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ABSTRACT In the realm of network science, determining crucial nodes within a social network is an
ongoing concern. As a result, it garners a lot of attention, and various centralitymeasures for the identification
of crucial nodes have been proposed thus far. Degree and k-shell decomposition are the classic centrality
measures that rely on neighboring nodes. However, degree, k-shell, and combination of degree and k-shell
measures assign the identical value to the vast count of nodes, which creates a problem in distinguishing
these nodes. Therefore, in this paper, for the purpose of solving the above problem, we propose an index
based on three different components: degree, improved k-shell measure, and eigenvector centrality called
the degree k-shell eigenvector (DKE) index. In addition, we propose an enhanced gravity model called
the DKE-based gravity model (DKEGM) on the basis of universal gravity law and the proposed index for
determining crucial nodes in social networks. The proposed gravity model incorporates different aspects of
nodes, which include count of neighbors, location of nodes, influence of neighbors, and path information
between the nodes. Numerous experiments are executed on eight real networks using the SIRmodel, Kendall
tau, ranking monotonicity, and distinct metric to examine the effectiveness of the DKEGM with respect to
the other measures. The empirical outcomes show the effectiveness of the DKEGM in terms of accuracy,
distinguishing ability, and efficiency.

INDEX TERMS Centrality measures, crucial nodes, degree k-shell eigenvector index, gravity model, social
networks.

I. INTRODUCTION
Social networks are representations of real social systems in
which individuals are denoted as nodes and the links between
individuals are denoted as edges. Millions of individuals
have cell phones, and they use different social media apps
like WhatsApp or Facebook to communicate and exchange
information with family or friends; LinkedIn to look for
jobs; Twitter to report news; and Instagram to make and
share video reels. As a result, it serves as a platform for
advertising products, sharing news, and so on. To execute
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the above-mentioned works, finding the crucial nodes is an
essential task because, in social networks, a node with higher
spreading capability is considered crucial, which means it is
able to disseminate information to a large number of users [1].
Most studies only pay attention to a lower count of crucial
nodes than the entire network because of the vast amount
of data [2]. Crucial nodes have a stronger influence on the
network’s structure as compared to the rest of the nodes [3].
So, finding the most crucial nodes helps in effectively analyz-
ing the whole network. Crucial nodes can be mined for both
theoretical and practical purposes. For instance, to prevent the
transmission of viruses and rumors [4], [5], speed the distri-
bution of effective information throughout the network [6],
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etc. In a network, centrality denotes the node that is most
crucial [7]. So, figuring out centrality in a social network is
very essential.

Numerous centrality measures have been put forth because
of the huge increase in the social networks, including
degree [8], eigenvector [8], closeness [9], betweenness [10],
k-shell decomposition [11], gravity index [12], etc. These
centrality measures are categorized as local and global [13].
Local information about the node is used to generate local
measures of centrality. For example, degree measure of cen-
trality, described as the count of closest neighbors, is fast
to compute but has low accuracy. On the other hand, cen-
trality measures that necessitate the entire structure of a
network are termed global centrality measures because they
cannot be computed without the use of global information.
For example, centralities such as closeness, betweenness,
eigenvector, etc. Closeness centrality is more accurate than
degree centrality since it takes into account direct as well
as indirect links between nodes, but it is not appropriate
for networks involving disconnected subgraphs. Betweenness
and closeness centralities are not appropriate for networks of
enormous size because of their high time complexity. Both
the count and influence of a node’s neighbors compute a
node’s influence as per the eigenvector measure of centrality,
but it performs well only if the network is connected. Later,
another global measure of centrality called the k-shell method
was introduced to evaluate a node’s influence according to
its location. Using an iterative process, this method divides
each and every node into k-shells. The highest value of the
k-shell represents the most crucial node and is situated near
the network’s core. Core nodes are more crucial as compared
to non-core nodes. It is unable to differentiate between crucial
nodes within the common core level.

Although the above-mentioned centrality measures have
some advantages, due to their limitations, it is hard to
determine the crucial nodes in social networks correctly
and effectively. As a result, numerous centralities have
been introduced in recent years, but the centrality measures
depend on the universal gravity formula have shown effec-
tive results [14]. The gravity index centrality [12], local
gravity model [15], and DK-based gravity model [14] are
typical examples. According to the gravity index centrality,
a node’s k-shell value represents its mass, while the shortest
path between two nodes represents their distance. The local
gravity model uses a node’s degree value to represent its
mass and uses the shortest path between two nodes to rep-
resent their distance. The DK-based gravity model depends
on the degree k-shell (DK) index. This index combines both
degree and improved k-shell measures. TheDK-based gravity
model uses a node’s DK index value to represent its mass
and uses the shortest path between two nodes to represent
their distance. But all these gravity models have a problem
in distinguishing the nodes because degree, k-shell, and the
DK index assign identical values to the vast count of nodes.
Also, degree and k-shell measures only find the count of

nearest neighbors and the location of nodes, respectively, but
both do not consider the influence of neighbors. Different
neighbors may have a different impact on determining an
individual’s spreading capability, as noted in [16]. This is
due to the heterogeneous structure of social networks, which
restricts every node from having the same importance inside
the network [17]. In brief, creating an effective measure of
centrality that encompasses key aspects of nodes for deter-
mining the crucial nodes within a network remains an open
problem.

In this study, for the purpose of solving the above prob-
lem, we propose the degree k-shell eigenvector (DKE) index
to create an effective gravity model. This index consists
of three different components of a node: the count of its
neighbors (degree), its location (improved k-shell measure),
and the influence of its neighbors (eigenvector centrality).
We consider these three components together because a node
is crucial, not just because it has many neighbors but also
because those neighbors are crucial [18]. In addition, a node
is said to be in the network’s core position if all of its
neighbors are also in the core position [3]. This indicates
that the importance of a node is based on its own position
and also on the position of its neighbors. Therefore, the
above-mentioned three different components of the proposed
index consider distinct aspects of a node’s importance, which
results in the high distinguishing ability of the proposed
index. Furthermore, we propose an enhanced gravity model
called the DKE-based gravity model (DKEGM) on the basis
of the universal gravity law and the proposed index for
determining crucial nodes in social networks. This model
incorporates different aspects of nodes, which include count
of neighbors, location of nodes, influence of neighbors, and
path information between the nodes. The SIR model, Kendall
tau, ranking monotonicity, and distinct metric are utilized
as evaluation criteria on eight real networks to determine
the efficacy of the DKEGM. Empirical outcomes show that
the DKEGM is superior to other centralities that include
closeness, degree, eigenvector, betweenness, k-shell, global
and local information, gravity index, local gravity model, and
the DK-based gravity model.

Themain advantages of the proposedmodel (DKEGM) are
as follows:
• Accuracy: The DKEGM comprehensively incorporates
distinct aspects of a node’s importance, which helps
to determine the crucial nodes more accurately and
effectively.

• Distinguishing Ability: Compared with other central-
ities, the DKEGM has a high ability to distinguish the
nodes’ influence.

• Scalability: The DKEGM has low time complexity as
it utilizes two-order neighbors of nodes to determine
crucial nodes. Therefore, it is suitable for complex and
large social networks.

• Robustness: The DKEGM makes our research more
robust. If a single measure has some limitations, then a
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more balanced assessment of nodes can be obtained by
integrating different measures.

The remaining portion of this study is structured as: We
summarize the previous research in Section II. We introduce
some past and recent proposed measures of centrality in
Section III. Furthermore, we present our proposed model in
Section IV. In Section V, we focus on the experimentation
and analysis of the results. In Section VI, we come to a
conclusion and provide some suggestions for the future.

II. RELATED WORK
In the past few years, it has become challenging to determine
the crucial nodes. For identifying crucial nodes, numerous
centralities have been developed, and each measure has pros
and cons. In order to examine communication networks,
Bavelas was the first to develop the centrality measure
for connected graphs and propose its use [19]. Degree,
betweenness, and closeness are three mathematical models
of centrality developed by Freeman [10]. The simplest mea-
sure with low time complexity and low accuracy is known
as degree centrality. It shows how many nodes are directly
connected to a specific node. Closeness and betweenness
centralities are not efficient for networks of enormous size
due to their high time complexity. Reference [8] proposed an
eigenvector measure in which a node is considered crucial if it
has crucial neighbors. Kitsak et al. [11] suggested the method
termed k-shell for the identification of crucial nodes. A node’s
influence is computed using this method according to its
location. Bae and Kim [20] suggested a coreness measure
through which the nodes’ influence is computed using their
neighbors’ k-shell values.

To discover the most crucial nodes within a network, [12]
presented a gravity index centrality and an extended gravity
index centrality based on the principle of gravity law. These
gravitational centralitymeasures have high accuracy, but their
computational complexity is also high for networks of large
size. Berahmand et al. created a semi-local measure of cen-
trality that is appropriate for networks of large size due to
its near-linear time complexity [21]. Also, Berahmand et al.
found that degree centrality is preferable over other measures
for determining crucial nodes in networks that have a high
rich-club due to the utilization of local information and its lin-
ear time complexity [22]. Fei et al. proposed a measure called
inverse-square law centrality to determine the intensity of a
node, which is dependent on the total of a node’s attraction to
all the other nodes inside the network [23].
Yu et al. [24] developed a measure termed ProfitLeader,

which computes the nodes’ influence based on their profit
capacity. When a node generates more profit for others,
it becomes more crucial. Reference [15] proposed a local
gravity model that also depends on the universal gravity law.
It lowers the time complexity by providing the truncation
radius. Dai et al. proposed a centrality called local neighbor
contribution, which is simple to compute and appropriate
for large networks [25]. For discovering the crucial nodes,

a method called local and global influence [26] was created.
It makes use of each node’s location both locally and globally
to evaluate its influence. The global structure model [27],
which incorporates the influence of the nodes both locally and
globally within a network, was developed in order to identify
crucial nodes.

Reference [28] proposed an improved gravity measure of
centrality that discovers the crucial nodes according to the
k-shell method. Reference [29] developed a local and global
measure of centrality that accounts for both local and global
structural attributes of a network and is used to discover
crucial nodes in complex networks. Reference [14] developed
an improved version of the gravity model that depends on
the degree k-shell (DK) index. It was suggested to leverage
the information both locally and globally using the escape
velocity measure of centrality and an extended escape veloc-
ity measure of centrality [3], which are based on the principle
of escape velocity. Hu et al. created ameasure for determining
crucial nodes called global and local information [30]. For
determining vital nodes, a measure termed hybrid character-
istic centrality and its extended version were presented [31].
Different research works on centrality measures over the
years are summarized in Table 1, and a list of symbols utilized
in this study is shown in Table 2.

III. PRELIMINARIES
In this section, we present some previous and recent proposed
measures of centrality. An unweighted and undirected social
networkG = (V ,E), where V and E indicate the set of nodes
and edges, respectively. A social networkG containsN = |V |
nodes and M = |E| edges, and A =

(
apq

)
N×N indicates the

adjacency matrix of G, where apq indicates the element of
matrix A. The value of apq is 1 if p and q are linked, otherwise
0. Different measures of centrality are described as below:

Degree centrality (DC) is the classic measure to compute
a node’s influence by counting only its nearest neighbors [8].
The DC [10] is expressed for node p as:

DC (p) =

∑N
q=1 apq
N − 1

(1)

where N indicates the count of the nodes.
Betweenness centrality (BC) tracks ‘‘how many times a

node along the shortest path acts as a bridge between two
other nodes’’. According to this centrality, a node is consid-
ered crucial if there are a large count of shortest paths that go
through it [10]. It is expressed for node p as:

BC (p) =
2

(N − 1) (N − 2)

∑
u̸=p,u̸=v,p̸=v

guv (p)
guv

(2)

where guv (p) stands for the overall count of shortest paths that
go via node p in order to join nodes u and v, and guv stands
for the overall count of shortest paths that join nodes u and v.

Closeness centrality (CC) is ‘‘the inverse of a node’s
farness’’, and the summation of a node’s distances from every
other node determines the farness of a node [9]. Therefore,
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TABLE 1. Related work for identifying crucial nodes using distinct centralities.
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TABLE 1. (Continued.) Related work for identifying crucial nodes using distinct centralities.
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TABLE 1. (Continued.) Related work for identifying crucial nodes using distinct centralities.

the smaller a node’s total distance from other nodes, the more
crucial it will be. The CC [10] is expressed for node p as:

CC (p) =
N − 1∑
q̸=p d(p, q)

(3)

where d(p, q) stands for the shortest path distance that con-
nects nodes p and q.
Eigenvector centrality (EC) indicates that both the count

and importance of a node’s neighbors determine its influ-
ence [8]. It is expressed for node p as:

Ay = λy,EC (p) = yp =
1
λ

∑N

q=1
apqyq (4)

where yp denotes the value of the pth item of the eigenvector
y with respect to the greatest eigenvalue λ of the matrix A.

k-shell decomposition (KS) is utilized to compute the
influence of a node as per its location [11]. The value of
k-shell is allotted to each node during the decomposition
process. The most crucial node is the one that has the highest
value of the k-shell and that provides the greatest potential
to spread information. Despite having the advantage of low
time complexity, the ranking outcome of this measure is
coarse-grained since it cannot distinguish between crucial
nodes within the common core level.

Gravity index centrality (GIC) depends on the univer-
sal gravity formula, which identifies the crucial nodes by
using information regarding the path and neighborhood of the
nodes [12]. It is expressed for node p as:

GIC (p) =
∑

qϵψ(p)

KS (p)KS (q)
d2 (p, q)

(5)

where KS (p) and KS (q), respectively, stand for the values of
the k-shell for nodes p and q, and ψ(p) is a set of neighboring
nodes of node p.
Local gravity model (LGM) also works on the principle

of gravity law to evaluate a node’s influence by adding up
all of a node’s interactions with other nodes in the network.
It presents the truncation radius to lower the time complexity
of large networks [15]. It is expressed for node p as:

LGM (p) =
∑

d(p,q)≤R,q̸=p

D (p)D (q)
d2 (p, q)

(6)

where D (p) and D (q), respectively, stand for the degree
values of nodes p and q, R stands for the truncation radius,
and the degree is expressed for node p as:

D (p) =
∑N

q=1
apq (7)

R can be estimated as:

R ≈
1
2
< d > (8)

where < d > denotes the average shortest distance.
DK-based gravitymodel (DKGM) depends on the degree

k-shell (DK) index [14]. This index combines both degree and
improved k-shell measures. The DKGMuses both path-based
and neighborhood-based information to determine a node’s
influence. To enhance the distinguishing ability of the nodes,
it presents the stage number when a node is eliminated from
the network while performing the k-shell decomposition. It is
expressed for node p as:

DKGM (p) =
∑

d(p,q)≤R,q̸=p

DK (p)DK (q)
d2 (p, q)

(9)

where DK (p) and DK (q), respectively, stand for the DK
index values of nodes p and q, and the DK index is expressed
for node p as:

DK (p) = D (p)+ KS∗ (p) (10)

where D (p) indicates the value of degree for node p, KS∗ (p)
indicates the value of improved k-shell for node p, and
KS∗ (p) can be expressed as:

KS∗ (p) = KS (p)+
R (p)

maxS (k)+ 1
(11)

where KS (p) indicates the value of k-shell for node p, and
during the k-shell decomposition process, the overall count
of stages is S (k) for the k-degree iteration, and node p is
eliminated in the R (p) stage.
Global and local information (GLI) is a technique for

determining crucial nodes and considers the influence both
globally and locally [30]. It can be expressed for node p as:

GLI (p) = GI (p)+ LI (p) (12)

where GI (p) and LI (p) stand for the global influence and
local influence of node p, respectively.
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TABLE 2. Table of symbols.
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TABLE 2. (Continued.) Table of symbols.

The global influence is expressed for node p as:

GI (p) = KS (p) (13)

The local influence is expressed for node p as:

LI (p) = I (p)+ A (p) (14)

where I (p) indicates the personal influence of node p and
A (p) indicates the influence of its closest nodes on it.

The I (p) is expressed as:

I (p) = D (p) (15)

The A (p) is expressed as:

A (p) =
SUM (p)
maxD

(16)

where SUM (p) stands for the total aggregate of the influence
of the closest nodes of node p, and maxD denotes the maxi-
mal node degree.

The SUM (p) is expressed as:

SUM (p) =
∑

qϵ0(p)
5(q) (17)

where 5(q) indicates the influence of closest node q, 0(p)
indicates the set of closest nodes of node p, and 5(q) can be
expressed as:

5(q) = D (q)× Jacc (p, q)+ KS(q) (18)

where Jacc (p, q) indicates the Jaccard similarity coefficient
of node p and node q and is represented as:

Jacc (p, q) =
|n (p) ∩ n (q) |
|n (p) ∪ n(q)|

(19)

where n (p) and n (q) indicate the set of nodes that contain
links with node p and node q, respectively.

FIGURE 1. A toy network with 10 nodes and 12 edges.

IV. THE PROPOSED MODEL
We propose the degree k-shell eigenvector (DKE) index,
which consists of three different components: degree,
improved k-shell measure, and eigenvector centrality. Also,
we propose an enhanced gravity model called the DKE-based
gravity model (DKEGM) for discovering crucial nodes.

For the better clarity of the concept of the DKEGM,
we use a simple toy network that contains 10 nodes and
12 edges, as displayed in Fig. 1. The values of degree, k-shell,
improved k-shell, and eigenvector measures for each node
within a toy network are indicated in Table 3. According to
the Table 3, we can observe that D(2) = D(6) = D(10) = 1,
D(1) = D(5) = D(8) = D(9) = 2, D(4) = D(7) = 5,
KS(2) = KS(6) = KS(9) = KS(10) = 1, KS(1) = KS(3) =
KS(4) = KS(5) = KS(7) = KS(8) = 2. So, the degree and
k-shell measures both assign the identical value to the vast
count of nodes, which creates a problem in distinguishing
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TABLE 3. The values of degree, k-shell, improved k-shell, and eigenvector measures for each node within a toy network.

TABLE 4. The values of DK and DKE indexes for each node within a toy network.

TABLE 5. The outcome of DKEGM (R = 2) for a toy network.

these nodes. If we consider the combination of both degree
and k-shell measures, i.e., (D + KS), the above-mentioned
problem is still not solved. From Table 3, take the example
that nodes 2, 6, and 10 have the same value of (D + KS),
that is, 2. Also, nodes 1, 5, and 8 have the same value, that
is, 4, and after that, nodes 4 and 7 have the same value, that
is, 7. Also, if we consider the combination of both degree
and improved k-shell measures, i.e., the DK index, we still
have a problem in distinguishing these nodes. From Table 4,
we can observe that DK (2) = DK (6) = DK (10) = 2.3333,
DK (1) = DK (5) = DK (8) = 4.3333, DK (4) = DK (7) =
7.6667.

Therefore, to overcome the poor distinguishing ability of
the degree, k-shell, combination of degree and k-shell mea-
sures (D + KS), and the DK index, we propose the degree
k-shell eigenvector (DKE) index. The DKE index for node p
is expressed as:

DKE(p) = D(p)+ KS∗(p)+ EC(p) (20)

The value of the DKE index for every node within a toy
network is displayed in Table 4, and we can see that each
and every node within a toy network has a distinct value
of the DKE index. Therefore, the DKE index has a high
distinguishing ability.

According to the gravity law, we consider a node’s DKE
index value to represent its mass and the shortest path
between two nodes to represent their distance. Thus, the

influence of node p is expressed as:

DKEGM (p) =
∑

d(p,q)≤R,q̸=p

DKE(p)DKE(q)
d2(p, q)

(21)

where DKE(p) and DKE(q), respectively, stand for the DKE
index values of nodes p and q. Such an enhanced gravity
model is called the DKE-based gravity model (DKEGM).
The enhanced gravity model depends on two facts: first,
a node’s influence increases if its neighbors have high values
of the DKE index; second, the influence of a node on its
neighbors decreases with the increase in shortest distances
among them. The outcome of DKEGM (R = 2) for a toy
network is given in Table 5. Consider an example of node 8,
the neighbors of 1-order of node 8 are nodes 5 and 7, the
neighbors of 2-order of node 8 are nodes 1, 2, 3, and 4.
Therefore, DKEGM (8) = DKE (8) ∗DKE (5)+DKE (8) ∗
DKE (7)+DKE (8) ∗ DKE (1)

/
4+DKE (8) ∗ DKE (2)

/
4+

DKE (8) ∗ DKE (3)
/
4 + DKE (8) ∗ DKE (4)

/
4≈ 82.58.

Algorithm 1 provides an explanation of the DKEGM
algorithm.

V. EXPERIMENTATION AND RESULTS’ ANALYSIS
In this section, we show the outcomes of three different
experiments executed by utilizing eight real networks of var-
ious sizes to evaluate the effectiveness of the DKEGM with
respect to the other measures. Before displaying the empirical
outcomes, we first introduce the experimental setup, real
networks, and evaluation metrics used in the experiments.
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TABLE 6. The structural attributes of eight real networks. These attributes include count of edges M, count of nodes N , average degree < K >, maximum
degree Kmax , infection threshold βth, average clustering coefficient < CC >, average shortest distance < d >, and density σ .

Algorithm 1 DKEGM
Input: Graph: G = (V ,E), Truncation radius: R, Count of
nodes: N
1: Begin
2: for p← 1toN do
3: Compute D(p) using (7)
4: Compute KS∗(p) using (11)
5: Compute EC(p) using (4)
6: Compute DKE(p) using (20)
7: end for
8: for p← 1toN do
9: Find all neighbors of node p within the truncation
radius R
10: Compute DKEGM (p) using (21)
11: end for
12: Rank the influence of all nodes
13: return DKEGM (p)
14: End
Output: Sorted DKEGM (p)

A. EXPERIMENTAL SETUP
To evaluate the effectiveness of the DKEGM, we have
executed the DKEGM and other nine measures in Python
3.7 using the NetworkX library and performed three different
experiments on a system with the following configuration:
CPU: AMD Ryzen 5 5600U, 6 cores, and 12 threads; Operat-
ing System: Windows 11; Memory: 16 GB; SSD: 512 GB.
We have considered three parameters in the experimental
setup, as follows:

1) ACCURACY
This reflects how the two ranking sequences, the real influ-
ence ranking sequence and the measure ranking sequence, are
correlated [26].

2) DISTINGUISHING ABILITY
This indicates the ability of the centrality measure to distin-
guish the nodes’ influence [26].

3) EFFICIENCY
This indicates the runtime of the centrality measure to com-
pute the nodes’ influence [26].

B. DATA DESCRIPTION
To examine the effectiveness of the DKEGM, we use eight
real networks with different structural attributes. These net-
works come from several fields. The structural attributes
of the eight networks are mentioned in Table 6. We now
present these networks in brief, which are referred to
at ‘‘https://networkrepository.com/networks.php’’ (Dolphins,
Jazz, USAir, Netscience, Wiki, Router, Web-spam) and
‘‘https://snap.stanford.edu/data/feather-lastfm-social.html’’
(LastFM).

1) DOLPHINS [37]
This is a bottlenose dolphin social network. Every edge
denotes a link between two dolphins, and every node denotes
a bottlenose dolphin.

2) JAZZ [38]
Every node in this network of jazz musicians symbolizes a
different musician, and every edge shows that two musicians
are cooperating.

3) USAIR [39]
A network of air routes, where each airport serves as a node
and each flight linking two airports as an edge.

4) NETSCIENCE [40]
This network consists of co-authorship links between
researchers or scientists.

5) WIKI [41]
It is a network of Wikipedia voting information, where
Wikipedia users are the nodes, and each edge linking nodes
x and y indicates that user x cast a vote for user y.
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6) ROUTER [41]
This is a technological network in which routers represent
nodes, and each edge indicates a link connecting two routers.

7) WEB-SPAM [42]
This network is the Purdue University network reposi-
tory, where nodes indicate web-pages and edges indicate
hyperlinks.

8) LASTFM [43]
This is a social network with LastFM members. The nodes in
the network represent members from Asia, while the edges
show their mutual follower connections.

C. EVALUATION METRICS
SIR model [44], [45] is utilized to execute the process of
spreading and compute the spreading influence of ranked
nodes. Every node in this model is in one of the following
three distinct states: (i) Susceptible state includes healthy
individuals who are susceptible to infection from others.
(ii) Infected state includes those individuals who have the
illness and may be able to disseminate it to others. (iii)
Recovered state includes infected individuals who have been
recovered and are unable to spread the infection to others
or be re-infected by others. Initially, only node x is in the
infected state, while the remaining nodes are in the suscep-
tible state. The nodes in the infected state attempt to spread
the disease with infection probability β to their neighbors in
the susceptible state at each time step. If the nodes in the
susceptible state are infected, they enter the infected state.
Then, the nodes of the infected state shift to the recovered
state with a recovery probability µ. The recovery probability
µ is specified to be 1.0 without losing generality, meaning
that each infected individual can only infect his neighbors
once before recovering at the following time step [46]. Until
there are no infected nodes left within a network, this process
continues. The process of spreading will be terminated once
all of the infected nodes are extinct, and then the system
will reach its stationary condition. All the recovered nodes
at the completion of this process estimate the influence of
the node x that was initially infected. In order to verify the
nodes’ spreading influence using the SIRmodel, the infection
probability β must not be excessively small or large [12]. If β
is extremely small, the infection cannot propagate throughout
the network, and hence, the spreading influence of individual
nodes cannot be determined. Conversely, if β is excessively
large, the infection can quickly spread throughout nearly the
whole network, which makes it impossible to identify the
spreading influences of individual nodes. Therefore, for each
network, we first determine the infection threshold βth, which
is expressed as:

βth =
< K >

< K 2 > − < K >
(22)

where < K > denotes the average degree and < K 2 >

denotes the second-order average degree [47].

Kendall tau τ [48], [49] is utilized to find out the corre-
lation between the ranking sequence attained using distinct
centralities and the ranking sequence attained utilizing the
SIR model. Consider two ranking sequences S and T that
are correlated and have equal nodes N , S = (s1, s2, . . . , sN )
and T = (t1, t2, . . . , tN ). Let (sa, ta) and (sb, tb) be any two
pairs: Both pairs are considered concordant if (sa > sb) and
(ta > tb) or (sa < sb) and (ta < tb). Both pairs are considered
discordant if (sa > sb) and (ta < tb) or (sa < sb) and
(ta > tb). If sa = sb or ta = tb, the pair is not considered as
concordant or discordant. Kendall tau τ between S and T is
expressed as:

τ (S,T ) =
nc − nd

0.5N (N − 1)
(23)

where nd implies the overall count of discordant pairs, and nc
implies the overall count of concordant pairs. A higher value
of τ shows a more accurate ranking sequence produced by a
measure of centrality [50].

Ranking monotonicityM r [20] is used to determine how
distinctively different each element in a ranking list is, and it
is expressed as:

Mr (L) =
[
1−

∑
rϵL Nr (Nr − 1)
N (N − 1)

]2
(24)

where L stands for the ranking sequence, Nr stands for the
overall count of nodes having identical rank r . The range of
Mr lies between 0 and 1. The measure has superior distin-
guishing ability when theMr value is higher.
Distinct metric DM [51] is also utilized to measure

the distinguishing ability of the centrality measures. It is
expressed as:

DM (L) =
number of nodes with distinct ranks

N
(25)

where L indicates the ranking sequence. The range of DM
values lie between 0 and 1. The measure has better distin-
guishing ability if the value of DM is high.

D. PERFORMANCE EVALUATION
We have used four evaluation metrics, as mentioned above,
to determine the performance of the DKEGM in finding the
crucial nodes. First, we take a simple toy network that has
10 nodes and 12 edges, as shown in Fig. 1. We compare the
DKEGM with other centralities, including DC, BC, CC, EC,
KS, GLI, GIC, LGM, and DKGM, in terms of Kendall tau τ
for the toy network, as displayed in Fig. 2. Fig. 2 shows that
DKEGM performs best as compared to other centrality mea-
sures in terms of Kendall tau τ . The overall experimentation
is categorized into the following three experiments on eight
real networks, which are explained below:

1) COMPARE THE ACCURACY OF DIFFERENT MEASURES OF
CENTRALITY
In this experimentation, we investigate the accuracy of dis-
tinct centralities. For this purpose, we utilize the Kendall tau
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FIGURE 2. Kendall tau τ results of the toy network.

TABLE 7. The accuracy of the DKEGM and other centrality measures calculated by Kendall tau τ with β = βth on eight real networks.

τ to contrast the accuracy of theDKEGMwith othermeasures
of centrality. The DKEGM’s truncation radius R is adjusted
to its optimal value R∗ according to the highest value of
the Kendall tau [15]. Table 7 represents the τ values of the
DKEGM and the other centrality measures with β = βth on
eight real networks. The outcomes stated in Table 7 indicate
the superiority of the gravity models (GIC, LGM, DKGM,
and DKEGM) over the neighborhood-based (DC, KS, and
GLI) as well as path-based (BC and CC) measures in all
networks. As we can see from Table 6, the density of each
network shows the sparse nature of the networks. The density
of the network is the ratio of the count of actual connections
to the total count of possible connections inside the network,
which ranges from 0 to 1. A sparse network has a value closer
to 0, and a dense network has a value closer to 1 [52].

Neighborhood-based (DC, KS, and GLI) as well as path-
based (BC and CC) centralities do not perform well in sparse
networks because neighborhood-based centralities encounter
difficulties because of the few direct connections between
nodes, while path-based centralities suffer from inefficiency
when multiple nodes are needed to establish the connections
between nodes in such networks, where direct connec-
tions may not exit. Gravity models (GIC, LGM, DKGM,
and DKEGM) contain both neighborhood as well as path
information, which enables better performance in sparse net-
works [14]. Also, EC performs well in some of the sparse
networks because it incorporates the number of connections
of a node as well as the importance of its connections.
Furthermore, out of all gravity models, DKEGM provides
the best performance in all networks because this model
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FIGURE 3. The relationship between optimal truncation radius R∗ of DKEGM and average shortest
distance < d > for β = βth. Eight triangles represent eight networks and the green line represents R = 2.
The black triangle is the Netscience network.

TABLE 8. The accuracy of DKEGM (R = 2) and other centrality measures calculated by Kendall tau τ with β = βth on eight real networks.

incorporates different aspects of nodes, which include count
of neighbors, location of nodes, influence of neighbors, and
path information between the nodes. Moreover, the BC mea-
sure exhibits poor performance, with the lowest values of
correlation in most of the networks. The top measure that
outperforms other measures is highlighted in bold, as given
in Table 7.

Fig. 3 indicates the optimal values of the truncation radius
R∗ of theDKEGM for eight networks.We can observe that the
optimal values of the truncation radius of the DKEGM for all
networks, except the Netscience network, lie at R = 2. Also,
most of the real networks exhibit small-world property [53],
[54], and R∗ needs to be small and can normally be fixed to
2 or 3. So, in order to save searching time for finding the

optimal values of the truncation radius of the DKEGM for all
networks, we can fix R = 2 to evaluate the effectiveness of
the DKEGM. Table 8 compares the accuracy of the DKEGM
for R = 2 with the other measures. As indicated in Table 8,
the DKEGM for R = 2 shows excellent performance in
all networks, excluding the Netscience network, where the
DKGM attains the top position. In the Netscience network,
the DKEGM does not attain the top position because its
accuracy at R = 2(τ = 0.8356) is a little less as compared
to its topmost accuracy at R∗ = 3(τ = 0.8461). The top
measure that outperforms other measures is highlighted in
bold, as given in Table 8.

To further estimate how the variation in the value of β
affects Kendall tau τ for different measures of centrality on
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FIGURE 4. The accuracy of DKEGM and other benchmark centrality measures measured by Kendall tau τ for various infection probability β on eight real
networks. (a) Dolphins. (b) Jazz. (c) USAir. (d) Netscience. (e) Wiki. (f) Router. (g) Web-spam. (h) LastFM. Dotted vertical line shows the infection threshold
βth and the results were computed using the average result of 1000 independent runs.
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TABLE 9. The value of ranking monotonicity Mr for ten measures of centrality on eight networks.

TABLE 10. The value of distinct metric DM for ten measures of centrality on eight networks.

eight real networks, see Fig. 4. According to Fig. 4, the
DKEGM is the top performer among all the measures in
all networks when β is not too far from βth, except the
Netscience network, where the DKGM shows the best out-
come. Therefore, the ranking produced using the DKEGM
becomes very close to the ranking produced using the SIR
model, which we have also proved in Tables 7 and 8. The
performance of the BC measure is very poor because of its
smallest correlation values in most of the networks, as we
have also proved in Table 7.

2) COMPARE THE DISTINGUISHING ABILITY OF DIFFERENT
MEASURES OF CENTRALITY
In this experimentation, we investigate the distinguishing
ability of distinct centralities. For this purpose, we uti-
lize ranking monotonicity Mr to contrast the distinguishing
ability of the DKEGM with the other measures of cen-
trality. Table 9 represents the Mr values of the DKEGM
and the other measures for eight networks. From Table 9,
we have found that the DKEGM has higher Mr values
in 6 out of 8 networks, i.e., Dolphins, Jazz, USAir, Wiki,
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TABLE 11. The runtime (in seconds) of ten measures of centrality on eight networks.

Router, and LastFM, which indicates that the DKEGM is
the best performer in terms of distinguishing ability, except
in Netscience and Web-spam networks, where the DKGM
performs well in terms of distinguishing ability. Moreover,
the KS measure shows the worst performance in most of the
networks.

We also utilize another metric called the distinct metric
DM for further comparing the distinguishing ability of the
DKEGM with the other measures of centrality. Table 10 rep-
resents theDM values of the DKEGM and the other measures
for eight networks. From Table 10, it is observed that the
DKEGM has higherDM values in all networks, which shows
that the DKEGM is the best performer in terms of distin-
guishing ability. Moreover, the KS and DC measures show
the worst performance in all networks. The top measure that
outperforms other measures is highlighted in bold, as given
in Tables 9 and 10.

3) COMPARE THE EFFICIENCY OF DIFFERENT MEASURES OF
CENTRALITY
In this experimentation, we examine the runtime of dis-
tinct centralities to quantify the efficiency of each centrality
in computing the influence of nodes. Table 11 compares
the runtime of the proposed DKEGM with the runtime of
the other centralities in eight real networks. As shown in
Table 11, if we contrast the DKEGM with the other grav-
itational models (i.e., GIC, LGM, and DKGM) in terms of
runtime, we note that the DKEGM has a low runtime in
most of the networks. Therefore, this model can be used for
large social networks. Also, the runtime of the DKEGM is
low as compared to the runtime of the BC and CC mea-
sures in most of the networks. The runtime of the DC, EC,
KS, and GLI measures is low as compared to the DKEGM,
but at the same time, they do not have high accuracy as
compared to the DKEGM in all the networks, as we have
proved in Experiment 1. Therefore, overall, we can observe
that the DKEGM is more effective in contrast with the other
measures.

E. TIME COMPLEXITY
TheDKEGMhas fourmain components: degree, improved k-
shell measure, eigenvector centrality, and R-order neighbors.
The time complexity of the degree, improved k-shell mea-
sure, eigenvector centrality, and R-order neighbors of each
node is O(N ), O(M ), O(N + M ), and O(N < K >R),
respectively. So, the time complexity of our proposed model
DKEGM can be O(N+ M + (N + M ) + N < K >R). The
most complex operation of the DKEGM is computing each
node’s R-order neighbors, which has a time complexity of
O(N < K >R). Hence, the overall time complexity of the
DKEGM for achieving global information would be O(N <

K >R). As we have observed in Fig. 3, the optimal values of
the truncation radius of the DKEGM for all networks, except
the Netscience network, lie at R = 2. Also, most of the real
networks exhibit small-world property, and R∗ needs to be
small and can normally be fixed to 2 or 3. Hence, we set
R = 2, which means the time complexity of the DKEGM is
normally not greater than O(N < K >2), where <K>≪ N,
which shows the DKEGM can be used for large and complex
social networks. While the DKEGM’s time complexity is
not very high, it takes the network’s global information into
account when determining the nodes’ influence.

VI. CONCLUSION
In this study, we proposed an index called the degree k-shell
eigenvector (DKE) index that captures distinct aspects of a
node’s importance, which results in the high distinguishing
ability of the proposed index. In addition, we proposed an
enhanced gravity model called the DKE-based gravity model
(DKEGM) for determining crucial nodes in social networks.
The proposed gravity model incorporates the count of neigh-
bors, location of nodes, influence of neighbors, and path
information between the nodes. To evaluate the efficacy of the
DKEGM, we executed different experiments on various real
networks. Empirical outcomes indicated that the DKEGM
has better accuracy and distinguishing ability as compared to
other centrality measures. Moreover, the DKEGM has a low
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runtime in contrast to other gravity models. Therefore, this
model can be used for large and complex social networks.
Also, this model is suitable for unweighted and undirected
networks and can be applied to both weighted and directed
networks. In this study, we have analyzed the basic behavior
of the DKEGM by assigning the same weights to the dif-
ferent measures for determining the crucial nodes in social
networks. So, in our future work, we will apply the entropy
weight method to the proposed model for assigning dynamic
weights to the different measures.
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