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ABSTRACT Fingerprint recognition technology has been extensively employed across various sectors
of society. The direct publication of fingerprint images leads to the disclosure of sensitive information.
According to the fingerprint image identification process, the fingerprint image protection process is actually
the fingerprint image feature point location information, quantity information, type information protection.
To address this issue, this paper proposes a machine learning and differential privacy-based fingerprint image
publish algorithm called DP-RKLAP. The algorithm establishes a protected process to match feature points
in fingerprint images and employs a clustering algorithm for initial segmentation of the images (KLAP).
Additionally, a multinomial regression algorithm is applied to preprocess the segmented image regions,
constructing a regression model that accurately determines fluctuation amplitudes for precise segmentation
of protected areas containingmatching feature points (RKLAP). Considering the uncertainty in segmentation
caused by uncertain feature point locations in fingerprint images, we introduce a dynamic allocation method
(DP) for privacy budget allocation. The exponential mechanism leverages the relationship between the
number of matching feature points and segmentation regions to dynamically allocate privacy budgets within
the Laplace mechanism framework of differential privacy technique, thereby achieving local protection
publish for fingerprint images. This reduction in sensitivity effectively mitigates noise errors during the
process of privacy protection, thereby achieving a balance between privacy and usability of the fingerprint
images. Experimental results confirm that our proposed method successfully achieves privacy protection
during the publishing process of fingerprint images, while still maintaining high usability after protected
publishing and matching verification using real-world datasets.

INDEX TERMS Clustering, regression, differential privacy, publishing fingerprint image, privacy budget
allocation.

I. INTRODUCTION
The continuous development of modern information technol-
ogy has led to the widespread utilization of fingerprint iden-
tification technology in various domains and products. How-
ever, this aforementioned technology presents a possibility
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for compromising human biometric privacy. In October
2020, the China Academy of Information and Commu-
nications Technology (CAICT), the Telecommunications
Terminal Industry Association (TTIA), the Internet Society
of China (ISOC), and other organizations jointly published
the ‘‘Research Report on Biometric Privacy Protection’’ [1].
This report emphasized the necessity for innovative means to
safeguard biometric privacy, urging vigorous enhancement in
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fundamental theoretical research as well as active exploration
and development of technical measures. In 2018, India’s iden-
tification system known as Aadhaar encountered a massive
database leakage incident that exposed personal information
belonging to over one billion users [2]. The leaked data
encompassed highly sensitive details such as fingerprints and
irises. As science and technology continue to advance rapidly,
ensuring privacy protection for human biometric features
is becoming increasingly crucial [3]. Countries worldwide
have expressed profound concerns regarding this matter by
strengthening their standard systems for biometric privacy
protection, establishing assessment mechanisms, and enhanc-
ing overall safeguards.

Fingerprints constitute a crucial component of human bio-
metric features, and safeguarding the privacy of fingerprint
images is imperative for information security. The protection
process of fingerprint images is closely intertwined with the
recognition process, wherein the matching method employed
in fingerprint image recognition serves as a pivotal step in fin-
gerprint recognition technology. The acquisition procedure of
the fingerprint acquisition device projects three-dimensional
fingerprints onto a two-dimensional plane [4], preprocesses
the two-dimensional fingerprint image to enhance its qual-
ity [5], and subsequently extracts the unique features embed-
ded within it. Directly publishing unprotected fingerprint
images is highly likely to result in significant breaches of
personal privacy. Traditional technical measures focus on
preventing these images from being misappropriated [6].
However, due to the wide application of fingerprint iden-
tification systems, complete security cannot be guaranteed
for all databases storing such images [7]. At the same time,
publishing fingerprint images is an inevitable security veri-
fication process. Therefore, adding privacy protection during
the process of publishing fingerprint images can effectively
protect this sensitive information.

Most of the existing fingerprint image protection methods
derive from image protection technology. Early techniques
for protecting images primarily involved masking sensitive
information. However, physical masking makes the images
unusable. Therefore, researching data masking techniques
that resist cracking has become an important focus for image
protection. Among these techniques, anonymization [8], [9]
and encryption [10], [11] are commonly used means of safe-
guarding images. Anonymization involves generalizing data
to prevent accurate identification by attackers and generating
multiple responses when querying databases [12], [13], [14].
One classic application of anonymization is K-anonymity
technique [15]. However, it also exposes certain sensitive
information that can be obtained with background knowledge
gained from multiple queries. Data encryption is another
method for protecting image data, including secure multi-
party computation [16], homomorphic encryption [17], and
other approaches. Moreover, anonymization and data encryp-
tion techniques can be compromised by background attacks.
However, since fingerprint images are published for identity

authentication purposes, pure anonymization or encryp-
tion techniques only guarantee single protection during the
publishing process without simultaneously regulating both
privacy and usability. Therefore, using differential privacy
techniques that regulate the protective effect of fingerprint
images represents a better approach to privacy protection. The
technique of differential privacy protection [18], [19] ensures
the safeguarding of sensitive information irrespective of the
attacker’s level of background knowledge. Meanwhile, the
degree of privacy protection can be adjusted by controlling
the parameter variable ε in the definition of differential pri-
vacy [20], [21]. This allows for a reasonable and adjustable
planning of both privacy and usability aspects in finger-
print images while preventing excessive privacy measures
from severely compromising image usability [22], [23], [24].
By adjusting the amount of noise added to fingerprint images
based on sensitive information rather than overall dataset
data, it avoids adding significant noise that could potentially
destroy useful data in the dataset and achieves enhanced
privacy protection [25], [26], [27].

Most of the existing image differential privacy techniques
are primarily applied to face images for privacy protec-
tion [28], with limited research on the privacy protection of
fingerprint images [29], [30]. The core principle of differen-
tial privacy technology is to introduce noise into the protected
data [31], thereby perturbing the data and achieving distortion
effects, ultimately ensuring data protection.

The application of differential privacy technology in pro-
tecting fingerprint images is as follows: In the literature [29],
low-rank matrix factorization technology is used to decom-
pose the two-dimensional image matrix of a fingerprint
image. Perturbation noise is then introduced into the resulting
low-rank matrix using differential privacy, thereby achieving
privacy protection for the fingerprint image. However, this
method encounters significant global sensitivity during the
process due to uncertainty in the size of the fingerprint image,
which subsequently leads to increased errors caused by added
perturbation noise. On the other hand, in literature [30],
wavelet transform is applied to process fingerprint images
in the frequency domain and disturbance noise is added to
the coefficient matrix obtained from wavelet decomposition
for privacy protection purposes. In this approach, differential
privacy’s perturbation mechanism is utilized during adding
noise to each data point within the wavelet transform coeffi-
cient matrix, potentially resulting in more pronounced errors
caused by noise.

Face image differential privacy protection techniques are
mainly realized through three methods. Firstly, there is
frequency domain-based image differential privacy protec-
tion [32]. The image undergoes transformation followed by
the addition of Laplace noise to achieve privacy protec-
tion. This method not only introduces noise errors from
the differential privacy technique but also generates signifi-
cant reconstruction errors during transformations and inverse
transformations in the frequency domain. Secondly, there
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are algebraic methods-based differential privacy protections
for images involving matrix decomposition and compres-
sion [33]. This approach involves extracting eigenvalues from
the image matrix values for protection. The proposed method
incorporates both the noise error in the differential privacy
technique and the reconstruction error caused by subsequent
reconstruction. Additionally, a third approach involves safe-
guarding the 2D dataset by treating the 2D image matrix as
a form of dataset [34]. This strategy maintains an amount of
image data, thereby minimizing the impact of reconstruction
errors on the image protection process. Consequently, only
noise errors generated through differential privacy techniques
persist.

The utilization of two-dimensional datasets in the protec-
tion process effectively mitigates the impact of reconstruction
errors present in fingerprint images published by the pro-
tection method. However, the differential privacy protection
method based on sliding window technique mentioned in lit-
erature [35] fails to address the issue of differentially private
image protection from the perspective of spatial distribu-
tion characteristics inherent to the image itself. The region
growing technique for protection mentioned in literature [36]
excessively consumes non-essential privacy budget for safe-
guarding non-sensitive regions. Literature [37] mentions the
effectiveness of sensitive region delineation protection in
reducing privacy budget consumption. However, this method
is not applicable for fingerprint images.

Protecting the sensitive region of a fingerprint image
involves reducing global sensitivity by applying differen-
tial privacy techniques. In the differential privacy technique,
the Laplace mechanism [20] perturbs data proportionally
to global sensitivity and inversely to the size of the pri-
vacy budget. Therefore, by segmenting image data, we can
modify the global sensitivity in differential privacy and con-
sequently alter the resulting noise error. The paper proposes
a local sensitivity-based method for protecting fingerprint
images, as excessive global sensitivity leads to the generation
of excessive noise errors. The exponential mechanism [38]
images and assigns a privacy budget sequentially based on
sampling probability, adding appropriate noise according to
the local sensitivity with the assigned budget. Therefore, it is
crucial to identify effective sensitive regions within finger-
print images for ensuring their privacy protection.

The subsequent sections encompass the primary contribu-
tions of this paper:

1) Minimizing the noise errors generated by finger-
print images using differential privacy techniques and
enhancing the balance between privacy and usability
when publishing protected fingerprint images, the allo-
cation of the privacy budget is dynamically adjusted
to improve the availability of the published protected
fingerprint images while reducing the amount of noise
introduced in the protection process.

2) The problem of reducing the significant noise
error generated by the Laplace mechanism is being

addressed. By leveraging the matching characteristics
of fingerprint images, a combination of clustering and
polynomial regression algorithms is employed to seg-
ment the feature points thatmatchwithin the fingerprint
image. This approach enables a localized protection
process for individual regions of the image instead of
globally protecting the entire fingerprint image.

3) The process of dynamically allocating privacy budget
involves designing an index mechanism with a rea-
sonable scoring function to establish the relationship
between the number of matching feature points in a
fingerprint image and the size of the localized image.
This allows us to obtain a rational sampling order.
By intelligently sampling within the local protection
region, we can dynamically adjust and allocate our pri-
vacy budget accordingly, thus proposing a mechanism
for dynamic allocation of privacy budget.

4) Theoretical proof demonstrates that all the algorithms
proposed in this paper adhere to the definition of
differential privacy. Furthermore, empirical evidence
confirms that these algorithms not only satisfy the
definition of differential privacy but also effectively
balance the trade-off between privacy and usability in
published fingerprint images through experimentation
with privacy-preserving images within a real finger-
print image dataset for matching purposes.

II. BACKGROUND
A. DIFFERENTIAL PRIVACY
The concept of a neighborhood dataset (also known as a
sibling dataset) is fundamental in the field of differential
privacy. It refers to two datasets where only one data point
differs between them. In image processing, particularly with
two-dimensional grayscale image matrix data, the definition
of neighboring images is based on the concept of neighboring
datasets.
Definition 1 (Neighborhood Image): Given the dimen-

sions of the original image X , which is m × n, the grayscale
image matrix is obtained through the normalization process
denoted as Xm×n. The processing of this matrix essentially
involves manipulating each data quantity within the. There-
fore, (1) representation of the image.

Xm×n =

 x11 · · · x1n
...

. . .
...

xm1 · · · xmn

 (1)

Definition 2 (Differential Privacy): Given a randomized
algorithm M for releasing image data, if S ∈ Range(M ) is
the output range of algorithm M and any output on S from
two mutually neighboring images X and X ′ satisfies (2), then
the algorithmM satisfies ε-differential privacy.

Pr [M (X) ∈ S] ≤ exp (ε) × Pr
[
M
(
X ′
)

∈ S
]

(2)

Definition 3 (Global Sensitivity): The global sensitivity of
query function Q, denoted as the global sensitivity can be
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represented by (3), where Q : X → Rn.

1Q = maxX ,X ′

∥∥Q (X) − Q(X ′)
∥∥
p (3)

Definition 4 (Local Sensitivity): The local sensitivity of
query function Q, denoted as (4) and (5), can be expressed
when Q maps from X (x ∈ X) to Rn.

1QLS = maxX ,X ′

∥∥Q (X) − Q(X ′)
∥∥
p (4)

1QGS = max (1QLS) (5)

Theorem 1 (Laplace Mechanism): The algorithm X is
defined as a randomized procedure that generates an m × n
fingerprint image, where the input data is the image X and
the output is denoted by X ′. This algorithm satisfies (6) and
ensures ε-differential privacy for algorithmM .

X ′
= X + Lap(1Q

/
ε) (6)

Theorem 2 (Exponential Mechanism): The sampling func-
tion under the exponential mechanism M selects samples
from the sampling set X , where W is an element of X . The
scoring function 1Q (X ,W ) is established based on these
samples, and1u represents the global sensitivity of this scor-
ing function. Therefore, the sampling process satisfies (7).

Pr [M (X , 1Q) = W ] ∝ exp
(

ε × 1Q (X ,W )

21u

)
(7)

Property 1 (Sequence Combinatoriality): The algorithm
Mi satisfies εi-differential privacy for a given data set X
and the differential privacy algorithm respectively. Therefore,
when combined, the algorithm M satisfies ε-differential pri-
vacy.

B. FINGERPRINT RECOGNITION
The characteristics of biometric fingerprinting should encom-
pass universality, ensuring that every individual possesses
this biometric trait, uniqueness, guaranteeing sufficient dif-
ferences in biometric traits among individuals, persistence,
indicating the stability of the biometric trait over time, and
collectability, enabling quantitative measurement of the bio-
metric trait.

Fingerprint features can be classified into three levels
ranging from coarse to fine-grained details [39], [40]. The
first level comprises the ridge direction field and frequency
map, while the second level consists of map. Lastly, the third
level encompasses both inner and outer contour information
of ridges. Due to widespread usage and cost considerations
associated with fingerprint identification systems, current
matching technologies primarily rely on [41]. Level 1 fea-
tures are mainly utilized for retrieving fingerprints from
databases [42]. Tertiary features offer higher accuracy for
fingerprint identification andmatching but requiremore strin-
gent sampling requirements [43], making them suitable for
scenarios demanding enhanced security and confidentiality.

The fingerprint identification system primarily encom-
passes fingerprint acquisition, fingerprint enhancement, fea-
ture extraction, and fingerprint matching among other

aspects [44]. Fingerprint image acquisition serves as the
initial step in the fingerprint recognition system, while fin-
gerprint enhancement involves repairing the quality of the
captured fingerprint image. Feature extraction plays a crucial
role in automatic fingerprint recognition systems, whereas
fingerprint matching constitutes the key technology within
such systems. Fingerprint imagematching represents the final
stage of the recognition process and typically employs align-
ment techniques to identify corresponding points between
two fingerprints. Alignment involves translating, rotating,
and scaling images to achieve maximum morphological sim-
ilarity before utilizing a matching criterion to compute sets
of feature points for establishing correspondence between
fingerprints. Current research on fingerprint recognition has
yielded various methods for performing these matches.

The focus of this paper is on the process of protecting
fingerprint images through the utilization of a feature point
description operator, which is a widely adopted and efficient
method based on point pattern matching. Figure 1 illus-
trates the three approaches employing point patternmatching,
respectively. (a) realizes the matching process of fingerprint
images by constructing the feature point description opera-
tor through the intersection points of fingerprint secondary
features. (b) realizes the fingerprint image matching process
by constructing the feature point description operator through
the end points of the fingerprint secondary features. (c) con-
structs a feature point description operator through all the
fingerprint secondary features to realize the fingerprint image
matching process.

According to the analysis of the fingerprint image feature
point description operator, the fingerprint image privacy pro-
tection process is by covering the fingerprint image feature
point location information, quantity information, type infor-
mation. Therefore, how to protect these sensitive information
of fingerprint images while adding less disturbance noise is
the main research content of this paper.

III. METHODOLOGY
The implementation of protection methods for fingerprint
images must satisfy the following requirements:

1) The definition of differential privacy must be main-
tained throughout the entire design process of the
protection method. Definition 1 and (1) demonstrate
that protecting the fingerprint image involves intro-
ducing noise to its pixel points. When applying the
differential privacy technique to safeguard the fin-
gerprint image, Definition 2 and (2) indicate that as
the privacy budget increases, the published fingerprint
image should have a smaller error. Conversely, as the
privacy budget decreases, a larger error in the published
fingerprint image is acceptable.

2) In the process of fingerprint image segmentation, it is
crucial to group the feature points and adopt a suitable
segmentation method based on the matching charac-
teristics of the fingerprint image. When introducing
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FIGURE 1. Different fingerprint image feature points are used to
construct feature point description operators.

noise into the fingerprint image, Theorem 1 and (6)
demonstrate that the magnitude of noise error depends
on both global sensitivity and privacy budget. Defini-
tion 3 and (3) indicate that the computation of global
sensitivity is influenced by the size of the protected
image. By segmenting the image, it becomes possible
to effectively reduce global sensitivity, decrease noise
magnitude, and enhance usability of the fingerprint
image.

3) The allocation process of the privacy budget should
consider the varying importance of feature matching
points in fingerprint images and their corresponding
characteristics. Therefore, it is necessary to take into
account the size relationship between the feature and

the protected image during the allocation process.
Theorem 2 and (7) demonstrate that a well-designed
scoring function is essential for effectively sampling
local images to reasonably allocate privacy budget.
By appropriately calculating the sampling of the local
region, we can determine the size of privacy budget and
achieve dynamic allocation.

4) The process of incorporating privacy budget for local
images, aimed at addressing the issue of high global
sensitivity, can be utilized to define (4) and (5) for
local sensitivity by adding perturbation noise. Property
1 demonstrates that the total amount of privacy budget
remains constant throughout the fingerprint image pro-
tection process, ensuring compliance with differential
privacy techniques.

A. METHODS FOR GLOBAL PROTECTION OF
FINGERPRINT IMAGES
In this paper, we first propose LAP (Laplace Mechanism
Publication), a differential privacy publication algorithm
that employs global protection of fingerprint images. LAP
directly introduces Laplace noise to perturb the global image,
resulting in an output fingerprint image denoted as X ′. Theo-
rem 1 and (6) demonstrate the protection process of depicted
in (8).

X ′

(p,q) = X(p,q) + Lap
(

1QLAP
εLAP

)
(8)

The matrix data Lap
(
1Q

/
ε
)
has the same structure as the

image X matrix data. Definition 1 and (1) demonstrate that
protecting the fingerprint image involves adding perturbation
data to pixel values in accordance with the size of pri-
vacy budget, for a fingerprint image satisfying ε-differential
privacy-preserving fingerprint image distribution method,
each pixel in the image receives a privacy budget of ε for
perturbed data. 1Q represents global sensitivity, as defined
in Definition 3 and (3). The magnitude of global sensitivity
is determined by the amount of sensitive data present in the
dataset. Thus, it is calculated as shown in (9) within the LAP
algorithm.

1QLAP = m× n (9)

The implementation of adding noise to the data perturbs
the data in order to achieve the desired perturbation effect. Its
probability density function can be mathematically expressed
as (10).

Lap
(
x
/
b
)

=
1
2b

× exp(−
|x|
b
), b =

1Q
ε

(10)

The deflation factor, denoted as b, represents the primary
range of distribution for the added noise data in image pro-
tection. When safeguarding an image, it is crucial to consider
that the pixel values of the protected image fall within the
range of 0 to 255. Consequently, a large scaling factor can
introduce significant distortion and severely compromise the
usability of the image data. Therefore, it is for b to be smaller
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Algorithm 1 Differential Privacy Publishes Algorithm LAP
Based on Global Protection of Fingerprint Images
Input: original fingerprint image X
Output: meets ε-differential privacy global
privacy-preserving fingerprint image X ′

Parameters: Image size is m× n, privacy budget is ε

1. Read the original image X
2. Calculate the global sensitivity 1QLAP, 1QLAP = m× n
3. Add Laplace noise

for p in range (m) :

for q in range (n) :

X ′

(p,q) = X(p,q) + Lap
(
1QLAP

/
εLAP

)
4. Output meets ε-Differential privacy global
privacy-preserving fingerprint image X ′

than the maximum fluctuation in pixel values (b ≤ 256).
As such, ensuring ε = 1Q

/
b ≥ 1Q

/
256 becomes essen-

tial when determining the size of privacy budget in LAP
algorithm.

εLAP ≥ 1QLAP
/
256 = (m× n)

/
256 (11)

The process of directly adding perturbation noise to all
pixel values in the fingerprint image, known as the LAP
differential privacy publish algorithm based on global pro-
tection of the fingerprint image, is implemented according
to algorithm 1, considering the global sensitivity 1QLAP and
privacy budget εLAP.
The given privacy budget ε is used to protect a pair of

fingerprints, each with a size ofm×n. To ensure privacy pro-
tection, the number of pixels in the image is first calculated to
determine the global sensitivity 1QLAP (Step 2). Then, based
on this global sensitivity 1QLAP and the privacy budget ε,
perturbation noise following a Laplace distribution is added
to each pixel in the fingerprint image (Step 3).

The image error generated by the LAP algorithm is
calculated due to the exclusive utilization of the Laplace
mechanism for data perturbation during image protection,
resulting in solely noise error as indicated by (12).

Error
(
X ′
)
LAP = LE

(
X ′
m×n

)
LAP (12)

The probability density function, as illustrated in (10),
is employed to compute the variance of the lace distribution
for assessing the summation of noise errors’ squares. The
publish process of the LAP algorithm involves generating
image are quantified utilizing the formula presented in (13).

Error
(
X ′
)
LAP = LE

(
X ′
m×n

)
LAP

= m× n×
2
(
1QLAp

)2
ε2

= 1QLAp ×
2
(
1QLAp

)2
ε2

(13)

The above reveals that the primary determinant of image
error size in the LAP algorithm is the global sensitivity of the

image, denoted as 1QLAp. Definition 3 and (3) demonstrate
that the magnitude of global sensitivity is contingent upon the
number of sensitive pixels present in image X . The quantity
of protected sensitive pixels within image is dictated by this
global sensitivity, thereby reducing 1Q. By diminishing the
extent of global sensitivity, we can minimize any poten-
tial errors arising during fingerprint image protection and
enhance overall usability.

B. CLUSTERING ALGORITHM SEGMENTATION
FINGERPRINT IMAGE NON-GLOBAL PROTECTION
METHODS
The error is analyzed based on the LAP algorithm to
propose a non-globally protected differential privacy publi-
cation algorithm, known as KLAP (K images were protected
by Laplace mechanism publication), which AGNES for
matching discrete randomly distributed feature points and
determining the segmented image size according to the clus-
tering result.

The description operator for matching feature points in
the fingerprint matching process utilizes the relative posi-
tions and distances between these points, with the distance
sequence being used to determine the description opera-
tor. The computation process of the description operator
mainly relies on the distancemetric betweenmatching feature
points to determine their distances, thus employing AGNES,
a bottom-up clustering algorithm, as the grouping method for
sample points.

The KLAP algorithm implementation segments the finger-
print image based on the AGNES clustering results to ensure
the protection of positional and quantitative information of
matching feature points within the cluster. Therefore, it is
necessary for the segmented local image to include all match-
ing feature points in the cluster. To determine the localized
protection area, we adopt a direct and effective method by
setting the maximum coordinate value of samples in the clus-
ter as an upper limit andminimum coordinate value as a lower
limit. Additionally, an adjustment amplitude is introduced
to prevent leakage of sensitive information from boundary
details. The specific implementation process of Algorithm
KLAP is illustrated in Algorithm 2.

Assuming that the set of coordinates extracted from the fin-
gerprint image is point (x, y) = {F1 (x1, y1) , · · · ,Fi (xi, yi) ,

· · · ,FM (xM , yM )} (Step 2), the fingerprint image extracted
a total of M coordinates of matching feature points, take
this as M . Random sample coordinates, which are clustered
using the AGNES algorithm to determine the number of
clusters is K and the number of samples in each cluster is
Mi (0 ≤ i ≤ K ) and the number of samples in each cluster is
M =

∑i=K−1
i=0 Mi (Step 3). Take the clustering resultMi as the

data segmentation image, according to (14) to calculate the
first i critical coordinate value of the matching feature point
within the cluster (Step 4).

⌢xmax = max {Mi [x, :]} ,
⌢xmin = min {Mi [x, :]}

⌢ymax = max {Mi [:, y]} ,
⌢ymin = min {Mi [:, y]} (14)
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Algorithm 2 A Non-Globally Protected Differential Privacy
Publish Algorithm KLAP Based on Clustered Segmented
Fingerprint Images
Input: original image X Matching feature point coordinate
set point (x, y)
Output: non-globally protected image that satisfies differen-
tial privacy X ′

Parameters: Image size is m × n, total privacy budget is ε,
number ofmatching feature points isM , pixels to be protected
is Q
1. Read the original image X and convert to grayscale image
matrix Xm×n
2. Create all-zero matrix Ym×n, read the set of coordinates of
matching feature points point (x, y) and mark Y (x, y) = 255
3. The matching feature points are clustered using the hierar-
chical clustering algorithm AGNES, and the clustering result
is Mi, M =

∑i=K−1
i=0 Mi

4. Clustering results to identify localized protected areas
4.1. Select from the clustering resultMi and labeling
4.2. The coordinates of matching feature points in the
cluster extract the number of pixels to be protected

4.2.1. Determination of localized protection area
boundaries

Calculation of the adjustment
dist_x = min {dist (xm, xn) , xm ∈ Mi, xn ∈ Mi}

dist_y = min {dist (ym, yn) , ym ∈ Mi, yn ∈ Mi}

Calculation of area boundaries
xmax = max {Mi [x, :]} + dist_x
xmin = min {Mi [x, :]} − dist_x
ymax = max {Mi [:, y]} + dist_y
ymin = min {Mi [:, y]} − dist_y

4.2.2. Marking pixels to be protected
for x in range (xmax − xmin + 1) :

for y in range (ymax − ymin + 1) :

Y (x + xmin, y+ ymin) = 255
Qi = Qi + 1

4.2.3. Skip to step 4.1 and re-select theMi until all the
Mi are labeled

4.3. Calculate the total number of pixels to be protected
Q,Q =

∑i=K−1
i=0 Qi

for x in range (m) :

for y in range (n) :

if (Y (x, y) == 255) :

Q = Q+ 1
5. Calculate the global sensitivity 1Q, 1Q = Q
6. Add Laplace noise

for p in range (m) :

for q in range (n) :

if (Y (p, q) == 255) :

X ′

(p,q) = X(p,q) + Lap
(
1QKLAP

/
εKLAP

)
7. Output non-globally protected images that satisfy differen-
tial privacy X ′

The region boundary should not be directly determined by
the critical coordinate value of the matching feature point,

as it may inadvertently disclose privacy information. Instead,
consider incorporating a certain adjustment amplitude to the
critical coordinate value of the matching feature point. This
adjustment amplitude be calculated as the minimum coordi-
nate interval between the matching feature points, and (15)
provides a method for its calculation.

dist_x = min {dist (xm, xn) , xm ∈ Mi, xn ∈ Mi}

dist_y = min {dist (ym, yn) , ym ∈ Mi, yn ∈ Mi} (15)

The critical coordinate values of the matched feature points
are adjusted by incorporating the adjustment magnitude, and
subsequently, the region boundary is computed using (16).

xmax = max {Mi [x, :]} + dist_x

xmin = min {Mi [x, :]} − dist_x

ymax = max {Mi [:, y]} + dist_y

ymin = min {Mi [:, y]} − dist_y (16)

The localized image of the segmented image is determined
by xmax, xmin, ymax and ymin as the boundaries of the rect-
angular region. The (17) represents the side lengths of the
segmented image.

1x = xmax − xmin + 1

1y = ymax − ymin + 1 (17)

The number of pixels to be protected in the determined
local area is calculated as (18) based on the clustering result
Mi.

Qi = 1x × 1y (18)

Similarly, the quantity of pixels to be safeguarded within
the local region determined by all matching feature point
information is as Q. Definition 3 and (3) demonstrate that
the magnitude of global sensitivity is linked to the volume of
data in the protection dataset.Moreover, due to the occurrence
of overlapping issues in determining the upper and lower
boundaries of segmented graphics, there is no need for repeti-
tive calculation when determining the number of protections.
Consequently, (19) accurately represents the size of global
sensitivity.

1QKLAP = Q ≤

∑i=K−1

i=0
Qi (19)

Based on the analysis of Laplace distribution probability
density function calculation, it is necessary to establish a
minimum lower limit for privacy budget in order to avoid
significant image data during fingerprint image privacy pro-
tection. Therefore, the amount of privacy budget required
by the KLAP algorithm must satisfy the relationship shown
in (20).

εKLAP ≥
1QKLAP
256

(20)

Based on Theorem 1 and (6), it can be observed that the
process of adding privacy protection to fingerprint image X
involves introducing perturbation noise to each pixel in the
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image, while (21) represents the safeguarding of the finger-
print image through Laplace mechanism.

X ′

(p,q) = X(p,q) + Lap
(
1QLAP

/
εLAP

)
(21)

The image error generated during the protection process
of the KLAP algorithm for fingerprint image X is solely
attributed to the utilization of Laplace mechanism. Therefore,
only noise error exists, which satisfies (22).

Error
(
X ′
)
KLAP = LE

(
X ′
m×n

)
KLAP (22)

The process of calculating the sum of squared errors in (13)
for global protection can also be the calculation of non-global
protection, namely, the sum of squared errors for all pixels
with added noise. The process of calculating the sum of lace
mechanism is given by (23).

LE
(
X ′
m×n

)
= E

 m∑
p=1

n∑
q=1

(
X ′

(p,q) − X(p,q)

)2
= E

K−1∑
i=0

xmax∑
x=xmin

ymax∑
y=ymin

(
X ′

(x,y) − X(x,y)

)2
= E

K−1∑
i=0

xmax∑
x=xmin

ymax∑
y=ymin

(
LAP

(
1Q
ε

))2


= E

K−1∑
i=0

xmax∑
x=xmin

ymax∑
y=ymin

Error
(
LAP

(
1Q
ε

))
=

K−1∑
i=0

(
Qi ×

2 (1Q)2

ε2

)
≤ Q×

2 (1Q)2

ε2

= 1Q×
2 (1Q)2

ε2
(23)

The inclusion of the sum of squared errors from the
Laplace mechanism in (22) provides a measure for image
error magnitude of the KLAP algorithm, as shown in (24).

Error
(
X ′
)
KLAP = LE

(
X ′
m×n

)
KLAP

= 1QKLAP ×
2 (1QKLAP)2

ε2KLAP
(24)

According to the image error calculation of KLAP
algorithm, it can be seen that the reduction of the size of the
number of pixels to be protected by using local segmentation
method can effectively reduce the size of the amount of
noise in the process of publishing image, while the privacy
budget remains unchanged. Therefore, Algorithm KLAP is
better than Algorithm LAP in terms of fingerprint image X
protection effect is better than Algorithm LAP.

C. EGRESSION ALGORITHM SEGMENTATION
FINGERPRINT IMAGE NON-GLOBAL PROTECTION
METHODS
TheKLAP algorithm utilizes the AGNES algorithm to cluster
the matching feature points of the fingerprint image, and

based on the clustering result, segments the localized privacy
protected image. However, there is still a significant amount
of protection wastage in the determined local image, thus
further segmentation of the local protected image can be con-
ducted. In this section, we propose a non-globally protected
divided privacy publication algorithm for fingerprint images
based on clustering and local polynomial regression RKLAP
(Regression method divided K images were protected by
Laplace mechanism publication).

The samples of matched feature points were assigned
labels within the cluster using polynomial regression after
clustering. Additionally, the residual values between each
sample point and the regression model were calculated. The
line region of the myopic regression model was determined
by considering the maximum residuals as the main flux sam-
ples within the cluster. However, when applying polynomial
regression to construct a regression model for matching fea-
ture points within clusters, an overfitting state may result
in excessively small, thereby revealing precise information
about both the location and number of matching feature
points within clusters.

The RKLAP algorithm utilizes two main methods to
address the overfitting problem in local segmentation of sam-
ple regions within a cluster. Firstly, increasing the number
of matching feature points in the cluster allows for higher
dimensions in the polynomial regression model, resulting in
improved fitting effect. However, also leads to an increase
in maximum residuals between the samples and the regres-
sion model as more sample points are included. Secondly,
reducing the number of regressions helps decrease the dimen-
sionality of polynomial regression and subsequently reduces
the degree of fit between samples and regression models,
thereby increasing maximum residual variance. It is impor-
tant to note that a larger value of residual difference does
not necessarily indicate better performance. Instead, it sig-
nifies larger splits by the regression model on local regions.
Therefore, setting an optimal threshold for residual dif-
ference is necessary during implementation as outlined in
Algorithm III-C.

The KLAP algorithm clusters the matched feature points
extracted from the fingerprint image and determines the result
in terms of clusters Mi. The local image of the segmented
image is determined based on xmax, xmin, ymax and ymin as the
boundaries of the rectangular region. Subsequently, polyno-
mial regression prediction is performed on the cluster samples
within the local region determined by clustering results to
obtain the regression model h′ (x). The minimum distance
between matching feature points within a cluster is calculated
according to (25).

Loss = min dist (xm, xn) (25)

The optimal residuals for predicting polynomial regression
are determined by taking the minimum distance of matched
feature points within a cluster Loss. The construction of
the polynomial regression model involves matching feature
points within clusters, and ultimately obtaining a polyno-
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Algorithm 3 Clustering and Polynomial Regression
Based Differential Privacy Publish Algorithm RKLAP
for Non-Global Protection of Fingerprint Images
Input: Original image X Matching feature point coordinate set
point (x, y)
Output:Non-globally protected image that satisfies differential privacy
X ′

Parameters: Image size is m × n, total privacy budget is ε, number of
matching feature points is M , pixels to be protected is Q
1. Read the original image X and convert to grayscale image matrix
Xm×n
2. Create all-zero matrix Ym×n, read the set of coordinates of matching
feature points point (x, y) and mark Y (x, y) = 255
3. According to Algorithm 2, the coordinates of the matching feature
points are clustered, and the clustering result is used to partition the
protection area.

3.1. Cauterization results Mi,M =
∑i=K−1

i=0 Mi
3.2. Segmentation of the boundaries of protected areas
Calculation of the adjustment
dist_x = min {dist (xm, xn) , xm ∈ Mi, xn ∈ Mi}

dist_y = min {dist (ym, yn) , ym ∈ Mi, yn ∈ Mi}

Calculation of area boundaries
xmax = max {Mi [x, :]} + dist_x
xmin = min {Mi [x, :]} − dist_x
ymax = max {Mi [:, y]} + dist_y
ymin = min {Mi [:, y]} − dist_y

4. regression algorithm for further segmentation of the local segmenta-
tion region

4.1. select from the clustering result Mi and labeling
4.2. Calculate the minimum sample distance within a

cluster as the optimal residuals
Loss = min dist (xm, xn)

4.3. Optimal residual judgment predicts polynomial regression
models h′ (x), find the actual regression model h (x)

4.4. Calculate the actual regression model h (x)
maximum residual
dist_max = max ∥h (x) − x∥1

minimum residual
dist_min = min ∥h (x) − x∥1

amplitude of fluctuations
dist = dist_max+dist_min

4.5. dist is the fluctuation amplitude and h (x) is the
regression model, segment the protected area image

4.5.1. In xmax to xmin select successive coordinate
values on the x

4.5.2. Determine the pixel coordinate values within the
fluctuation amplitude y,
(h (x) − dist) ≤ y ≤ (h (x) + dist)

4.5.3. determine whether the fluctuating pixels are within the
protected area segmented by the KLAP algorithm, and mark
if (ymin ≤ y ≤ ymax) :

Y (x, y) = 255
Qi = Qi + 1

4.5.4. Skip to step 4.1 and re-select theMi until all theMi are labeled
4.6, Calculate the total number of pixels to be protected
Q,Q ≤

∑i=K−1
i=0 Qi

for x in range (m) :

for y in range (n) :

if (Y (x, y) == 255) :

Q = Q+ 1
5. Calculate the global sensitivity based on the number of pixels to be

protected 1Q, 1Q = Q
6. Add Laplace noise

for p in range (m) :

for q in range (n) :

if (Y (p, q) == 255) :

X ′

(p,q) = X(p,q) + Lap
(
1QRKLAP

/
εRKLAP

)
7. Non-globally protected images that satisfy differential privacy X ′

mial regression model where the maximum residuals of a
strip of samples are closest to the optimal residuals x. The
equation (26) represents the calculation for actual maximum
residuals.

dist_max = max ∥ h (x) − x ∥1 (26)

The equation (27) is the actual minimum residual calcula-
tion.

dist_min = min ∥ h (x) − x ∥1 (27)

The maximum residual, when used as the fluctuation
amplitude, can encompass all the coordinates of the matching
feature points within the protected local area image. However,
there may still be some matching feature points that appear
at the boundary position. To effectively prevent informa-
tion leakage of these matching feature points, an adjustment
amplitude is added to the boundary by considering dist_max
as the boundary and dist as the adjustment amplitude. This
approach calculates the fluctuation amplitude of the regres-
sion model using (28).

dist = dist_max+dist_min (28)

The regression model is applied sequentially from xmax
to xmin, selecting coordinate values on x and calculating the
corresponding value of y. The equation (29) demonstrates the
calculation of pixel coordinate value y when the amplitude
of fluctuation is considered as a parameter in the regression
model.

y = h (x) + 1y, (−dist ≤ 1y ≤ dist) (29)

The objective is to ascertain whether the fluctuating pixel
(x, y) falls within the predetermined rectangular segmenta-
tion area that satisfies (30).

xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax (30)

If the pixel falls within the rectangular area segmented by
the KLAP algorithm, it is designated as a protected pixel and
its count is recorded as Qi = Qi + 1 this protected area is not
labeled. After constructing regression models for, excluding
overlapping regions, the total labeled pixels to be protected
(Q) is calculated. The count of pixels to be protected (Qi) is
calculated for all labeled pixels Q ≤

∑i=K−1
i=0 Qi.

The definition of 3 and (3) demonstrate that the compu-
tation of the global sensitivity in the RKLAP algorithm is
determined according to (31).

1QRKLAP = Q (31)

The privacy protection of fingerprint images necessitates
the establishment of a minimum lower limit on the privacy
budget in order to prevent significant distortions in image
data. Therefore, it is imperative for the amount of privacy
budget in the RKLAP algorithm to satisfy the relationship
depicted in (32).

εRKLAP ≥
1QRKLAP

256
(32)
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Theorem 1 and (6) demonstrate that, in the case of a finger-
print image X , the process of incorporating privacy protection
entails introducing perturbation noise to each pixel within the
furthermore, (33) illustrates the procedure for safeguarding
the fingerprint image through utilization of the Laplacemech-
anism.

X ′

(p,q) = X(p,q) + Lap
(
1QRKLAP

/
εRKLAP

)
(33)

The image error generated during the protection process
of fingerprint image X using the RKLAP algorithm is solely
attributed to the noise introduced by the Laplace mechanism.
In other words, the equation (34) holds true.

Error
(
X ′
)
RKLAP = LE

(
X ′
m×n

)
RKLAP (34)

The computation of the error sum of squares can be
obtained by combining (13) and it into (34) provides the
magnitude of image error generated by the RKLAP algorithm
as expressed in (35).

Error
(
X ′
)
RKLAP = LE

(
X ′
m×n

)
RKLAP

= 1QRKLAP ×
2 (1QRKLAP)2

ε2RKLAP
(35)

The algorithms LAP, KLAP, and RKLAP are applied to the
fingerprint image X . The error satisfies the relationship stated
in (36).

Error
(
X ′
)
RKLAP ≤ Error

(
X ′
)
KLAP ≤ Error

(
X ′
)
LAP (36)

Therefore, when considering the same fingerprint image
and maintaining the privacy protection of location and num-
ber of fingerprint matching feature points, algorithm RKLAP
demonstrates superior privacy preservation compared to algo-
rithms KLAP and LAP under an equal privacy budget.
Additionally, algorithmKLAP outperforms algorithmLAP in
terms of privacy preservation. Simultaneously, the availabil-
ity of fingerprint images protected by algorithm RKLAP is
highest, followed by algorithm KLAP, while algorithm LAP
exhibits the lowest availability.

D. DYNAMIC BUDGET FINGERPRINT IMAGE
NON-GLOBAL PROTECTION METHODS
The aforementioned three algorithms incorporate Laplace
noise protection into the global sensitivity of fingerprint data.
However, due to the high global sensitivity, a significant
amount of perturbation noise is added, resulting in distor-
tion of a large number of image data. To address this issue,
we employ the local sensitivity approach defined in Defini-
tion 4 and (4) (5) to add perturbation protection specifically
for fingerprint images. Nevertheless, it is crucial to select the
order of adding perturbation noise reasonably as it greatly
impacts the outcome of image protection.

The work of fingerprint matching can be analyzed to
design a rational allocation mechanism for privacy budget,
prioritizing the protection of regions with denser distribution
of fingerprint matching feature points and allocating more
privacy budget accordingly. Conversely, regions with sparse

distribution of fingerprintmatching feature points indicate the
presence of outlier matching feature points in the local region,
limiting their utilization in fingerprint matching work and
resulting in a later order and less allocation of privacy budget
during the protection process. This reasonable mechanism
for allocating privacy budget can effectively enhance the
recognition rate and usability of fingerprint images.

Therefore, in the context of privacy protection for fin-
gerprint images, it is crucial to strategically determine the
order of perturbation noise addition to the segmented region
image. This approach aims to enhance both the usability
and recognition rate of fingerprints, a quantitative analysis
is conducted to establish a correlation between the number
of pixels in the segmented region image and the count of
matching feature points. Furthermore, a density relationship
for measuring matching feature point density within the
protected segment is defined. A scoring function based on
this density relationship is devised as an index mechanism,
enabling effective sampling of local regions. The allocation of
privacy budget size dynamically adjusts according to factors
such as feature point count and regional size within these
sampled areas. This comprehensive process, referred to as
DP (Dynamic Protection mechanism), follows Algorithm 4
for specific implementation.

Firstly, the data results obtained from the RKLAP
algorithm are collected. The clustering outcomes of the
AGNES algorithm are denoted asMi, withM =

∑i=K−1
i=0 Mi.

Polynomial regression algorithm is utilized for of image
regions, and the pixel amount in each region is represented
by Qi, with Q ≤

∑i=K−1
i=0 Qi. The degree of protection for

a single protected pixel against matching feature points is
defined as Ii. An increase in Ii leads to an increase in ρ, while
a decrease in Ii results in a decrease in ρ. The calculation
method is illustrated by (37).

Ii = Mi
/
Qi (37)

The metric for measuring the density of matching feature
points is defined through Theorem 2 and (7), and a suitable
scoring function is designed based on this metric to determine
the sampling probability. Specifically, higher densities of
feature points correspond to, while lower densities lead to
smaller one’s privacy definition, we can use these densities
to establish a reasonable sampling order for regions in fin-
gerprint images that require protection, thereby facilitating
dynamic allocation of privacy budgets.

The allocation of the privacy budget is dynamically deter-
mined based on the number of pixels in the local region, and
a method for allocating the privacy budget according to the
pixel count in the local region is considered. By calculating
the remaining number of pixels to be protected, denoted as
Qleftj−1 in (38), and determining the remaining privacy budget

allocation, denoted as ε
left
j−1 in (39), we can illustrate the

dynamic distribution process of privacy budget using (40)
to (44).

Qleftj−1 = Qleftj−2 − Qj−1,Q
left
0 = Q, QleftK = 0 (38)
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Algorithm 4 Exponential Mechanism Sampling Probability
Designing aMore Rational Privacy Budget AllocationMech-
anism DP
Inputs: cluster result Mi, local area pixel amount Qi Privacy
budget ε = ε1 + ε2
Output: size of the local image allocation privacy budget is
εi
Parameters: number of matching feature pointsM , pixels to
be protected Q, original image X
1. Read the clustering results of the AGNES algorithm Mi,
M =

∑i=K−1
i=0 Mi

2. Polynomial regression algorithm for local segmentation of
images with local region pixel volume Qi, Q ≤

∑i=K−1
i=0 Qi

3. Calculate the degree of protection of a single protected
pixel against matching feature points Ii, Ii = Mi

/
Qi

4. Taking Ii as the input to the exponential mechanism, design
the scoring function 1Q (X , I ) for the exponential mecha-
nism
5. The scoring function of the exponential mechanism cal-
culates the sampling probability for each localized region
Pi ∝ exp

[
ε1×1Q(X ,Ii)

21u

]
6. Sampling probability for localized images with
privacy budget allocation process ordering Pj =

max {P1,P2,P3, · · · ,Pi, · · · ,PK−1}

7. Allocation of the privacy budget
7.1. Sampling probability to select local images
Pj → Qj

7.2. Calculate the remaining number of pixels to be
protected Qleftj−1

Qleftj−1 = Qleftj−2 − Qj−1,Q
left
0 = Q, QleftK = 0

7.3. Residual privacy budget allocation ε
left
j−1

ε
left
j−1 = ε

left
j−2 − εj−1, ε

left
0 = ε, εleftK = 0

7.4. Local Area Pixel Amount Qj and the number of
remaining pixels to be protected Qleftj−1 The privacy budget is
allocated in relation to the
7.4.1. If Qj ≤

1
4Q

left
j−1 then εj =

2Qj
Qleftj−1

× ε
left
j−1

7.4.2. If 1
4Q

left
j−1 ≤ Qj ≤

1
2Q

left
j−1 then εj =

1
2 × ε

left
j−1

7.4.3. If 1
2Q

left
j−1 ≤ Qj then εj =

Qj
Qleftj−1

× ε
left
j−1

7.5. Repeat the sampling of localized images, skipping
step 7.1, until all localized images are assigned privacy
budgets

8. Output localized images to assign the size of the privacy
budget εi, ε2 =

∑i=K−1
i=0 εi

ε
left
j−1 = ε

left
j−2 − εj−1, ε

left
0 = ε, ε

left
K = 0 (39)

If Qj ≤
1
4Q

left
j−1, holds true

εj =
2Qj

Qleftj−1

× ε
left
j−1 (40)

If 1
4Q

left
j−1 ≤ Qj ≤

1
2Q

left
j−1, holds true

εj =
1
2

× ε
left
j−1 (41)

If 1
2Q

left
j−1 ≤ Qj, holds true

εj =
Qj

Qleftj−1

× ε
left
j−1 (42)

Calculation Qleftj with ε
left
j

Qleftj = Qleftj−1 − Qj (43)

ε
left
j = ε

left
j−1 − εj (44)

The privacy budget allocation mechanism DP involves
counting the allocations of the privacy budget. Letω represent
the allocation coefficient for each individual allocation of the
privacy budget.

When Qj ≤
1
4Q

left
j−1, ω =

2Qj
Qleftj−1

,

when 1
4Q

left
j−1 < Qj ≤

1
2Q

left
j−1, ω =

1
2 ,

when 1
2Q

left
j−1 ≤ Qj, ω =

Qj
Qleftj−1

.

1. ε1 = ω1 × ε ε
left
1 = ε − ε1

2. ε2 = ω2 × ε
left
1 ε

left
2 = ε

left
1 − ε2

3. ε3 = ω3 × ε
left
2 ε

left
3 = ε

left
2 − ε3

4. ε4 = ω4 × ε
left
3 ε

left
4 = ε

left
3 − ε4

. . . . . .

. . . . . .

K-1.εK−1 = ωK−1 × ε
left
K−2 ε

left
K−1 = ε

left
K−2 − εK−1

K.εK = ε
left
K−1 ε

left
K = ε

left
K−1 − εK = 0

The magnitude of local sensitivity in the process of pro-
tecting fingerprint images through dynamic privacy budget
corresponds to the density of the distribution of matching
feature points, thereby enhancing the rationality of calculat-
ing local sensitivity when introducing perturbation noise to
fingerprint images using Laplace mechanism. Definition 4
and (4) (5) demonstrate that the exponential mechanism com-
putes the allocated privacy budget based on the calculation of
local sensitivity for extracting local images.
The allocation process of the privacy budget in the DP

mechanism is analyzed when the initial privacy budget is
ε = ε1 + ε2. Given that the exponential mechanism satisfies
ε1-differential privacy, and since ε2 =

∑i=K−1
i=0 εi according

to property 1, it follows that the allocation process of the
privacy budget satisfies sequential composability. In other
words, the allocation process of the privacy budget ensures
ε2-differential privacy, thereby satisfying sequence compos-
ability for the DP-based allocation mechanism of the privacy
budget and ensuring overall ε-differential privacy.
TheDP allocationmechanism for privacy budget is utilized

to introduce Laplace perturbation noise into the segmented
local images, enabling dynamic allocation of privacy budget
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to these images. This approach, known as the DP-RKLAP
(Dynamic Protection Regression method with K-image divi-
sion protected by Laplace mechanism) algorithm, imple-
ments a specific process outlined in Algorithm 5.

IV. EXPERIMENT AND RESULT ANALYSIS
The image provided in Figure 2 serves as an illustrative
example. The selected image 102-7 from dataset DB2 in the
public fingerprint image database FVC2004, with an image
size of m × n = 256 × 393, exhibits a total of 25 matching
feature points. Considering clustering requirements Mi >

4 as per (11)(32), it is necessary to calculate the privacy
budget size satisfying ε ≥ (m× n)

/
256 Consequently, when

comparing the level of protection for fingerprint images under
different privacy budgets, we consider the privacy budget
sizes as follows: ε1 = (mn)

/
256, ε2 = 2 × (mn)

/
256, ε3 =

3 × (mn)
/
256, ε4 = 4 × (mn)

/
256, ε5 = 5 × (mn)

/
256.

By comparing the computations in the privacy budget
allocation mechanism for protecting fingerprint images,
we divide the privacy budget into two parts: ε = ε1 + ε2. ε1
is allocated to the index mechanism, while ε2 is assigned to
the Laplace mechanism. In practical applications, it has been
observed that a value less than 1 is sufficient for achieving the
desired protection effect with respect to ε1 in the exponential
mechanism. On the other hand, when safeguarding an image,
it should satisfy ε2 = 1Q

/
b ≥ 1Q

/
256. Hence, a larger

value of ε2 is required. Consequently, when protecting fin-
gerprint images, allocating a significantly larger portion of
the privacy budget to ε2 compared to ε1 ensures that during
error calculations associatedwith fingerprint images, we have
approximately equal values of ε and ε2.

A. SEGMENTATION OF IMAGES FOR PROTECTED
EXPERIMENTS
The algorithms, namely Algorithm LAP, Algorithm KLAP,
and Algorithm RKLAP, continuously reduce the number of
pixels to be protected in order to decrease the global sensitiv-
ity and enhance the protection.
Experimental labeling on the protected regions of these

algorithms resulted in respective protected regions: QLAP =

m × n = 100608,QKLAP = 43488,QRKLAP = 14014 as
depicted in Figure 3 is made between the protected regions of
each algorithm along with an evaluation of their correspond-
ing global sensitivities. (a) represents the image protection
region when the perturbation noise is added to the global
image using the LAP algorithm. (b) represents the image
protection region obtained by clustering and segmenting
the feature points in the fingerprint image using the KLAP
algorithm. (c) represents the protected area of the image
obtained after the clustering segmented image is further seg-
mented by the polynomial regression algorithm using the
RKLAP algorithm. The final algorithm DP-RKLAP of this
paper uses the RKLAP algorithm to segment the image pro-
tection area with the smallest protection sensitive area for
protection.

Algorithm 5 A Non-Globally Protected Differential Privacy
Publish Algorithm Based on An Exponential Mechanism for
Allocating Privacy Budget DP-RKLAP
Input: Original image X matching feature point coordinate
set point (x, y)
Output: Non-globally protected image that satisfies differ-
ential privacy X ′

Parameters: Image size is m× n, total privacy budget is ε =

ε1 + ε2, number of matching feature points isM , pixels to be
protected is Q
1. Read the original image X and convert to grayscale image
matrix Xm×n
2. Creating an all-zero matrix Ym×n, Zm×n Read the set of
coordinates of matching feature points point (x, y) and mark
Y (x, y) = 255
3. According to Algorithm III-C, the coordinates of the
matched feature points are clustered to split the local protec-
tion region.

3.1. The results of cluster analysis are,Mi
M =

∑i=K−1
i=0 Mi

3.2. Segmentation of localized protected area boundaries
xmax = max {Mi [x, :]} + dist_x
xmin = min {Mi [x, :]} − dist_x
ymax = max {Mi [:, y]} + dist_y
ymin = min {Mi [:, y]} − dist_y

3.3. Segmenting the amount of local image pixels Qi,
Q ≤

∑i=K−1
i=0 Qi

4. According to Algorithm 4, a privacy budget is assigned to
the localized image.

4.1. the exponential mechanism satisfies ε1-
differential privacy

4.2. The Laplace mechanism satisfies ε2-
differential privacy

4.3. assign privacy budgets to localized images ε1, ε2 =∑i=K
i=1 εi.

5. Adding Disturbance Noise
5.1. Selecting local images in sequence Pj
5.2. Getting the number of pixels in the current local
image Pj → Qj

5.3. Calculate the current local sensitivity 1QjGS = Qj
5.4. Getting the privacy budget of the current local
image Pj → εj

5.5. To mark pixels Z (x, y) add noise
for p in range(m) :

for q in range(n) :

if (Z (p, q) == 255) :

X ′

(p,q) = X(p,q) + Lap(1QjGS/εj)
5.6. Re-select the local image, skip to step 5.1, until all

local images are added to the protection
6. Output a locally protected image that satisfies differential
privacy X ′

According to Definition 3, the size of global sensitivity is
determined by the volume of data in the dataset. In the con-
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FIGURE 2. Example image.

TABLE 1. Performance comparison of different algorithms for image
segmentation.

text of protecting fingerprint images, the global sensitivity is
equivalent to number of pixels in the protected area, denoted
as 1Q = Q. For LAP algorithm, 1QLAP = QLAP = 100608,
for KLAP algorithm, 1QKLAP = QKLAP = 43488, and for
RKLAP algorithm, 1QRKLAP = QRKLAP = 14014. By sub-
state into (15), (24), and (35), we can verify the analytical
results presented in (36).

Table 1 shows the comparison of the size of the local image
to be protected produced by different algorithms for different
degrees of fingerprint image segmentation. From the data in
the above table, it can be seen that the global sensitivity of
RKLAP algorithm and DP-RKLAP algorithm is significantly
reduced after different degrees of image segmentation.

B. EXPERIMENTS WITH PRIVACY BUDGET ALLOCATION
MECHANISMS
The privacy budget allocation mechanism DP involves two
protection mechanisms, namely the exponential mechanism
and the Laplace mechanism. In the exponential mechanism,
the scoring function determines the degree of protected pixel
against matching feature points, and different privacy budgets
are compared based on the size of the sampling probability.
In the Laplace mechanism, the size of the privacy budget
is allocated based on the relationship between the number
of pixels in a segmented image and its total number of
This ensures that local images with denser distributions of
matching feature points receive relatively larger privacy bud-
gets, while those with sparser distributions receive relatively
smaller ones. Table 2 presents specific data after image seg-
mentation.

The privacy budget allocation mechanism initially extracts
the segmented image data from the RKLAP algorithm to

FIGURE 3. Comparison of protection areas of publishing algorithms.

TABLE 2. Localized image data extraction.

obtain clustering results Mi, where M =
∑i=K−1

i=0 Mi. Then,
it determines the number of pixels in the local region of
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TABLE 3. DP mechanism privacy budget allocation.

the image through polynomial regression algorithm as Qi
with Q ≤

∑i=K−1
i=0 Qi. Subsequently, it calculates the unit

pixel required to protect a single matching feature point as
Oi = Qi/Mi and evaluates the degree of protection provided
by a single protected pixel for a matching feature point as
Ii = Mi/Qi.
Figure 4 illustrates a comparison of the sampling probabil-

ities generated by the exponential mechanism across different
privacy budgets.

The sampling probability is calculated under various pri-
vacy budgets, revealing that the sampling probability changes
as the privacy budget increases. For local images with a
higher level of protection for matching feature points input
by the scoring function, the sampling probability gradually
increases with an increasing privacy budget. Conversely, for
local images with a lower degree of protection for matching
feature points input by the scoring function, the sampling
probability gradually decreases as the privacy budget contin-
ues to rise.

The privacy budget for each sampled image is allocated
based on the pixel size, and the current remaining number of
unprotected pixels and the amount of allocated privacy budget
are calculated. During the allocation process, the size of the
privacy budget is reasonably distributed according to the pixel
count of each sampled image, ensuring that each allocation is
proportional to the image size without excessively consuming
privacy budget The specific allocation process for privacy
budget is illustrated in Table 3.
The allocation consumption process of the privacy budget

under different allocationmechanisms is depicted in Figure 5.
In the experiments, the DP mechanism proposed in this
paper is compared with traditional methods including Taylor
expansion, bisection, special rank, and p-rank (from left to
right). Data comparison reveals that the traditional allocation
mechanism rapidly dates the privacy budget as allocations
increase linearly. Conversely, the DP mechanism’s allocation
is based on the data volume of protected images, allowing
for a reasonable distribution of privacy budget according to
each sampling’s data size. Therefore, our proposed DP-based
privacy budget allocation mechanism outperforms tradi-
tional approaches when allocating fingerprint image privacy
budgets.

C. SIMULATION EXPERIMENTS
In this section of the experiment, the example images are
protected under different privacy budget conditions using
various algorithms fingerprint images.

FIGURE 4. The sampling probabilities generated by the exponential
mechanism across different privacy budgets.

FIGURE 5. Privacy budget allocation under different mechanisms.

FIGURE 6. Comparison of publishing fingerprint images for different
algorithms when privacy budget consumption is ε1.

The publishing images are illustrated in Figure 6 to
Figure 10, with each image corresponding to a specific value
of the privacy budget denoted as ε1 = (mn)

/
256, ε2 =

2×(mn)
/
256, ε3 = 3×(mn)

/
256, ε4 = 4×(mn)

/
256, ε5 =

5 × (mn)
/
256.

After analyzing the aforementioned experimental results,
it becomes evident that the fingerprint contours of publishing
fingerprint images gradually become more distinct under the
same privacy budget. Similarly, the contours of publishing
fingerprint images by the same algorithms under privacy bud-
gets also exhibit a gradual increase in clarity. Consequently,
it can be concluded that this aligns with the definition of
differential privacy protection. Moreover, it is observed that
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FIGURE 7. Comparison of publishing fingerprint images for different
algorithms when privacy budget consumption is ε2.

FIGURE 8. Comparison of publishing fingerprint images for different
algorithms when privacy budget consumption is ε3.

FIGURE 9. Comparison of publishing fingerprint images for different
algorithms when privacy budget consumption is ε4.

FIGURE 10. Comparison of publishing fingerprint images for different
algorithms when privacy budget consumption is ε5.

as the privacy budget increases, there is an enhancement
in usability but a decrease in privacy for publishing fin-
gerprint images by the same algorithm. Conversely, as the
privacy budget decreases, there is reduction in privacy for
these images. Notably, among all these observations, it can
be stated that DP-RKLAP fingerprint image demonstrates
superior usability when published under identical privacy
budgets.

The usability of fingerprint image protection can also be
assessed by analyzing the distribution of different pixel values
in the 2D fingerprint image data. Figure 11 to Figure 15
compare the pixel value distributions of fingerprint images
generated by various all with an identical privacy budget.

The results of the aforementioned experiments are ana-
lyzed based on the distribution of pixel values in finger-

FIGURE 11. Distribution of pixel values in the original image.

FIGURE 12. Distribution of pixel values of publishing images by LAP
algorithm.

print images obtained using different publishing algorithms,
specifically at ε1 = (mn)

/
256 for comparison purposes.

The pixel LAP publishing image (Figure12) differs signifi-
cantly from that of the original image (Figure11), while the
KLAP publishing image (Figure13) exhibits a closer resem-
blance. Moreover, both RKLAP publishing image (Figure14)
and DP-RKLAP publishing image (Figure15) demonstrate
virtually identical pixel value distributions as compared to
the original image (Figure11). Experimental evidence con-
firms that the error relationship between LAP, KLAP, and
RKLAP algorithms and their respective original images
aligns with (36). Additionally, due to privacy budget allo-
cation within DP mechanism, algorithm RKLA pixel value
distribution closely resembles that of DP-RKLAP published
image, thereby enhancing protection availability and privacy
preservation for local images.

The published images under different algorithms with
varying privacy budgets are subjected to matching feature
point recognition. The experimental results, depicted in
Figure 16, demonstrate the rates of matching feature point
recognition between the published and original images for
privacy budgets ε1, ε2, ε3, ε4, ε5 (from right to left). Addi-
tionally, the rates of matching feature point recognition
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FIGURE 13. Distribution of pixel values of publishing images by KLAP
algorithm.

FIGURE 14. Distribution of pixel values of publishing images by RKLAP
algorithm.

between the published and original images are evaluated for
algorithms LAP, KLAP, RKLAP, and DP-RKLAP (from left
to right).

The experiment clearly demonstrates that the LAP
algorithm exhibits unstable image recognition rates due to
significant data distortion, resulting in a smaller impact of pri-
vacy budget changes on the recognition rate. In contrast, the
KLAP algorithm shows a synchronous increase in both pub-
lished and original image recognition rates with an increased
privacy budget, although the overall recognition rate remains
low. On the other hand, the RKLAP algorithm gradually
improves its publication and original image recognition rates
as the privacy budget increases, leading to a higher overall
recognition rate. Similarly, for the DP-RKLAP algorithm,
increasing the privacy budget results in gradual improve-
ments in both published and original image recognition rates,
ultimately leading to a higher overall recognition rate.

D. ANALYSIS OF RESULTS
The algorithm’s feasibility was initially assessed by validat-
ing it with the fingerprint dataset DS, comprising 432 finger-
print images collected from nine individuals (six fingerprints
per individual) and eight different angles of each fingerprint.

FIGURE 15. Distribution of pixel values of publishing images by
DP-RKLAP algorithm.

FIGURE 16. Different algorithms with varying privacy budgets are
subjected to matching feature point recognition.

FIGURE 17. Average recognition rate in the experimental dataset DS.

Then 800 fingerprint image from DB2 in the public fin-
gerprint database FVC2004 standard database are used for
validation [45].
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FIGURE 18. Average recognition rate in the experimental dataset
FVC2004.

The experimental environment is Intel® Core i5-9300H
CPU@2.40 GHz, 32GRAM, GTX 21080TI GPU,Windows
11 operating system, PyCharm Community Edition 2023.2.

When incorporating protection measures for fingerprints
using the fingerprint dataset DS and the FVC2004 standard
dataset, the fingerprints are partitioned into a training set
and protected fingerprint images are then matched with the
images in the fingerprint library. During the of protecting
fingerprint images, a minimum cluster size of 5 samples is
set (Mi > 4). For privacy budget considerations, we respec-
tively take ε1 = (mn)

/
256, ε2 = 2 × (mn)

/
256, ε3 =

3 × (mn)
/
256, ε4 = 4 × (mn)

/
256, ε5 = 5 × (mn)

/
256.

We of each algorithm on the publishing protected images and
present their average recognition rates in Figure 17 for exper-
imental dataset DS and Figure 18 for experimental dataset
FVC2004.

The validation on the experimental dataset reveals that
LAP, a differential privacy publishing algorithm based on
global protection of fingerprint images, exhibits a low
recognition rate for privacy-protected fingerprint images.
This significantly diminishes the usability of fingerprint
images while aiming to enhance their privacy. KLAP,
another differential privacy publishing algorithm based on
clustering segmented fingerprint images with non-global
protection, demonstrates a slight improvement in the recogni-
tion rate of privacy-preserving fingerprint images. However,
this improvement is not substantial. On the other hand,
RKLAP, a non-globally protected differential privacy pub-
lishing algorithm for fingerprint images based on clustering
and local polynomial regression, shows consistent progress in
terms of recognition rate compared to both LAP and KLAP
algorithms. Although there is still room for enhancement
as the recognition rate remains low and some errors per-
sist during the process of fingerprint matching. Conversely,

TABLE 4. DS & matching rate.

TABLE 5. DS & matching accuracy.

TABLE 6. DS & matching score.

TABLE 7. DS & recall rate.

DP-RKLAP - a differential privacy publishing algorithm uti-
lizing an index mechanism for reasonable allocation of
privacy budget under non-global protection - displays higher
effectiveness in matching dense regions of feature points due
to its rational allocation of privacy budget using DP mecha-
nism. Consequently, it greatly enhances the recognition rate
during matching processes and significantly improves identi-
fication accuracy compared to the previous three algorithms.

Table 4 and Table 5 show the evaluation metrics of the
assumedmatching rate of different algorithms on two datasets
under different privacy budget conditions, respectively.
Table 6 and Table 7 show the evaluation metrics of match-
ing accuracy of different algorithms on two datasets under
different privacy budget conditions, respectively. Table 8
and Table 9 demonstrate the evaluation metrics of matching
scores of different algorithms on two datasets under different
privacy budget conditions, respectively. Table 10 and Table 11
show the recall evaluation metrics of different algorithms
on two datasets under different privacy budget conditions,
respectively.

By analyzing the above experimental data, according to
the definition of differential privacy, as the privacy bud-
get continues to increase, the amount of added disturbance
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TABLE 8. FVC2004 & matching rate.

TABLE 9. FVC2004 & matching accuracy.

TABLE 10. FVC2004 & matching score.

TABLE 11. FVC2004 & recall rate.

noise continues to decrease, so the size of the privacy bud-
get is inversely proportional to the added disturbance noise.
According to the above tabular data, as the privacy budget
continues to increase, the size of matching rate, matching
score and recall rate increases, and the size of matching rate,
matching score and recall rate is inversely proportional to
the added disturbance noise. Therefore, the matching rate,
matching score and recall are strongly correlated with the
perturbation noise. Meanwhile, with the change of privacy
budget, the change trend of matching accuracy is not obvious.
Therefore, the matching accuracy has a weak correlation
with the disturbance noise. This finding is consistent with
theoretical evidence.

Through the above performance experimental analysis,
under the same privacy budget condition, DP-RKLAP
algorithm has higher matching rate, matching score, recall
rate and matching precision rate. This is the same as the con-
clusion obtained in the theoretical proof stage. DP-RKLAP
reduces the amount of added disturbance noise as much as
possible by reducing the global sensitivity and dynamically
allocating the privacy budget, so as to improve the availability
of published images. Therefore, the algorithm performance of
algorithm DP-RKLAP is higher than other algorithms.

E. RESEARCH AND DEVELOPMENT
In this paper, we mainly study the method of applying dif-
ferential privacy technology to protect fingerprint images.
According to the recognition characteristics of biological
images, the recognition feature points of fingerprint images
are discrete, which are different from face images. Therefore,
the local image protection method suitable for fingerprint
images needs to protect the position information, quantity
information and type information of fingerprint image feature
points.

According to the discrete characteristics of fingerprint
image feature points, this paper uses clustering algorithm and
regression algorithm to segment the fingerprint image, and
according to the size of the segmented image, the exponen-
tial mechanism of differential privacy technology is used to
complete the dynamic allocation process of privacy budget to
allocate the privacy budget reasonably. It lays the foundation
for differential privacy technology in the protection of finger-
print images.

However, since the protection process of fingerprint
images is related to the size of the image, different amounts
of disturbance noise will be generated for different sizes of
fingerprint images under the same privacy budget. As the
image size increases, the generated disturbance noise will
also continuously increase. Therefore, how to reduce the
disturbance noise generated by larger size images will be
another research direction of related research.

V. CONCLUSION
The paper proposes a fingerprint image publishing algorithm,
DP-RKLAP, based on machine learning and differential pri-
vacy techniques to address the issue of privacy leakage in the
fingerprint image publishing process. This algorithm dynam-
ically allocates the privacy budget while reducing the amount
protection, thereby enhancing the usability of publishing fin-
gerprint images. By leveraging clustering and polynomial
regression algorithms, KLAP and RKLAP algorithms seg-
ment matching feature points in fingerprint images to achieve
global protection through local image protection. Further-
more, this approach solves the problem of excessive noise
generated by the Lap mechanism by employing a dynamic
allocation mechanism for privacy budget DP. A reasonable
sampling order is obtained through designing an appropri-
ate scoring function for index mechanisms and considering
factors such as the number of matching feature points in a
fingerprint image, size of local images, and size of privacy
budget.

The paper proposes that all algorithms should adhere to
the definition of differential privacy. During the theoreti-
cal proof, the error in the publishing image is calculated
and compared with the errors produced by four algorithms:
LAP, KLAP, RKLAP, and DP-RKLAP. This analysis aims to
evaluate the image error under global sensitivity calculation
using (39). Results show that the RKLAP algorithm produces
the smallest image error while LAP algorithm yields the
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largest one. Regarding error analysis under local sensitivity
calculation, fingerprint images publishing by DP-RKLAP
algorithm outperform those publishing by RKLAP algorithm.
In the experimental stage, example image experiments are
conducted under different privacy budget conditions and var-
ious algorithm settings to validate their usability relationship.
The results obtained from these experiments align with the-
oretical proofs. Additionally, a large number of fingerprint
image datasets confirm high matching feature point recogni-
tion rates.

By using the image matching evaluation index to iden-
tify and match the protected image, the performance of the
algorithm proposed in this paper is analyzed. In this paper,
four evaluation metrics, matching rate, matching score, recall
and matching accuracy, are mainly used for analysis. After
a large number of experiments, with the minimum privacy
budget, the final algorithm proposed in this paper has the
matching rate higher than 12.40%, the matching accuracy
higher than 97.70%, the matching score higher than 12.27%,
and the recall rate higher than 64.10% on the self-built data
set DS. Compared with the Laplace mechanism, the match-
ing rate is increased by 10.08%, the matching accuracy is
increased by 13.89%, the matching score is increased by
10.43%, and the recall rate is increased by 19.22%. On the
public data set FVC2004, the matching rate is higher than
62.65%, the matching accuracy is higher than 99.29%, the
matching score is higher than 62.17%, and the recall rate is
higher than 83.17%. Compared with the Laplace mechanism,
the matching rate is increased by 52.33%, the matching accu-
racy is increased by 33.32%, the matching score is increased
by 55.93%, and the recall rate is increased by 67.48%.
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