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ABSTRACT The emergence of the sixth generation (6G) era has highlighted the importance of Network
Slicing (NS) technology as a promising solution for catering the diverse service requests of users. With the
presence of a large number of deviceswith different service requests and since each service has different goals
and requirements; efficiently allocating Resource Blocks (RBs) to each network slice is a challenging task to
meet the desired Quality of Service (QoS) standards. However, it is worth noting that the majority of research
efforts have primarily concentrated on cellular technologies, leaving behind the potential benefits of utilizing
unlicensed bands to alleviate traffic congestion and enhance the capacity of existing LTE networks. In this
paper we propose a novel idea by exploiting LTE-WLAN Aggregation technology (LWA) in Multi-Radio
Access Technology (RAT) Heterogeneous Networks (HetNet), aiming to solve radio resource allocation
problem based on the Radio Access Network (RAN) slicing and 5G New Radio (NR) scalable numerology
technique. A joint optimization problem is proposed by jointly finding an efficient resource allocation
ratio for each slice in each Base Station (BS) and by finding the optimum value of scalable numerology
with the objective of maximizing users’ satisfaction. In order to solve this problem, a novel three-stage
framework is proposedwhich is based on channel state information as a pre-association stage, Reinforcement
Learning (RL) algorithm as finding the optimum value of slice resource ratio and scalable numerology, and
finally Regret Learning Algorithm (RLA) as users’ re-association phase. Furthermore, a comprehensive
performance evaluation is conducted against different baseline approaches. The simulation results show that
our proposed model balances and achieves improvement in users’ satisfaction by deploying the proposed
Multi-RAT Het-Net architecture that leverages LWA technology.

INDEX TERMS HetNet, LWA, multi-RAT, network slicing, numerology, regret matching, WLAN.

I. INTRODUCTION
The Sixth Generation (6G) is required to support more chal-
lenging scenarios than the Fifth Generation (5G), including
the presence of a large number of devices with different
service requirements. Starting from 5G and Beyond 5G
(B5G); a New Radio (NR) supports heterogeneous services
which are classified into Massive Machine-type Commu-
nication (mMTC), Ultra- Reliable Low Latency (URLLC),
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and Enhanced Mobile Broadband (eMBB) services [1]. Each
service has different requirements in a common wireless net-
work infrastructure, thus Network Slicing (NS) technology
is introduced. An End-to-End (E2E) network slice is divided
into the Radio Access Network (RAN), transport, and Core
Network (CN) sub-network slices in between the end user
devices [2]. The NSwhich is based on Software-Defined Net-
works (SDN) and Network Function Virtualization (NFV) [3]
presents the ability to divide the network into several logical
networks; each logical network can support different services
with different requirements. These logically independent
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networks are called network RAN slices [4], [5]. Each RAN
slice can support a service with diverse requirements, for
example, a RAN slice for URRLC service requires a very low
latency and high reliability as in autonomous driving, remote
surgery, etc. On the other hand, a slice for eMBB service
requires high data rate to support services as video streaming
and virtual reality, etc. The big challenge here is how to
satisfy the required Quality of Service (QoS) in each slice
with these diverse requirements andwith the existing physical
infrastructure’s limited resources. As each Base Station (BS)
can consist of several slices and each slice support s different
service s and serve several users, an efficient resource alloca-
tion mechanism is necessary to manage the Resource Blocks
(RBs) allocation efficiently between these slices to satisfy
the heterogeneous users’ demands and services. Disposing of
an efficient resource slicing framework that can satisfy each
service requirements exposed in eMBB and URLLC services
is a major challenge in 5G and B5G.

Moreover, to facilitate supporting service diversity require-
ments, 3rd Generation Partnership Project (3GPP) has stan-
dardized multi-numerology and a mini-slot approach to
enhance the adaptability of physical layer in NR. Unlike Long
TermEvolution (LTE), which supports only a single numerol-
ogy in the downlink, 5G NR allows a scalable numerology
technique that provides different subcarrier spacing, symbol
durations and a number of symbols per time slot [6]. Exploit-
ing the 3GPP multi-numerology technology will add the
foundation of a flexible Orthogonal Frequency-DivisionMul-
tiple Access (OFDMA) frame structure. Where, the downlink
transmission is divided into frames, each frame is 10ms
divided into ten sub-frames each is a 1ms duration. In NR,
the number of slots in each sub-frame is scalable and can be
evaluated using numerology µ where each time slot duration
is 2−µ. The division of time slots into mini-slots, without
the need to wait for slot boundaries, allows for the quick
delivery of low-latency payloads [6]. Efficiently optimizing
the scalable numerology value for each slice to cater the
scheduling needs of both eMBB and URLLC users in multi-
user scenarios, by selecting suitable subcarrier spacing and
symbol length values that meet the requirements of each
service while allocating resources appropriately, is still a
significant challenge.

Furthermore, since previous studies have primarily focused
on developing a balanced and efficient approach to address
the co-existence issue between eMBB and URLLC ser-
vices [7], [8], [9], [10], [11], [12], there is a requirement
for a Reinforcement Learning (RL) algorithm to obtain a
globally optimal solution for selecting the most suitable scal-
able numerology value for each slice and allocating slice
resources in the problem of RAN slicing. The RL is a
methodology that aims to maximize the learning of util-
ity functions in the context of dynamic resource allocation
decisions. It is particularly effective in tackling unknown
stochastic dynamic environments with either significantly
large or continuous state spaces. Machine Learning (ML)
enabled 5G network architecture has recently been applied

and investigated to resource allocation of slices as in [13],
[14], [15], [16], and [17]. However, with the increase of users’
service demands and needs to satisfy each user’s service
requirement, the LTE limited resources will still impact on
user’s satisfaction to meet each service diver requirement.
Thus, exploiting unlicensed band to leverage the traffic load
and enhance the LTE capacity to maintain the required QoS
in each slice will be considered as an efficient solution.
Exploiting both the licensed and unlicensed spectrumwas the
motivated key to standardizing the LTE-Wireless Local Area
Network (WLAN) Aggregation (LWA) technology by 3GPP
in Release 13 [18].

In LWA, the data traffic is aggregated at the RAN level,
where the eNodeB (eNB) resolves to steer the data traf-
fic either on a switched bearer or split bearer. In the split
bearer, the user is considered as both an LTE user and a
WiFi user; thus, the user can access WiFi channel with chan-
nel contention probability. Comparing LWA technology to
LTE-Unlicensed (LTE-U) technology that can utilize also
the unlicensed band; Although LTE-U can enhance network
capacity by using the unlicensed band, however the LTE-U
must apply techniques for fair coexistence as Clear Channel
Assessment (CCA) and Listen Before Talk (LBT) techniques
to avoid any harm on WiFi co-existence users. LWA not
only increases system capacity but also introduces network
deployment cost reduction compared to LTE-U that need
modification on eNB design out of 3GPP standard [19].
Moreover, in LWA-based Multi-Radio Access Technol-

ogy (RAT) Heterogeneous Networks (HetNet), a user who
can access both LTE and WiFi RATs has the capability to
choose between three transmission modes defined as LTE
mode, where user can associate with LTE-BS using LTE
RAT, or WiFi mode, where user associates with WiFi-BS
access WLAN RAT or LWA aggregation mode where user
can associates with both LTE andWiFi BSs. Therefore, a new
user association approach must be formulated to efficiently
associate users with proper BS that can guarantee user’s
Service Level Agreement (SLA) for requested service.

In this work, we use Regret Learning Algorithm (RLA)
to efficiently associate user with proper BS that fulfills
the user’s requested service requirements in Multi-RAT
HetNet network architecture considering LWA technology.
The RLA [20] almost converges to a set of correlated equi-
librium, where each user is an optimal response to the actions
of other users and also a response to its environment.

Motivated by the previous observation and to overcome the
aforementioned challenges, this paper proposes a novel idea
of deploying aMulti-RATHet-Net, leveraging the LWA tech-
nology and 5G NR scalable numerology aiming to maintain
each user’s satisfaction which is defined in achieving SLA of
each requested service. Specifically, our main contributions
are:
• A radio resource allocation scheme regarding the eMBB
and URLLC slices in Multi-RAT HetNet architecture is
studied. TheMulti-RATHet-Net architecture consists of
an LTEMacro cell and Integrated Small Cells (ISCs) that
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support three different transmission modes (LTE mode,
WiFi mode, or LWA mode for aggregation). To the best
of our knowledge, such architecture that combines LWA
technology jointly with LTE-network slicing supporting
eMBB and URLLC services has not been studied.

• A user association problem is formulated and defined
as a joint optimization problem with the objective of
maximizing user’s satisfaction. The joint optimization
problem aims to guarantee each user’s SLA.

• We decompose our optimization problem as two sub-
problems; the first sub-problem involves the allocation
of slice resources (Slice Ratio) and determining the
optimal scalable numerology value. To address this,
we propose a Reinforcement Learning-based algorithm
(Q-Learning) that dynamically adjusts the resource allo-
cation per base station and identifies the ideal scalable
numerology value for each slice. This approach ensures
the maintenance and fulfillment of user satisfaction
requirements in eMBB and URLLC service.

• The second sub-problem is defined as a user-association
problem. A Regret Matching Learning algorithm is pro-
posed with the aim of efficiently solve users’ association
problem in Multi-RAT Het-Net environment with uni-
fied user utility function defined as user’s satisfaction.
To the best of our knowledge, this paper is the first
to use Regret Learning algorithm in integrated network
architecture considering LWA technology.

• We study and analyze the computational time complex-
ity of proposed algorithm compared to other RL-based
algorithm. In addition, we analysis optimality and
convergence of proposed algorithm.

• The performance of our proposed algorithm is compared
against different network architectures as single RAT
deployment, Multi-RAT deployment without LWA to
validate our proposed algorithms.

The rest of the paper is organized as follows: Section II,
represents Literature review, Section III represents a detailed
description of the proposed system model, the Problem
formulation and proposed framework are presented in
Section IV. Section V of the paper introduces the proposed
RL-based resource slicing algorithm, which outlines the
methodology for optimizing resource allocation in network
slicing. This is followed by Section VI, which presents the
proposed Regret-Learning User Re-association algorithm.
The simulation results are then presented in Section VII,
providing a detailed analysis and evaluation of the proposed
algorithms. Finally, the paper concludes in Section VIII.

II. LITERATURE REVIEW
Resource allocation in RAN slicing is a critical aspect, as it
defines how the physical resources in each BS will be por-
tioned among different slices. Several approaches have been
proposed in literature considering different schemes and algo-
rithms to address this challenge. One of these approaches is
static resource allocation. In static resource allocation, the

network resources are allocated to different slices based on
a pre-defined scheme. In [21] and [22], the authors pro-
vide a comprehensive survey on various resource allocation
schemes, including static resource allocation. They highlight
the limitations of using static resource allocation in a multi
service network. Additionally, in [23] and [24], the authors
propose a static resource allocation scheme that takes into
account the expected traffic load. While they consider the
QoS requirements of each service, this approach still falls
short in evaluating the dynamic changes in the network envi-
ronment and user’s traffic patterns. Consequently, it may not
effectively adapt to real-time fluctuations and variations in
the network. Other studies considered dynamic resource allo-
cation, in multi-service network. In [7], the authors present
a dynamic resource allocation scheme considering two dif-
ferent services, eMBB and URLLC. The authors proposed a
joint resource allocation problem to satisfy the eMBB user
data rate while other users requested URLLC service. The
dynamic radio resource allocation in multi-service network
also studied in [8], where the network was logically divided
into low delay slice and high rate slice; however, the authors’
main objective was to minimize delay tolerance. In [9], a risk-
sensitive resource allocation formula is proposed aiming
to allocate resources to URLLC traffic, while ensuring the
eMBB service requirement. The literature [10], [11], [12]
further explores the dynamic resource allocation problem in
the presence of multiple slices. Specifically, the authors have
recently directed their attention to the coexistence of URLLC
and eMBB traffic within a RAN to fulfill each service’s
diverse requirement.

Based on this, adopting the 5G NR standard scalable
numerology technique will enable an efficient fulfillment
of diverse qualities like low latency. In [25], the authors
proposed a scalable numerology approach aiming to solve
scheduling problems for different user services. The authors
tend to maximize user satisfaction while taking into con-
sideration latency demand and data transmission. Also,
a numerology-based resource allocation scheme is presented
in [26]; the authors proposed an energy efficient algorithm
for eMBB and URLLC services, the proposed algorithm is
formulated as mixed-integer non-linear problem. The authors
also studied the impact of URLLC users on eMBB users.
In addition, authors in [27] applied NR scalable numerology
technique to serve users who requested URLLC services. The
authors aim to increase the minimum achievable data rate
for eMBB users while applying fairness among URLLC and
eMBB using a one-to-one matching game.

The aforementioned studies strive to strike a balance
between efficient resource utilization and meeting the QoS
requirements of co-existing slices. In order to obtain a global
optimum solution for resource allocation in network slicing
while finding an optimum scalable numerology value that
efficiently fulfills the users’ service requests, a RL approach
must be applied. Recently, many researches have used RL to
solve the resource allocation problem and decision- making
in network slicing architecture.
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The authors in [28], deployed NR scalable numerology
technique and mini-slot-based transmission to support both
eMBB and URLLC network slices, a RAN slicing problem
is formulated and solved using a hierarchical RL framework.
In [29], a deep reinforcement learning approachwas proposed
to allocate the URLLC traffic, the authors aim to maximize
the eMBB data rate while considering the URLLC reliability
constraint. In [30], the authors proposed an approach for slice
resource management using a Mixed Integer Linear Program
(MILP). This approach takes into account the concept of scal-
able numerology as well as the requirements for both latency
and throughput. The proposed approach was solved using
Deep Reinforcement Learning (DRL) algorithm. In [31],
a resource allocation framework DRL-based for network
slicing in a RAN is proposedwith the aid ofmassiveMultiple-
Input Multiple-Output (MIMO). The proposed framework
in [31] aims to maximize the resource allocation efficiency
through slices and the user’s quality of experience. In [32],
an RL-based framework is proposed focusing mainly on
eMBB aiming to solve resource allocation problems that are
defined with Channel State Information (CSI) uncertainty.
The authors model the CSI uncertainty by three methods:
worst-case, probabilistic, and hybrid.

All the previous researches aim to address the challenges
associated with efficiently allocating resources to accommo-
date the diverse requirements and co-existence of these two
types of traffic (URLLC and eMBB). However, in high-load
scenarios where the number of users with diverse service
requests increases, the LTE-limited capacity may still face
challenges even with the implementation of network slicing.
Despite the benefits of network slicing in enabling resource
isolation and customization for different services, there are
inherent limitations to the capacity of LTE networks. These
limitations can lead to congestion and degradation of perfor-
mance when the network is heavily loaded. Based on this,
exploiting both the licensed band and unlicensed band using
LWA technology was the motivated key to leverage the traffic
load and enhance the LTE capacity. In [33], a multi-RAT
HetNet scenario is considered adopting LTE-WLAN aggre-
gation technology. The authors proposed a user association
algorithm that considered different RAT selections with the
aim of maximizing total network throughput. The simula-
tion results showed significant performance in enhancing
the network’s throughput as a result of exploiting the LWA
technology.

Indeed, the presence of LWA technology introduces a
multi-RAT environment. With LWA, users have the option
to associate with LTE-RAT, WLAN-RAT or even aggregate
both technologies simultaneously. A new user association
approach must be formulated in order to efficiently associate
users with proper RAT that will fulfill the user’s service
requirement. Many studies that adopted user association
problem while considering LWA technology [34], [35], [36],
[37], to the best of our knowledge, this paper is the first to use
the Regret Learning algorithm to efficiently associate users
with proper BS (RAT) that fulfill user’s requested service

FIGURE 1. System model.

requirement in network slicing architecture considering LWA
technology.

III. SYSTEM MODEL
In this paper, a Multi-RAT Het-Net is considered as shown
in Fig.1, consisting of a Macro Base Station (MBS) and
LTE-WLAN-ISCs overlaid under the coverage of MBS. All
the ISCs support both RATs (LTE and WiFi) technology,
which allow three access options can be denoted by three
transmission modes of operation: M1 (LTE mode), M2 (WiFi
mode), andM3 LTE-WLAN aggregation (LWAmode). Since
ISC supports both LTE and WiFi RATs, for this we define
a set that represents MBS and small cells (LTE and WiFi)
denoted by K = {0, 1, .., k . . . ,K } where, k= 0 represents
the MBS, followed by k = {1, 2, 3, . . .K } that represents
small cells. Without the loss of generality, we define two
subsets to denote each RAT, where the number of small LTE
base stations (LBS) is denoted by L, while the number of
WiFi-BSs is denoted by W}. The set of LBSs is denoted
by B = {1, . . . ,L}, where B⊂ K. In addition, the set of
WiFi-BSs is denoted by W ={L + 1,L + 2, . . . ,K } with
cardinality W = K − L, where W ⊂ K. Moreover, a set that
represents ISCs is denoted by = {L,L + 1}, where k = L
denotes LBSs and k = L + 1 denotes WiFi-BSs. LTE RAT
adopts the accessing scheme of OFDMA, while WiFi adopts
the IEEE 802.11 Distributed Coordination Function (DCF)
mechanism that is based on the Carrier SenseMultiple Access
with Collision Avoidance (CSMA/CA) protocol for channel
access [38].
Moreover, a set of slices j ∈ = {0, 1, 2, .., J} is intro-

duced to support RAN slicing in LTEBSs, which is defined in
MBS and ISC-LTE-RAT. Noted that j=0, means WiFi mode
(M2) is selected. Moreover, a number of users are uniformly
distributed under the coverage of MBS and ISCs. In addition,
as ISCs may operate on three different transmission modes;
a set of users u ∈ U = {1, 2, . . . ,U} is defined, where the
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TABLE 1. Table of notation.

number of users associated with slice j is denoted by Uj and
the number of users associatedwith ISCWiFi-RAT is denoted
by Uw. In addition, a table of notation is provided in Table 1.

A. SLICE DESCRIPTION
Our system model considers URLLC and eMBB services,
without taking into account themMTC service. Generally, the
proposed system supports two services where each service
provides a different aim, the URLLC services require low
latency combined with high reliability, while eMBB services
require high data rates combined with a moderate reliability
level. To elaborate both services, a user u service’s request,
can be denoted by Req. When user u requests Req a service
requires a high data rate it falls under eMBB slice and when
user u requestsReq a service requires a minimum delay it falls
under URLLC slice.

In order to support both services with their different
requirements, our proposed model, adopts 5G NR frame
structure [6]. The NR frame structure flexibly supports the
heterogeneous services while allows the adaption to user’s

TABLE 2. 5G nr scalable numerology [6].

various channel conditions. The NR frame structure intro-
duced mixed numerology where each numerology represents
different multicarrier modulation parameters which define
different subcarrier spacing, Cyclic Prefix (CP) duration, and
slot duration.

Based on the above, a scalable numerology set Mj =

{0, 1, 2, . . . 4} as shown in Table 2. is considered, where
µj = 0, µj ∈ Mj will be used as the eMBB slice, while
µj= {1, 2, 3, 4}will vary to support URRLC slice. A variable
µj will result in a variable sub-carrier spacing 1F j and time
slot interval T Lslot given by (1) & (2) respectively [6]:

1F j = 1F0 × 2µj , (1)

T Lslot =
T Lslot0
2µj

, (2)

where, 1F0= 15kHz and T Lslot0 = 1ms
On the other side, in order to support eMBB service, which

requires a high data rate, we adopt 3GPP standardized LWA
technology to maintain the user’s QoS by allowing the user’s
data to be transmitted either on LTE (M1 mode), or WiFi
(M2 mode), or LWA (M3 mode). The LWA technology will
exploit the unlicensed band to support the LTE network in
high-load scenarios. Adopting both NR scalable numerology
and LWA technology can efficiently strike a balance between
the diverse user service requests.

B. NETWORK SLICING MODEL
The network slicing main goal is to fulfill the QoS require-
ments of different network slices. To be able to achieve this,
we need to consider three main components, first to consider
the number of users’ slice preferences, second to model
eMBB slice requirement which is defined as rate and third
to model URLLC slice requirement modeled as transmission
delay.

1) SLICE RESOURCE ALLOCATION
We will start with the user’s request slice preference phase,
as the number of users’ requests Req preference to a slice in
a BS k will affect the number of logical resource blocks in
each slice in each BS k ∈ K/W. Based on this, the maximum
number of RBs assigned for each slice j from BS k ∈ K/W

can be calculated as follows:

NRBmax
k,j =

B
1F j

, (3)

where, B is BS k ∈ K/W bandwidth. In addition, the number
of RBs assigned for a slice j considering other slices allocated
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resources in BS k is presented as:

NRB
k,j = αjN

RBmax
k,j , (4)

where, αj is the ratio of RBs allocated to a slice which is
dependent on other slices ratios and ranges 0≤αj≤ 1. The
value of αj must give NRB

k,j an integer value. Moreover, if BS
k ∈ K/W supports two slices and if the number of RBs
assigned for slice one can be calculated using (4), then the
number of RBs assigned for the second slice can be calculated
as follows:

NRB
k,j′,j′ ̸=j = (1− αj)N

RBmax
k,j , (5)

2) eMBB SLICE MODEL
In order to achieve eMBB slice requirement, we need to cal-
culate the average SINR/SNR received by any user u from an
MBS or ISC as (LBS &WiFi). For this, the average received
SINR by user u from a MBS k ∈ K and k = 0 can
expressed as:

SINRL0,u =
P0G0,u∑

i PiGi,u + σ2
, u ∈ Uj, i ∈ B, (6)

where, P0 denotes the transmitted power from MBS while,
Pi denotes the average transmitted power from interfering
LBS i ∈ B; G0,u and Gi,u represent the average channel
gains between the MBS k ∈ K and user u, and between
the interfering LBS i ∈ B and user u, respectively; while
σ2 denotes the additive noise power.
Moreover, the average SINR received by user u from LBS

k ∈ B can be calculated as follows:

SINRLk,u =
PkGk,u

P0G0,u +
∑

i∈B,i̸=k PiGi,u + σ2
, u ∈ Uj, k ∈ B,

(7)

where, Pk is the transmitted power from LBS k ∈ B; Gk,u
represents the average channel gain between the LBS k ∈ B
and user u, while Gi,u and G0,u denote average channel gain
between interfering LBS i ∈ B, i ̸= k and user u and
interfering MBS k ∈ K and user u,respectively. On the other
side, regarding WiFi-BSs in ISCs, the average SNR received
by user u, from WiFi-BS k ∈ W can be represented as
follows:

SNRWk,u =
PkGk,u∑

k ′ Pk ′Gk ′,u + σ2
, u ∈ Uw, k ′ ∈W/{k}, (8)

where, Pk is the transmitted power from WiFi-BS k ∈ W

and Gk,u denotes the average channel gain of WiFi-BS k ∈
W to user u. While Pk ′Gk ′,u are the power transmitted and
channel gain of interfering WiFi-BSs to user u, respectively.
As defined before, ISC supports LTE and WLAN RAT, the
average SINR received by user u from LTE-ISC (LBS) will
be calculated using equation (7), while the average SNR
received from user u from WiFi-ISC (WiFi-BS) is calculated
using (8). Based on the above, the achievable downlink data

rate achieved by user u from k ∈ K/W in slice j is represented
as follows:

RLu,j,k =
NL
RB−SUBN

L
slotN

Lbits
u,k N

RB
k,j CR

L
u,k

UjT Lslot
, j ∈ , u ∈ Uj (9)

where, NL
RB−SUB represents the number of sub-carriers per

one resource block, NL
slot represents the number of slots per

one sub-frame; NLbits
u,k represents the number of bits per sym-

bol, NRB
k,j is the total number of RB in slice j in BS k ∈ K/W;

CRLk,u is the user u coding rate. NLbits
u,k and CRLk,u can be both

calculated using Channel Quality Indicator (CQI) that can be
determined by SINR achieved at user u.Uj is the total number
of users per slice j associated with BS k ∈ K/W, while T Lslot
is time slot interval and can be determined using (2). On the
other hand, the achievable downlink data rate achieved by
user u, from WiFi-BS k ∈ W can be represented as follows
taking into consideration the WLAN MAC layer effect [38],

RW
uk =

τ (1− τ )UwD(
T +

(
Dτ(1−τ)Uw

Rtphyuk

)) ,∀k ∈W, (10)

where , τ represents the channel contention probability; Uw
denotes the total number of users associated with WiFi-BS
k ∈ W. While D, is the maximum allowed size of user u
packets. T can be calculated as follows [38]:

T = (1− τ )Uw+1e+
(
1− (1− τ)Uw+1

)
(TRTS + TDIFS)

+ (Uw + 1) τ (1− τ)Uw (TCTS + TACK + 3TSIFS )

(11)

where, TCTS ,T ACK , and TSIFS are the duration of Clear
to Send (CTS) short frame, Acknowledgment short frame
(ACK), and Short Frame Inter Space (SIFS), respectively.
While TRTS and TDIFS denote the duration of Request to Send
(RTS) short frame and DCF Inter-Frame Space (DIFS) short
frame, respectively. In addition, e represents the duration of
an empty slot time.

In (10), the nominator represents the average per-user data
transferred in a time slot, while the denominator denotes the
average length of time slot which defines the duration of
successful data transmission and is represented in terms of
WLAN physical rate that can be calculated as follows:

Rtphyuk =
N sp
u,k × N Sub

× NWbits
u,k ×CR

W
u,k

Tsym
,∀k ∈W, (12)

where, N sp
u,k denotes the number of available spatial streams,

NWbits
u,k is the number of bits in one symbol; while NSub rep-

resents the total number of sub-carriers and CRWu,k represents
the coding rate. In addition, Tsym denotes the symbol duration.

Accordingly, if user u is associated to ISC using LWA (M3
mode), the achievable data rate of user u will be expressed as
the summation of achieved rate from LBS BS and WiFi BS
as follows:

RISCu,k = γR
L
u,j,k + βRW

uk ,∀k ∈ , (13)
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where, γ and β are two binary variables that represent the
user’s u association which reflects the transmission mode
selection and can be expressed as follows:

γ , β =


1, 0 if ISC k operates inM1, k ∈ B
O, 1 if ISC k operates inM2, k ∈W

1, 1 if ISC k operates inM3, k ∈

(14)

3) URLLC SLICE MODEL
On the other hand, in order to support URLLC service and to
satisfy the requirements of URLLC service critical latency,
a mini-slot based frame structure is adopted, where each
time slot is divided into mini-slots based on selected scalable
numerology µj. Based on this, the average delay to transmit
a packet which is defined as the number of transmission time
intervals can be calculated as follows:

DAchu,j,k=

[
ceil

((
Packetsize

NL
RB−SUB×N

L
slot × N

RB
k,j × ψ

)
× Uj

)]
T Lslot ,

k ∈ K/W (15)

where , ψ is defined as NLbits
u,k ×CR

L
u,k . Moreover, the average

delay DAchu,j,k is dependent on NRB
k,j assigned for each slice

which is based on αj and µj.
Our objective is to fulfill the service request requirements

of each user, which can be in the form of high rate for
eMBB services or minimum delay for URLLC service. The
satisfaction of user u in slice j associated with BS k ∈ K is
represented by an increasing concave function, expressed as
follows:

ST u,j,k = Req

1− e
−
RLu,j,k
Rref

+ (1− Req)1− e
−

Dref
DAchu,j,k

 ,
(16)

where, Req represents the user’s service request. Req is a
binary variable, in which Req

=1 when a user u requested
eMBB service and Req

=0, when user u requested URLLC
service. Rref and Dref is defined as minimum average rate
and the minimum average delay a user u can achieve
respectively.

IV. PROBLEM FORMULATION AND FRAMEWORK
As our objective is to meet the service request require-
ments of users, ensuring that users requesting eMBB services
achieve the requested data rate, and besides at the same
time, users requesting URLLC services meet the service
requirements in terms of low latency. To address this,
a joint optimization problem is formulated and defined to
maximize users’ satisfaction in network. The joint optimiza-
tion problem aims to find an efficient allocation ratio αj
for slice resource allocation, determine the optimal scal-
able numerology value µj, and solve the user association
problem.

A. PROBLEM FORMULATION
Consequently, the user’s satisfaction maximization problem
is formulated as follows;

OPT : maxx,µj,αj
∑K

k=0

∑J

j=0

∑U

u
xu,j,k

(
ST u,j,k

)
,

(17a)

S.t
∑

k∈k
xu,j,k = 1,∀k ∈ K, u ∈ U

(17b)∑
j∈J

xu,j,k = 1,∀j ∈ J , u ∈ Uj (17c)

xu,j,k = {0, 1} ,∀k ∈ K, u ∈ U (17d)

RLu,j,k ≥ Rref ,∀u ∈ U (17e)

DAchu,j,k ≤ Dref ,∀u ∈ U (17f)∑J

j
xu,j,kRLu,k,j ≥ Rref ,∀j ∈ (17g)

where, constrain (17b) denotes that user u can only associate
with only one BS either MBS or ISC; while constrain (17c)
also denotes that user u can only associate with only one slice
per BS; constrain (17d) implies that association index xu,j,k
can only have the value of {0,1}, where 0 denotes that user u
is not associated with BS k while 1 denotes that user u is asso-
ciated to BS k . While constrain (17e) and (17f) ensure that the
satisfaction of user u of requested service is achieved; in terms
of achievable data rate or delay, respectively. Constrain (17g)
ensures the isolation between the eMBB and URLLC slices.

B. FRAMEWORK
We proposed a framework in order to find an optimal solution
to the proposed optimization problem OPT . Which jointly
solves the user association problem while finding the opti-
mum slice resource allocation ratio and optimum numerology
value that tends to maximize the user’s satisfaction and guar-
antee each user’s SLA. The proposed framework as shown in
Fig.2 is divided into multiple phases as follows:
• Phase I(Pre-association): The primary goal of Phase I
is to determine the number of user requests for each
slice in each BS. This phase occurs only once at the
beginning in order to find each user’s service preference,
where each user u creates a ranked preference list of all
BSs that would satisfy its requested service requirement
(eMBB or URLLC) to associate with. The user’s ranked
preference list will evaluated based on the channel state
condition between user u and each BSk in the network.
After each user u creates its preference list, the user
associates with the first BS in the list. Consequently, the
number of users Uj in slice j associated to BS k, k ∈
K/W and the number of users Uw associated to BS k ,
k ∈W can be calculated.

• Phase II: a dynamic RL-based slice resource allocation
scheme is presented adapting Q-Learning algorithm in
order to adjust slice’s resource ratio αj per each slice in
each BS and to find the optimum scalable numerology
µj value that will maintain and guarantee each user’s ser-
vice. In the Q-Learning algorithm [39], an agent learns
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through iterative interactions with its environment. The
agent selects actions and receives rewards based on its
chosen actions. The objective of the agent is tomaximize
its cumulative reward over time. To address this, based
on phase I calculation that occurs once, the proposed
Q-Learning algorithm will iteratively check users’ sat-
isfaction in all BSs, if there is an increase in total users’
satisfaction, the algorithm will re-adjust slice resource
ratio αj and scalable numerology value µj. If there is no
enhancement in total user’s satisfaction, the algorithm
exits and last αj and µj will be ignored.

• Phase III (Re-association): in this phase, users are
re-associated with BSs based on the αj and µj values
resulted from previous phase. A regret learning match-
ing algorithm is developed in order to re-associate user
u to slice j in BS k that guarantees user’s satisfaction.
In regret matching, the user takes actions based on a
specified utility function; all the actions may be chosen,
with probabilities that are proportional to the apparent
gains, as measured by the user’s regrets.

The OPT problem (17a), is a binary non-linear NP-hard
with the multi-objective problem. To find a global opti-
mum solution, we decompose our optimization problem as
two sub-problems; the first sub-problem involves the allo-
cation of slice resources (Slice Ratio αj) and determining
the optimal scalable numerology value µj and the second
sub-problem, defined as user Re-association problem. The
proposed approaches to solve the two sub-problems are
described in detail in the next two sections.

V. RL-BASED RESOURCE SLICING (Q-LEARNING)
ALGORITHM
In order to satisfy each user’s u service request requirement,
we need to evaluate efficiently slice resource ratio αj of each
slice per BS jointly evaluating the optimum value of scalable
numerology µj in each slice. To address this, our proposed
Q-Learning algorithm is modeled as a finiteMarkovDecision
Problem (MDP), where the states and the actions spaces are
defined as finite. Markov Decision Problem quaternion [39]
is defined as (S,A,R, S′), where S represents the discrete set
of environment space,A represents the discrete set of possible
actions of an agent, R represents the reward function of agent
and S′ is the state transition probability.

State (S): the discrete set of states can be obtained from two
factors: the ratio of logical RBs αj assigned to a slice j in a BS
k∈ K/W assuming two slices per BS, where j = 1 represents
eMMB slice while j = 2, denotes URLLC slice. While, the
second factor is the scalable numerology value µj ∈ Mj =

{0, 1, 2, . . . 4}; which ensures the service requirement SLA
of the URRLC slice. By obtaining the value of αj for one
slice, the αj′,j′ ̸=j for the other slice can be obtained using the
following:

αj′ ,j′ ̸=j=

⌊
B−αj1F0

1F j

⌋
, (18)

FIGURE 2. Proposed framework.

Action (A): based on the current state st∈ S, the learning
agent selects the best action at ∈ A aiming to maximize
reward rt ∈ R over time. The set of possible actions to be
selected is represented as A = {(αj ± 1, 1≤ αj ≤ 100, µj ±
1, 0 ≤ µj ≤ 4}. Moreover, when the agent selects an action,
the agent can transfer to next state S′ with a certain transition
probability. The transition probability is defined as [39]:

P = {pas,s′
∣∣s, s′ ∈ S, a ∈ A}, (19)

In addition, the reward rt ∈ R is calculated as the sum of
the satisfaction of users associated with BSs k ∈ K based on
user’s service preference as follows:

rt =
∑

u,j,k
ST u,j,k , j ∈ , u ∈ U , (20)

where, ST u,j,k is user’s satisfaction and can be calculated
using (16). In Q-learning algorithm, the agent aims to learn
the optimal strategy π∗ which corsseponding to state value
function V ∗(s) and the action value function Q∗(s, a) as
follows:

V ∗ (s) = maxaQ∗(s, a), (21)

The formula of updating the Q value is represented as
follows [39]:

Q (s, a) = Q (s, a)+ δL[R+ + maxa∗Q∗
(
s′, a

)
− Q (s, a) ,

(22)

where, δL is the learning rate, the agent over time, learns opti-
mal policy to maximize the discounted rewards, this cumula-
tive discounted reward can be represented as follows [39]:

Rt = E
[∑∞

j=0
jrt+j

]
, (23)

where, 0 ≤≤ 1 represents the discount factor and the
operation E[.] is the expectation with respect to the reward
distribution.

Furthermore, Algorithm.1 proposed the details of resource
slicing Q-learning algorithm. First, (Line 1) is the initializa-
tion process in each episode, in a defined number of episodes
M epi. The NRB

k,j per slice is dependent on αj and µj values,
where their values can be determined either by with initial
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values or valued from the previous Q-learning algorithm iter-
ation (line 3). In each state, an action is performed based on
the ε-greedy policy [40] that represents both the exploration
(random action selection) and the exploitation (action with
the maximum Q-value) trade-off (lines 4,5). rt is then calcu-
lated according to (20) based on the resulted state st+1, and
the state-action table is updated (lines 6-8). The algorithm is
terminated after Q-table convergence or a predefined number
of iteration T is reached.

Algorithm 1 Q-Learning based Resource-Slicing

1: Initial: Calculate NRB
k,j using (4), and update the envi-

ronment states S. For each state-action pair (s, a), initialize
the state-action value function Q (s, a) arbitrarily to zero.
Initialize the value of the discount factor and the learning
rate δL .
2: For episode := 1 to M epi do
3: Get initial state s1.
4: For t := 1 to T do
5:

at =

 random, with ε probability
argmax

a
Q (st , a), otherwise

6: Execute action at , and obtain st+1.
7: Calculate rt using (20).
8: Select an action at+1 based on state st+1, and update

state-action table Q (s, a) based on (22).
9: Replace st ← st+1.
10: End for
11: End for
12: Result: Optimal state with rmax , and optimal policy Q∗.

VI. MATCHING GAME-BASED USER RE-ASSOCIATION
ALGORITHM
The final phase is the re-association phase. Regret- Matching
Learning algorithm is adopted in order to solve the users’
association problem after finding the optimum value for
slice resource allocation ratio αj and scalable numerology µj
value. In this algorithm, a generalized optimal form of Nash
Equilibrium which is known as the Correlated Equilibrium
(CE) is considered [41]. It’s known by its bounded payoffs
for any finite game, where players’ actions (users and BSs)
can be correlated resulting in an equilibrium border set in
which a deduction can occur in a better payoff for the players.
Based on this, the regret matching game is formulated to
model users’ association problem and can be mathematically
represented as follows:

G =
(
U′,

(
SRu

)
, (Uu)

)
, (24)

where, U′ represents the set of players (i.e., the users U),
SRu∈S

R denotes the set of strategies for player u (i.e., the
BSs K), while SR is the set of strategies for all players, and
Uu : SR −→ R is the payoff function for player u when

the action taken by all players is sR ∈ SR. From this, the
utility function of player (user) u to associate with BS k
can be represented as follows which is represented as user’s
satisfaction:

Uu(sR) = ST u,j,k , (25)

In addition, the overall payoff for player u taking into
consideration the random actions with overall Probability
Mass Function (PMF) n ∈ ℵ can be represented as follows:

Uu (n) =
∑

sR∈SR
n
(
sR
)
.Uu(sR), (26)

Definition 1: A probability distribution πR on a set of
strategies SR is defined to be correlated equilibrium for a
defined game if for every player u ∈ U′, and for every pair of
action z, y ∈ SRu it holds that:∑

sR∈SR:u=z
πR(sR)

(
Uu
(
y, sR−u

)
− Uu

(
z, sR−u

))
≤ 0,

(27)

This equation proved that when a strategy z is recom-
mended. Changing the strategy to a new strategy y ̸= z will
lead to no regret. The main objective of no-regret matching
algorithms is to provide no regret for a player u, in which
the probability of choosing a strategy is proportional to the
regret for not choosing any other strategies. If there are two
strategies y &z, where y ̸= z, thus the regret of player u
is to choose strategy y instead of z at a time t is defined as
follows [42]:

ρtu (z, y) ≜ max(Dtu (z, y) , 0), (28)

where Dtu (z, y) represents the payoff for player u if he had
played action y instead of z every time in the past, and it can
be calculated as follows [42]:

Dtu (z, y) ≜
1
t

∑
T≤t

(
UT
u

(
y, sR−u

)
− UT

u

(
z, sR−u

))
, (29)

Thus, the probability distribution of player u chooses an
action at time t is [42]:

pt+1u (y) =


1
µ
ρtu (z, y) , y ̸= z

1−
∑

y∈SRu ,y̸=z
pt+1u (y), y = z

, (30)

where µ > 2MG is a constant which guarantees that
pt+1u (y) > 0 at y = z and G is the upper bound of

∣∣U (sR)
∣∣ for

all sR ∈ SR. In addition, when t = 1, the initial probability
is distributed uniformly over the set of all possible actions.
Moreover, it states in [42], that the empirical distribution z̄t
of joint actions s of all players until t:

z̄t (s) =
1
t
N (t, sR), (31)

where, N (t, sR) represents the number of periods before t
where action sR is chosen.
Furthermore, Algorithm. 2 proposed the details of regret

matching algorithm for user re-association phase to find opti-
mal SR∗. Starting by initialization (line 1-4), where for each
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user u, the utility Uu(sR) is calculated, then user’s Payoff
Dtu (z, y) is evaluated to update the regrets ρ

t
u (z, y). Followed

by, updating the probabilities pt+1u (y) for each user u, where
the strategy sRu is chosen based on εR-greedy policy (lines
5,6). The algorithm is repeated until (ρtu (z, y)) < ξ , where
ξ should be properly chosen as in [43].

Algorithm 2 Regret based learning algorithm for users
Re-association phase
1: Initial: for each user u, generate random uniform
probability p1u (y) for all base stations y ∈ K.

2: While sup (ρtu (z, y) ) <ξ do
3: Calculate users utilities Uu(sR) using (24).
4: Update regrets ρtu (z, y) using (27)
5: Use (29) to update the probabilities pt+1u (y).
6: Use pt+1u (y)∀y ∈M to select action sRu ∈ SRu as follow:

sRu =

 random, with εR probability
argmax

y
pt+1u (y), otherwise

8: t = t + 1.
9: End While
10: Result: Optimal SR∗

VII. PERFORMANCE EVALUATION
In this section, we present our simulation results to evaluate
our proposed framework. We begin by describing the sim-
ulation setup, and providing details on the parameters and
configurations used. Following that, we present the obtained
simulation results.

A. SIMULATION SETUP
In order to evaluate the proposed framework, the following
simulation setup was adopted, where a multi-RAT HetNet
is considered with one MBS and 2 ISCs. The ISCs support
both RATs (LTE and Wi-Fi) technology, which allows three
access options can be denoted by three transmission modes
of operation: M1 (LTE mode), M2 (Wi-Fi mode), and M3
LTE-WLAN aggregation (LWA mode). Based on this, each
physical ISC node can be represented by three virtual nodes
(ISC-LTE, ISC-WiFi, and ISC-LWA) corresponding to its
three modes of operation (M1, M2, and M3). Each ISC
has a radius of 50m deployed in an indoor hotspot area of
350 × 225 m2 and under coverage of MBS of a radius of
1000m. A number of users are uniformly distributed under
the coverage of MBS and inside the indoor hotspot area.
In addition, each ISC-LTE is divided into 2 slices which are
eMBB and URLLC.

Moreover, the path loss model for WLAN technology is
presented as follows [44]:

Ploss = 20log10
(
f W
)
+ ηwlog10(d)+ Pf (nwalls)− 28

(32)

where, f W denotes WLAN transmission frequency in MHZ;
d denotes the distance in meters; ηw is the distance power loss

coefficient and its assumed to be equal 30;nwalls is the number
of walls which is assumed to be 3; in addition, Pf (nwalls)
represents the penetration loss facture and can calculated as
nwalls + 13.

B. SIMULATION RESULTS
In our proposed scenario, we deployed Multi-RAT BSs,
which include a MBS and ISCs. The concept behind this
deployment is to leverage different technologies to accom-
modate both eMBB users and URLLC users in the network.
This requires striking a balance between providing high data
rates for eMBB users and low latency for URLLC users at the
same time. In order to evaluate the performance of this idea,
we compare it with other different scenarios in terms of archi-
tecture and deployed algorithm. For the baseline approaches,
compared to our proposed framework

• LTE-only model [17]: where all the ISCs proposed
in our framework is replaced by LBSs, resulting in
all BSs operating in LTE technology only. The idea
behind comparing our proposed model to a scenario
of deploying only LTE base stations is to highlight
the benefit of deploying LWA technology. Deploying
LWA technology to exploit the unlicensed band, leads
to an improvement in network capacity especially in
high demands. In addition, concerning the cost, where
deploying a number of WiFi BSs (unlicensed band) plus
LTE-BSs will definitely be less in cost compared to
deploying the entire architecture with LTE-BSs.

• LTE-WiFi model: where all ISCs proposed in our frame-
work are replaced by LBSs and WiFi BSs with no
aggregation transmission mode, results in a number
of BSs supporting only LTE technology while others
support only WiFi technology.

For both, the LTE-only model and the LTE-WiFi model,
we ensure the same number of BSs that will be equivalent
to ISCs in our proposed framework.

• Heuristic-Genetic Algorithm (GA): The proposed
framework is compared to three different scenarios
based on the GA as follows

1. Genetic All: In this scenario, both the Q-learning
algorithm and the Regret-Matching user Re-association
algorithm in our proposed framework are replaced with
the Genetic Algorithm.

2. Q-learning and GA: This scenario keeps the
Q-learning phase of our proposed framework as it is,
but replaces the Regret-matching User Re-association
algorithm with the Genetic Algorithm.

3. GA and Regret-Matching: In this scenario, the
Q-learning algorithm in our proposed framework
is replaced by the Genetic Algorithm, while the
Regret-matching algorithm is retained in the User
Re-association phase.

These scenarios serve as comparisons to evaluate the per-
formance and effectiveness of our proposed framework
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TABLE 3. Simulation paramters [45].

against different combinations of Genetic Algorithm-based
approaches.

• Different RL-based approaches [17]: Our proposed
Q-Learning algorithm is compared to two differ-
ent RL-based algorithms which are Deep Q-Network
(DQN) and Dueling-DQN (DDQN) algorithms.

Furthermore, we evaluate and analyze our proposed frame-
work by comparing it to these different scenarios and
algorithms ensuring they have the same total capacities and
simulation parameters. The rest of LTE,WLAN and Network
parameters are summarized in Table. 3 [45].
To start, we evaluate the effectiveness of our proposed

framework by deployingMulti-RAT BSs utilizing LWA tech-
nology.We compared the performance of this deployment to a
traditional LTE-only model. Fig.3, illustrates the variation in
the users’ average satisfactionwith the increase of the number
of users in the network (N=40 to N=80). The users’ average
satisfaction can be defined as the sum of users’ satisfaction in
each slice in each BS, divided by the total number of users in
the network (N). The evaluation of our proposed model com-
pared to LTE-only model is analyzed over different values
Req. Specifically, when the user’s request (Req) is set to 0.2,
it indicates that 20% of the total number of users is requesting
eMBB service, while the remaining 80% are requesting a
delay service (URLLC). Similarly, ifReq is set to 0.5, it means

FIGURE 3. Evaluation of users’ average satisfaction between our
proposed model and LTE-only model with different Req values.

that an equal number of users are requesting eMBB service
and URLLC service, etc.

It can be noticed that our proposed framework outper-
forms LTE-only model in all Req values. As our proposed
framework guarantees to satisfy each user’s service request
through finding the optimum slice resource allocation ratio
and selecting the optimum numerology value. Additionally,
as the number of users who request eMBB service (Req

=0.8)
increases, our proposed model keeps to maintain average
users’ satisfaction high compared to LTE-only model. This is
due to; the utilization of LWA technology effectively main-
tains average user’s satisfaction, especially in high demand
rate-based services. Moreover, by identifying the optimal
value for scalable numerology, our framework successfully
satisfies users who require URLLC services, thereby striking
a balance between the diverse users’ service requests.

In contrast, in the LTE-only model, the users’ average
satisfaction decreases with the increase in the number of users
who are requesting eMBB service (Req

= 0.8). For example,
when the number of users requesting URLLC service is
greater than eMBB service (Req

= 0.2), the user’s average
satisfaction is the greatest. This is due to, when Req value is
small, the number of users requesting high-rate based service
is small but when Req value increases the LTE-only model
can’t maintain to satisfy all users results in a great degradation
in average users’ satisfaction due LTE limited resources.
In the LTE-onlymodel, users can only benefit from deploying
network slicing with scalable numerology, and this showed
that when Req

= 0.2, as 80% of users are requesting URRLC
the users average satisfaction is the best at the expense of
eMBB users.

Without loss of generality, Fig.(4&5) capture the difference
between our proposed framework and LTE-only model in
terms of striking a balance between the diverse users’ service
requests. As the user’s average satisfaction is divided into
user’s rate satisfaction and user’s delay satisfaction accord-
ing to (16), Fig. 4 shows the change of users’ average rate
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satisfaction with the increase of the number users. The com-
parison is evaluated over two values of Req, which are the
minimum (Req

= 0.2) and themaximum (Req
= 0.8) to evalu-

ate the performance of both models. It can be noticed that our
proposed framework, always achieves better performance in
terms of user rate satisfaction, even with the increase of the
number of users who request eMBB service that requires a
high data rate.

This shows the effect of deploying the LWA technol-
ogy which leverages the traffic load and supports LTE
limited capacity. In addition, our proposed regret-matching
re-association phase algorithm is designed to follow each
user’s intentions (utility function (24)) to choose the most
suitable transmission mode (M1, M2, and M3), that tends
to maximize the user’s satisfaction and guarantee each user’
SLA. In comparison, LTE-only model led to a significant
degradation in users’ average rate satisfaction levels com-
pared to our proposed framework with an average of only
35% of users are satisfied, this can be attributed to deploying
only LTE-BSs that suffer from a limited capacity, especially
in high demand rate-based services.

Moreover, Fig. 5 shows the change in users’ average
delay satisfaction with the increase in the number of users.
The comparison is also evaluated over two values of Req

(0.2&0.8). It can be noticed that, the LTE-only model reaches
high values in users delay satisfaction compared to our pro-
posed framework. This can be attributed to the number of
LTE-BSs that deploy network slicing with scalable numerol-
ogy is greater than the number in our proposed framework.
In our proposed system model, we deploy 2 ISCs, which are
divided into 2 LBSs and 2 WiFi-BSs, while in LTE- only
model these 2 ISCs are replaced 4 LBSs to maintain the
same number of BSs. Increasing the number of LTE-BSs that
support NR scalable numerology will lead to an enhancement
in users’ average delay satisfaction at the expense of users’
average rate satisfaction. In contrast, our proposed frame-
work maintains a guaranteed total average user’s satisfaction
compared to LTE-only model.

Our proposed model is capable of maintaining user sat-
isfaction while achieving a balance between rate and delay
users’ satisfaction even when there are changes in user’s ser-
vice requests percentage. Disposing our proposed framework
which efficiently strike a balance between the diverse user’s
service requests, enhance LTE-RAT limited capacity while
considering NR scalable numerology technique can achieve
better performance in users’ average satisfaction.

Furthermore, the performance of our proposed framework
is evaluated and compared with the LTE-WiFi model as
shown in Fig.6. In the LTE-WiFi model, 2 ISCs deployed
in our proposed framework are replaced by 2 LSBs and 2
WiFi- BSs to maintain the same number of BSs.

The comparison is performed at the change in the
user’s average satisfaction with the increase in the number of
users considering different values (Req), as shown in Fig.6.
It can be noticed that, in the LTE-WiFi model, the users’
average satisfaction is enhanced compared to LTE-model

FIGURE 4. Evaluation of users’ average rate satisfaction between our
proposed model and LTE-only model with different Req values.

FIGURE 5. Evaluation of users’ average delay satisfaction between our
proposed model and lte-only model with different Req values.

FIGURE 6. Evaluation of users’ average satisfaction between our
proposed model and LTE-WiFi model with different Req values.

as the presence of unlicensed band (WiFi) leverages the
traffic load and supports the LTE limited capacity. By deploy-
ing WiFi-BSs, eMBB users’ opportunity to achieve their
requested high data rate service requirement increased. How-
ever, when the number of users in the network increased
to reach N = 80, and the percentage of users requesting,
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eMBB service also increased (Req
= 0.8), there is a noticeable

degradation in LTE-WiFi model. As only of an average 64%
of users are being satisfied. This degradation can be subjected
to congestion in both LTE and WiFi BSs as they become
overwhelmedwith the increase of the number of users. On the
other hand, our proposed model offers users an opportunity
to enhance their achievable data rate by exploiting the LWA
transmission mode.

Additionally, in order to show the effectiveness of our
proposed framework, Fig.7 shows the effect of changing the
Rref values on users’ average satisfaction. In Fig.7, we com-
pared our proposed framework with the LTE-only model and
LTE-WiFi model ranging the Rref from 1Mbps to 2Mbps,
and analyzed how this will affect the users’ average satis-
faction. We took an average rate request (Req

= 0.5) where
the number of users requesting eMBB service is equal to the
number of users who are requesting URLLC service with
a total number of N = 80 users. Generally, as shown the
users’ average satisfaction decreases with the increase of Rref
value in all models, however, our proposed framework can
still maintain an average of 70% of users’ average satisfaction
compared to the other two models.

Moreover, Fig.8 shows the effect of changing the Dref
values on users’ average satisfaction. In Fig.8, we compared
our proposed frameworkwith LTE-onlymodel and LTE-WiFi
model ranging the Dref from 0.5msec to 1.5msec, and ana-
lyzed how this will affect the users’ average satisfaction.
We took an average rate request (Req

= 0.5) as the number
of users who requesting eMBB service is equal the number of
users who are requesting URLLC service with a total number
of users N = 80 users.
Generally, as shown the users’ average satisfaction

decrease with the decreases of Dref value in all models, how-
ever, our proposed framework can still maintain an average
of 60% of users’ average satisfaction compared to the other
two models. It may concluded, that our proposed framework
has the capability to achieve and maintain users’ satisfac-
tion regardless of the type of service requested compared to
LTE-only model or LTE-WiFi model. This is accomplished
by as our proposed framework leveraging LWA technology
incorporatingNR scalable numerology technique. By propos-
ing such a framework we can increase capacity and improve
the overall user experience for both high data rate and lower
latency based-service.

Furthermore, in Fig.9 our proposed algorithm is compared
with three Genetic-based algorithms which are Genetic all,
Q-learning &Genetic and Genetic &Regret-matching.
In order to solve the optimization problem, in terms of
maximizing total users’ satisfaction, GA-all is first used
to jointly find an efficient resource allocation ratio αj
for slice j in each BS along with finding the optimum
value of scalable numerology µj, then GA is used in
re-association phase instead of regret matching algorithm.
In Q-learning &Genetic, the GA only substitutes the regret
matching algorithm in re-association phase in our proposed
model, in contrast in Genetic &Regret-matching, the GA

FIGURE 7. The effect of changing the Rref on users’ average satisfaction.

FIGURE 8. The effect of changing the Dref on users’ average satisfaction.

FIGURE 9. Comparing our proposed model with heuristic-genetic
algorithm (GA).

substitutes the Q-learning algorithm in our proposed model.
Our proposed framework has demonstrated notable success
in achieving high average user satisfaction values, reach-
ing approximately 74%. This performance is comparable
to the results obtained by three other Genetic Algorithm
(GA)-based algorithms, which achieve around 77% satisfac-
tion. While GA is renowned for finding optimal solutions in
large search spaces, it is important to consider the conver-
gence time complexity. This complexity is affected by factors
such as the population size (P), the number of generations
(G), and the runtime complexity of the fitness function (F).
Overall, the complexity of GA can be expressed as O(GPF).
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C. COMPUTATIONAL COMPLEXITY,OPTIMALITY AND
CONVERGENCE ANALYSIS
We conducted a comparison between our proposed
Q-Learning algorithm and two other RL-based algorithms,
namely DQN and DDQN. We analyzed the variations in
achieving users’ average satisfaction as the number of users in
the network increased. As shown in Fig.10 the three RL-based
algorithms’ performances are equally the same, they all
almost achieve an average of 75% of user’s satisfaction.

However, from the perspective of the time complexity of
each algorithm, the Q-Learning can be easily converging after
I iterations and T slot time. Therefore, the time complexity
of Q-Learning algorithm can be expressed as O(IT). On the
other side, the time complexity of DQN can rely on more
factors, I iterations, T slot time, number of layers L of DQN
neural network and the number of neurons n in each layer l,
l∈ L. Therefore, the time complexity of DQN to converge can
be expressed as O(IT

∑L−1
=0 +1). In addition, although

the convergence of DDQN algorithm depends more on the
number of states and action sets associated with the learning
process, however, once the convergence state is achieved,
any updating states will not need a learning process [46].
Concluded from this, Q-learning has the highest learning
efficiency and less time complexity than other RL-based
algorithm, however, if the state and action space are increased
and become too large, other RL-based algorithmwill be more
efficient.

Furthermore, In Q-learning algorithm, in each state,
an action is performed based on the ε-greedy policy that
represents both the exploration (random action selection)
and the exploitation (action with the maximum Q-value)
trade-off. Where the agent randomly selects an action with
probability epsilon ε and otherwise selects with probability
1−ε the action greedily. The value of epsilon decays is based
on a decay rate called epsilon decay and can be calculated as
follows [47]:

Epsilon = Epsilon(1− EpsilonDecay), (33)

The greater the value of Epsilon, the greater the agent
randomly explores the action space. We present an analysis
of the impact of different Epsilon values on the optimality of
our proposed optimization problem. We specifically examine
the effect of Epsilon Decay values on user satisfaction, which
is a reward in our Q-learning algorithm. We evaluate three
different Epsilon Decay values as shown in Fig 11, ranging
from 0.03 to 0.0003. In our proposed algorithm (as described
in Table 3), we utilize an Epsilon Decay value of 0.003,
which is determined based on the chosen Maximum number
of steps index. Our analysis as shown in Fig.11 reveals that
the Epsilon Decay value of 0.003 consistently outperforms
the other Epsilon values across different N values (num-
ber of users), resulting in an average user satisfaction of
approximately 65%.

Furthermore, in this simulation, the convergence of our
proposed Q-Learning Algorithm is evaluated as shown in
Fig.12. The result of this simulation is based on the maximum

FIGURE 10. A comparison between our proposed Q-Learning algorithm
and other RL-based algorithms.

FIGURE 11. A graphical demonstration of variation of epsilon decay.

FIGURE 12. Convergence process of proposed q-learning algorithm.

value of every 2000 episodes. It can be observed that the
Q-Learning algorithm starts at low reward first until it starts
to converge at episodes 200.

VIII. CONCLUSION
A radio resource allocation scheme regarding the eMBB and
URLLC slices in Multi-RAT HetNet architecture is studied.
The proposed framework leverages the 5G New Radio NR
scalable numerology technique and LWA, aiming to solve the
radio resource slicing allocation problem for serving URLLC
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and eMBB users. The user association problem has been
formulated as an optimization problem jointly with finding an
efficient resource allocation ratio for each slice in each base
station and finding the optimumvalue of scalable numerology
in URLLC slice in each BS with the objective of maximizing
users’ satisfaction. To solve this problem a Q-learning and
Regret-Matching algorithms are formulated. Our simulation
results show that our proposed framework is capable of cater-
ing the diversity in users’ services requests and maintaining
users’ satisfaction.
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