curve estimation, a DG is connected to bus 23 in the power
system of Fig. 2, representatively. The reactive power con-
sumptions are controlled by adding small random noises to
the initial P-Q ratio to minimize the unnecessary voltage
variations while acquiring sufficient data for the estimation
as shown in Fig. 9. Therefore, the amounts of the voltage
variations (red in Fig. 10) do not exceed those in the case
with zero reactive power (blue in Fig. 6) even if noises from
other devices affected the voltage variations together. The
y-axis of Fig. 10 shows the z-axis of Fig. 9 (i.e., direction
from paper to reader). Those results are important for the
DG operation in the practical power system. This is because
the large changes of the reactive powers increase the voltage
variations although they help to acquire good quality data.

The proposed estimation method successfully extracts the
voltage variation caused by real and reactive powers of the
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FIGURE 11. Measured (red) and estimated (blue) voltage variations
according to real and reactive powers in bus 23.

FIGURE 12. Reactive power correction concerning the initial P-Q droop by
the nonlinear P-Q droop estimation in bus 23.

DG from that caused by other causes as shown in Fig. 10.
The changes in the estimated 1V are related to the reactive
power changes as shown in Fig. 11. As the result of the esti-
mation, the nonlinear P-Q curve is accurately acquired even
if the samples are not acquired from wide operating range yet
includes many voltage noises. The estimated voltage by the
P-Q curve effectively rejects the voltage noises. It is shown
in Fig. 12 that the reactive power correction curve concerning
the initial P-Q droop in bus 23. Negative reactive power
correction is required to be consumed when the real power
injection is smaller than about 0.12MW. This is because the
voltage increases when the initial P-Q curve is used (red
in Fig. 6). By contrast, positive reactive power correction
is required to be consumed when the real power injection
is larger than about 0.12MW. This is because the voltage
decreases when the initial P-Q curve is used (red in Fig. 6).
The voltage variation is reduced by applying the modified
nonlinear P-Q droop curve as the green line shown in Fig. 13.
The blue line shows the worst voltage variation resulting
from without Q control. The red line shows the modified

FIGURE 13. Reduction of voltage variation by nonlinear P-Q droop
estimation in bus 23 (Dashed line means initial voltage with zero P and Q
penetration).

voltage variation resulting from fixed P-Q droop control. The
green line shows the best voltage profile resulting from the
nonlinear P-Q droop control. Although the red line shows a
similar performance to the green one, it has a positively bigger
variation with at most 0.12MW of P and a negatively bigger
variation with at least 0.12MW of P than the green one. This
is thanks to the reactive power correction of Fig. 12 which
composes the nonlinear P-Q droop control.

B. TWO DGs WITH NONLINEAR P-Q CURVE
To verify the performance of the proposed nonlinear P-Q
curve estimation in the multiple DGs connected system, two
DGs are connected to buses 9 and 23, respectively. In the
same manner as the single DG-connected case, the reac-
tive power consumptions are controlled by adding random
changes to the initial P-Q ratios in buses 9 and 23, respec-
tively. By contrast to the single DG-connected case, however,
data for each DG should be acquired continuously during the
system operation. This is because a DG cannot control the
other DG’s condition in a practical power system especially
if the owner is different. The performance of the proposed
method is representatively shown in Fig. 14. The red dots are
measured data from bus 23. At first glance, it looks unclear
what the measured data mean because many factors such
as the multiple DGs and loads affect the voltage variations.
Nevertheless, the proposed estimation method successfully
extracts the meaningful relationship between voltage and
powers as the blue dots. Those are the same at the DG
on bus 9. As a result, it is mitigated the excessive volt-
age drops caused by two DGs operations with initial P-Q
droop ratios (as shown in Figs. 15 and 16). The blue lines
show the worst voltage variation resulting from without Q
control. The red line shows the modified voltage variation
resulting from fixed P-Q droop control. The green line shows
the best voltage profile resulting from the nonlinear P-Q
droop control.
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FIGURE 14. Measured (red) and estimated (blue) voltage variations
according to real and reactive powers in bus 23 when two DGs are
connected to buses 9 and 23, respectively.

FIGURE 15. Reduction of voltage variation in bus 9 by nonlinear P-Q
droop estimation based on data acquired during the power system
operation (Dashed line means initial voltage with zero P and Q
penetration).

FIGURE 16. Reduction of voltage variation in bus 23 by nonlinear P-Q
droop estimation based on data acquired during the power system
operation (Dashed line means initial voltage with zero P and Q
penetration).

C. ENTIRE BUS VOLTAGES
Although the main purpose of this paper is not to regulate the
entire bus voltages but to mitigate the impact of real power

penetration by optimally absorbing reactive power, it can also
improve the entire bus voltage profile as an auxiliary effect
as shown in Fig. 17. The maximum voltage maintains under
1.05pu so abiding by the grid code. In contrast, however, a few
buses have voltages exceeding 1.05 pu when Q is zero as
shown in Fig. 18.

FIGURE 17. Sorted bus voltages in order of magnitude when proposed Q
control is applied (The voltages above and below 1.049pu are shown in
the 3D graph and the contour map, respectively).

FIGURE 18. Sorted bus voltages in order of magnitude when Q of zero is
applied (The voltages above and below 1.04pu are shown in the 3D graph
and the contour map, respectively).

VII. CONCLUSION
This paper proposed the online nonlinear P-Q droop esti-
mation of distributed generations based on the Kalman-filter
algorithm to minimize the voltage variations that were caused
by the real power penetrations of distributed generations
(DGs). The P-Q droop is determined non-linearly based
on the power system, not the individual device. Thus, this
method is valid for any device that properly controls reactive
power, regardless of type or sort.

To verify the performance of the proposed method, the
estimated nonlinear P-Q droop curves were applied to the
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TABLE 3. Island bus data in korea.

DG models in the practical power system model and simu-
lated by the electromagnetic transient program (EMTP). For
the multiple DGs system application, the voltage and power
data were acquired continuously during the DG operation
and the nonlinear P-Q droop curves were estimated online.
To minimize the voltage variation caused by reactive power
manipulation for data acquisition, the initial P-Q droop curve
was calculated based on the Jacobians in the steady state.
Therefore, the proposed method could estimate the nonlin-
ear P-Q droop curves successfully without excessive voltage
variations during the data acquisition process. As a result,

the voltage variation along with the real power penetration
was remarkably reduced.

The proposed method makes the DG minimize its pen-
etration impact by itself. The individual DG has a respon-
sibility to its own impact, but not the other DG’s. There-
fore, it will contribute to minimizing the conflict caused
between the independent power producers (IPPs). It means
minimizing the IPPs’ responsibility for market activity,
yet also contributing to minimizing the system operators’
burden.

It would be expected that the proposed online nonlinear
P-Q droop estimation method is preferably utilized in power
systems including renewable energy-based DGs, energy stor-
age systems (ESSs), converter-based loads, etc.

APPENDIX
See Table 3.
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