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ABSTRACT Connected and Autonomous Vehicles (CAV) which interact with Roadside Units (RSU) as part
of a smart city infrastructure are currently seeing first real-world deployments. Not only can CAVs benefit
from access to a cities’ infrastructure by obtaining data from various sensors (e. g., Video or Lidar), but
they can also leverage the broad network coverage to offload complex computation tasks from their limited
on-board hardware to scalable cloud resources. Furthermore, a smart city supporting multi-access edge
computing (MEC) can even provide safety-relevant and time-critical services thanks to reduced latency and
increased reliability. This requires an algorithm to determine which vehicle offloads computation to which
computation resource in the city. This orchestration task is a challenging combinatorial problem subject
to resource and quality of service constraints. We present a novel and powerful, yet surprisingly simple
algorithm that provides a good and fast approximation to this problem. This Differentiable Orchestrator
converts a combinatorial problem into a soft-constrained differentiable analog, which can be solved very
quickly. We compare the proposed method with other heuristic methods and conclude that it significantly
outperforms most competing methods in artificial examples and realistic scenarios. In order to make the
method as reproducible as possible and serve as a baseline for future research we make our data and
simulations publicly available.

INDEX TERMS Connected and autonomous vehicle (CAV), multi-access edge cloud (MEC), orchestration,
optimization, smart city.

I. INTRODUCTION
Self-driving or fully autonomous vehicles are expected to
become a central pillar of future mobility due to their
potential for efficient and safe transport [1]. Such vehicles
are equipped with a wide variety of heterogeneous sensors
and actors that enable various applications ranging from
passenger entertainment to safety-critical driving functions.
Such functionality, however, necessitates performing a
large number of complex computation tasks. Furthermore,
these vehicles are equipped with broadband communication
devices that enable vehicle-to-vehicle (V2V) as well as
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vehicle-to-infrastructure (V2I) connectivity. Such so-called
Connected and Autonomous Vehicles (CAV) communicate
using wireless transmission technologies either based on
IEEE 802.11p [2] like DSRC and ITS-G5 or C-V2X [3]
based on the LTE or 5G cell-based communication standards.
This enables advanced cooperative functions such as platoon-
ing [4] or hazard warnings, e. g., for vulnerable road users [5].
A smart city environment is an urban area equipped

with sensors, data processing units and a communication
infrastructure. Such cities are therefore uniquely equipped
to support mobility-related applications. Distributed sen-
sors like LIDAR or stereo camera systems capture data
on vehicle positions and road usage which can then be
analyzed and correlated by the processing units to provide
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supporting functions to CAVs via their wireless transmission
devices. To provide sufficient geographical coverage while
also keeping all the individual components manageable,
sensors, computing and communication can be integrated
into so-called Roadside Units (RSU), which are connected
to a wired communication network to facilitate information
exchange between these units.

Smart cities can provide a variety of functions to CAVs
ranging from disseminating traffic information, e. g., to avoid
routes with congestion, to taking control of the vehicle itself,
e. g., to facilitate driving in complex environments such as
parking structures. Implementations of the latter use case,
which is known as automated valet parking (AVP) [6], are
currently transitioning from prototypes to actual deployments
such as at the airport of Stuttgart in Germany [7]. Effectively
combining a set of supporting functions as part of an
overarching intelligent transportation system (ITS) [8] is
currently explored in first deployments, e. g., New York
City’s Connected Vehicle Pilot Project [9], London’s Smart
Mobility Living Lab [10] or in various cities in China through
their country-wide innovation strategy programs [11].
Apart from access to information beyond the individual

vehicle’s information horizon, a CAV can benefit from this
interaction by moving complex computation tasks from its
resource-limited onboard control units to the city’s process-
ing units for more efficient computation. This principle of
task offloading can be generalized and applied to other
applications as well. For example, there is a tremendous
number of results on offloading smart phone applications
onto various cloud architectures. However, for CAVs there
exist safety-critical tasks such as the driving functions
in the case of AVP, that cannot afford the volatility in
terms of diminished quality-of-service (QoS) figures such
as the increased latency and jitter typically associated with
connecting to a potentially far-away cloud data center. This
necessitates running such tasks on compute units in close
proximity to the respective CAV on the smart city’s network
edge, which can be realized by organizing RSUs as part of a
multi-access edge computing (MEC) [12] architecture.

An important factor to consider is the fixed distribution
of computation units in the geography of the city. The
time-variant density of vehicle traffic flows may lead to
problematic traffic hotspots, where the number of CAVs in a
hotspot may grow large enough that the closest RSU becomes
overloaded, i. e., its compute resources are insufficient for
the number of required offloading tasks. To avoid this
situation the city may employ an offloading orchestrator
that can decide not to run offloaded tasks on the closest
RSU, but rather on any RSU with available resources in
sufficiently close proximity to ensure QoS. For latency
this equates to limiting the transmission distance whereas
jitter requires limiting the number of relaying units between
computation and vehicle. Furthermore, the orchestrator needs
to continuously determine which computation unit in the
environment is optimal for each vehicle at each point in
time.

We focus on solving an abstract view of this orchestration
problem where we consider all computation units to be
identical in type and all vehicles to be identical in all
parameters relevant to the problem. Each computation unit
can only handle a limited amount of vehicles and each
vehicle is associated to exactly one computation unit for
offloading. To ensure QoS we require that a vehicle can only
be associated to a computation unit within a certain number
of relaying nodes. We present an algorithmic optimization
approach to solve this problem and analyze it in several
scenarios.

The remainder of this work is structured as follows. First,
we will introduce related works on resource orchestration for
CAVs in smart cities in Section II. Section III will introduce
our model of the smart city environment and our assumptions
regarding the computational tasks. In Section IV we will
describe our novel solution approach including the objective
function to be solved. In order to assess the performance of
this approach we compare it against two baseline algorithms.
These simple dedicated heuristics will be introduced in
Section V. We will detail the chosen scenario for the
performance comparison and the corresponding results in
Section VI and provide our conclusions in Section VII.

II. RELATED WORK
The interaction of smart city environments with CAVs is an
active research topic with a variety of diverse subtopics as
the surveys of Mach and Becvar [13] and Kahn et al. [14]
show. Among the works dealing with questions of assigning
compute resources for offloading, there are different areas of
focus ranging from analyzing the feasibility of applications
and determining the required communication characteristics
to planning and configuring the offloading assignment
pattern. While our work falls in the last category, there are
-to the best of our knowledge- no publications matching
our scenario exactly. However, there are many works with
somewhat similar scenarios.

Premsankar et al. [16] determine optimal locations to
install RSUs with processing units based on expected average
load scenarios extracted from an elaborate city scape and
radio simulation. They determine the minimum number and
locations of RSUs required to provide a given coverage and
sufficient computation capabilities based on an integer linear
programming (ILP) formulation.

Salahuddin et al. consider the case of vehicular networks
incorporating RSUs and have developed an approach to
assign RSU resources such that either the delay for services
or the number of required resources is minimized by an
ILP formulation in [15]. They also present a reinforcement
learning-based approach to minimize the network recon-
figuration effort between RSUs caused by an adaption to
time-variant vehicle traffic behavior. In contrast to our work,
they consider the network resources to be the primary
bottleneck, whereas we focus on the processing capabilities.

Vondra and Becvar [17] utilize an intricate simulation
environment gathering information on the future availability
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and performance of compute resources and choose the
computation site based on a ranking of these parameters with
the goal of ensuring a timely execution of computation tasks.

Zhanget al. [18] assign computation resources to vehicles
to minimize processing delays while also providing load
balancing to the system at large. Since their primary figure of
merit are delays, they model several different communication
channels and their transmission characteristics in detail as
part of a multi-tiered network structure. Similar to our work,
they utilize a discrete time simulation and aim to provide
a game theory-based solution approach that is capable of
solving large scenarios very quickly.

The vastly different methodologies employed in the
previous works can be ascribed to their intended usage
scenarios. While ILP formulations can yield exact optima,
they tend to be less scalable for large scenarios such that they
are most useful for offline processing in long-term planning.
Approaches based on ranking heuristics and game theorymay
not always be able to determine a global optimum, but can
result in fairly good solutions very quickly. They are most
suitable for situations with incomplete information or where
decision making is subject to timing limitations.

III. PROBLEM ILLUSTRATION
A. SYSTEM MODEL
The principal elements given in our model are illustrated
in Fig. 1(a), which shows three vehicles in a smart city
environment with three RSUs attached to traffic lights and
lamp posts. The RSUs have a limited radio range as indicated
by the dashed circles, such that they can only connect to
cars within their respective circles. The vehicle will connect
to the RSU with the locally best wireless transmission
characteristics, which in our model is the one with the
least distance. To abstract this complex setting into a simple
graph, we represent the RSUs (blue nodes denoted A, B,
C) and vehicles (purple nodes denoted p, q, r) as vertices
as shown in Fig. 1(b). The edges of the proposed graph
represent communication channels. We assume fixed wired
connections between two RSUs whenever they are directly
connected by street segment, such that there is an edge
between the RSUs at vertices A and B and another edge
between B and C . For the vehicles we assume wireless
connections to the closest RSU, such that p and q have edges
to A, whereas r is connected to C . All edges are undirected
since we expect bidirectional communications channels.

Having defined an abstraction of the given parameters
of the smart city environment, we can now focus on the
aspects pertaining to the problem itself. The goal is to find
an association to an RSU node for each vehicle node such
that the resulting set of associations is optimal for the given
point in time.While we will provide a formal definition of the
optimization goal in Section IV, we will for now merely state
that it combines avoiding node overloads to ensure sufficient
processing capacity, minimizing the distance to the associated
nodes to improve latency and minimizing the number of

association switches to increase stability. The associations
themselves are represented as dashed lines between the blue
and purple vertices in Fig. 1(b). While p and r are associated
to the respective node that they also have a direct connection
to, the vehicle q is connected to RSU A, but associated to
node B. This means that node B performs the computation
tasks for vehicle q, whereas node A simply serves as a
relay between the two. For the present scenario this achieves
perfect load balancing between the three RSUs and also has
the added advantage that q will leave the radio coverage of
A towards B such that no change in its association will be
required in the next time step. Avoiding unnecessary changes
in association is beneficial, because every change requires
additional resources for the handover of task-relevant data
between RSUs. Hence, avoiding unnecessary changes can
add more stability to the system at large.

Efficiently minimizing the number of changes, however,
requires prior knowledge of the future whereabouts of
vehicles. When considering CAVs and RSUs, this becomes
possible due to the fact that they exchange navigation infor-
mation. Beyond local knowledge about vehicles and their
associations, RSUs can further disseminate this information
among each other and even to a central controller thanks to
their wired connections such that the entire state information
of all RSUs can be available to decision algorithms.

As previously established, the set of RSUs eligible for
offloading by a vehicle is limited by distance and number of
relaying nodes. Given the regular intervals at which RSUs
need to be deployed for geographical reasons, we simplify
our problem description by enforcing an upper bound k on
the number of hops between a vehicle and the RSU selected
for association.

B. ABSTRACT REPRESENTATION OF A SMART CITY
In order to illustrate the benefits of our proposed approach,
we provide an example for a smart city topology consisting
of 50 RSUs and 57 road segments/wired connections between
them as illustrated in Fig. 2. Vehicles can move between RSU
locations along these road segments and enter or exit the city
at specific nodes with the numbers 0, 3, 5, 6, 11, 20, 22, 28,
33, 39, 42, 48 and 49, which are highlighted in the figure with
green outlines.

This structure is representative for typical road networks
found in Manhattan, New York, where roads are built in
rectangular patterns with different lengths of housing blocks
between them. This includes imperfections to the otherwise
regular layout, e. g., missing street segments between nodes
33 and 42, as well as an entry/exit at node 20 in the middle of
the grid which represents a connection to a tunnel or overpass,
similar to how the Queens-Midtown tunnel or Ed Koch
Queensboro bridge connect to Manhattan’s road network.

We represent this example city as a graph Gcity = (C, S),
where each node c ∈ C represents a computation unit.
All of these units are identical and can provide limited
computational resources to the vehicles. Following the
definition in the previous Section, the edges s ∈ S between
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FIGURE 1. Vehicles and RSUs in a smart city environment and the corresponding graph representation. Dashed lines in the graph indicate offloading
associations and solid lines represent direct communication channels.

FIGURE 2. Graph of RSUs used for experiments. Nodes with green
outlines are entry/exit nodes.

computation nodes signify that there is a road segment and
that there is a wired communication connection between
them. Fig. 2 therefore shows the graph Gcity.

To simulate traffic, we represent the vehicles within the
city as nodes v ∈ V with edges (v, c) ∈ W . These edges
indicate that a vehicle v has a wireless connection to RSU c as
it is the closest computation unit. Note that this implies that

we consider a dynamic graph model, since V and W are in
fact time-dependent as connections change according to the
current positions of the vehicles during their journey. Finally,
we define a graphG = (N ,E) withN = C∪V andE = S∪W
which therefore contains the entire data for a given moment
in time.

IV. DIFFERENTIAL ORCHESTRATION METHOD (DOM)
A. SOFT-CONSTRAINED PROBLEM FORMULATION
The key idea for our proposed method is to soft-constrain an
otherwise expensive combinatorial problem. Given a graph
G = (N ,E) with N = V ∪ C as defined in the previous
Section, we achieve this by assigning each node n ∈ N
a feature vector fn ∈ Rp with p ≥ 1. Let’s consider the
problem of computing the probability that a vehicle ncar ∈ V
should associate itself with an element ncomp of the set of
computation nodes {n∗comp(j)}j∈NG,k (ncar) for task offloading.

Here, n∗comp : N → C is an index function whereas
NG,k (ncar) is the index list of all computation nodes in the
local k-neighborhood of the car ncar, i. e., the indexes of all
ncomp ∈ C which can be reached by traversing at most k
edges in graph G starting from the node ncar. We can now
compute

P(ncar offload on {n∗comp(j)}j∈NG,k (ncar))

= softmax


f Tncar · fn∗comp(N

G,k
1 (ncar))

f Tncar · fn∗comp(N
G,k
2 (ncar))

...

f Tncar · fn∗comp(N
G,k
m (ncar))

 (1)

where softmax refers to the commonly used softmax function.
With the above probability distribution, we can now represent
the offloading problem as a continuous optimization problem.
In the following we will define a differentiable loss function
for each desired property of our proposed offloading setup.

B. ORCHESTRATION LOSS
This loss term addresses the fact that no computation node
should have to process more offloaded computation tasks
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than it can handle. We define a maximum number of m
vehicle nodes that can be served simultaneously by any single
computation node. Therefore, we define the loss function for
a computation node ncomp ∈ C as follows.

LossOrchestration(ncomp)

= max

 ∑
i∈AG,k (ncomp)

P(n∗car(i) offload on ncomp)− m, 0


(2)

In an analogy to the previous definitions, n∗car : N → V
is another index function, whereas AG,k (ncomp) refers to an
index list of vehicle nodes in the local k-neighborhood of
ncomp on graphG, such that it contains all possible candidates
for association.

C. PROXIMITY LOSS
This loss term aims to associate a vehicle to the closest
eligible computation node. We define it for any vehicle node
ncar ∈ V as

LossProximity(ncar)

=

∑
j∈NG,k (ncar)

distG(ncar, n∗comp(j))

· P(ncar offload on n∗comp(j)), (3)

where the operator distG : V ×C → N returns the minimum
distance on the graph G as the number of hops, i. e., the
number of edges to be traversed. Note that this is a loss
function for our initial problem that does not contain the time
component. In order to include that a vehicle should remain
associated to the same computation node as long as possible,
we will reformulate the distG function. To this end, it makes
sense to consider the nodes on the future path of the vehicle.
As a heuristic we select a node for computation that is still in
permissible distance from the current position, but as close to
the expected future position as possible. Hence, we modify
the previous functions as follows:

dist+tG (ncar, n∗comp(j))

=

{
0 if n∗comp(j) is last node
distG(n+tcar, n

∗
comp(j)) otherwise,

(4)

where n+tcar refers to the expected position of the car node
after t hops on the graph. Hereby, we assume that the local
neighborhood considers up to t hops with t ≤ k . Or in other
words, the furthest position away from ncar that lies in the
driving direction and is in its local neighborhood. Clearly,
the formulation of n∗comp(j) is only meaningful for indexes
j ∈ NG,k (ncar). Finally, we like to point out that the trick
of setting the distance to 0 at the last computation node is
sufficient to let the system switch from one computation node
to the next one if it is really necessary. This implies that there
is no cost if the car continues to be associated to the current

computation node. With this new distance we can now define
the new loss function for the time-dependent dynamic graph:

LossProximity(ncar, t) =
∑

j∈NG,k (ncar)

dist+tG (ncar, n∗comp(j))

· P(ncar offload on n∗comp(j)). (5)

D. INTEGRITY LOSS
This loss term aims to prevent vehicles from associating to
multiple computation units, which in our model would be
an invalid state. To achieve this, we determine the largest
association probability in the distribution of all nodes in the
local neighborhood and subtract it from 1. Therefore, the
optimization will attempt to maximize a single association
probability and minimize all others. For a vehicle node ncar ∈
V we define the loss term as follows.

LossIntegrity(ncar)

= 1− maxj∈NG,k (ncar)(P(ncar offload on n∗comp(j)). (6)

E. TOTAL LOSS
From the above loss functions we can derive the optimization
objective of our offloading problem

Losstotal(G) = α
∑

ncomp∈C

LossOrchestration(ncomp)

+ β
∑
ncar∈V

LossProximity(ncar, t)

+ γ
∑
ncar∈V

LossIntegrity(ncar) (7)

where α, β, γ ∈ R are weighting coefficients. Now
the problem can be easily optimized with any gradient
descent-based optimization method.

V. BASELINE METHODS
A. GREEDY ALGORITHM
This algorithm is the simplest baseline approach where
associations are determined by greedy selection based on
distance. This means that each vehicle is always associated
to the RSU that is the closest to itself in terms of number
of hops on the graph. There is neither any consideration of
existing associations of other vehicles nor of any processing
limits. This method is very fast to compute, but clearly leads
to sub-optimal results since RSUs in areas of dense traffic on
main streets will be overloaded quickly.

B. GREEDY ALGORITHM WITH ASSOCIATION
KNOWLEDGE (G/AK)
This second baseline algorithm remediates the obvious
problem of the standard greedy algorithm by incorporating
information about the preexisting node associations. This
method iteratively assigns each vehicle to a computation
node based on analyzing all such nodes located within the
permissible distance from the vehicle. It determines for each
node how many vehicles are already associated to it and
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selects the subset of all computation nodes with the least
amount of associations. Should this subset consist of several
computation nodes of identical number of associations, it will
choose the one that has the least distance to the vehicle.

Note that this approach does not consider the maximum
number of associations explicitly, but rather exhibits a general
load balancing behavior. This is done on purpose since
in times of unavoidable overload, an equal distribution of
the computation load will be fairer towards the vehicles
experiencing diminished QoS figures and also give equal
chance for each affected computation node to recover from
the overload situation.

C. GREEDY ALGORITHM WITH PATH AND ASSOCIATION
KNOWLEDGE (G/PAK)
This baseline algorithm is an enhancement to the previous
algorithm and is explicitly designed to compete with the
differential orchestration approach in the smart city scenario.
This algorithm has the same knowledge as the differential
orchestration approach, i. e., it can utilize the same distance
metric, which was defined in equation (4). This enables the
algorithm to also consider association switches of vehicles
between computation nodes and enhance the system stability
by reducing the number of changes.

The only drawback of this algorithm is that its decision
making remains limited in scope to iteratively treating indi-
vidual vehicles. This precludes an immediate optimization of
the global system state such that solutions cannot be expected
to be optimal for complex cases. The details for this approach
are given in algorithm 1. Due to its two main loops the
runtime behavior scales mostly with the number of cars in
the set V and the number of computation nodes in its local
k-neighborhood.

VI. EXPERIMENTS
In this Section we study the performance of the proposed
algorithm and compare its results to those obtained from the
baseline algorithms.

We chose the weighting coefficients explained in Sec-
tion IV-E to be α = 5, β = 1 and γ = 0.3.
Furthermore, we use 20 iterations of our gradient descent
method in the presented experiments. All coefficients have
been found by testing many combinations of different values
via grid search. We repeated every run for a total of
10 times in order to control for statistical effects and the
result tables in the following Sections therefore show mean
values and corresponding standard deviations. Except where
explicitly noted otherwise, we use the same parameters for
the algorithms and scenarios.

A. INTUITIVE EXAMPLES AND ABLATION STUDY
Here we test the proposed algorithm on several intuitive cases
outlined in Fig. 3. Depicted on the left-hand side are sub-
optimal solutions to the problems, whereas the right-hand
side represents the optimal solution to the respective prob-
lems. For this analysis, optimal is to be understood in the

Algorithm 1 G/PAK
input : G = (V ∪ C,W ∪ S); k ∈ N; t ∈ N
output: A ∈ (V × C)N // Vehicle-to-Node

Associations
begin

A← ∅
foreach v ∈ V do

dmin←∞

amin←∞

ccur← ∅
foreach j ∈ NG,k (v) do

c← n∗comp(j)
a← |{x | (x, c) ∈ A}|
d ← distG+t (v, c)
if a < amin or (a = amin and d < dmin)
then
ccur← c
dmin← d
amin← a

A← A ∪ (v, ccur)
return A

following sense: No computation unit has more than one
vehicle associated to itself as the primary condition with the
secondary condition being that vehicles shall offload to units
as close as possible to their location.

As before, the purple nodes in these figures represent
the vehicles denoted by minuscules, whereas the blue nodes
correspond to computation units denoted by majuscules. The
gray edges indicate communication channels and the dashed
line signifies that a vehicle is associated to a computation unit.
Furthermore, all computation nodes show a number which
corresponds to the sum of all its associations. If the number
exceeds the maximum of one association, it is shown in red
with circular highlight around the node.

The performance of our method and the competing
methods is shown in table 1. We provide values for the
number of associations that exceed the maximum, i. e., the
overload, and also for distance given by the number of hops
between vehicles and computation nodes. We also added
the values corresponding to the optimal solutions from the
right-hand side in figure 3 for both the overload and the
distance metric. For each scenario, i. e., each row of the table,
we highlight the value closest to the optimum in bold face.
We note that the standard Greedy shows a standard deviation
value of 0, because it is deterministic. Overall, we observe
that our method outperformed both the Greedy and the G/AK
algorithms by a significant margin in the overload metric
(by a factor 3–7). Note that the overload metric is the more
important metric, because it will have a more immediate and
significant impact on the service quality.

Regarding the secondary metric, the average number of
hops between a vehicle and its associated computation node,
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FIGURE 3. Experimental graphs illustrating problems. Numbers at RSUs
(blue circles) denote associations with vehicles (purple circle). Red
highlights overloaded RSUs. Dashed lines indicate offloading associations
and solid lines represent direct communication channels.

the standard Greedy works best. This is because it simply
uses the closest computation unit. However, we note that
our method has values similar to the theoretic values of the
optimal solution.

Finally, we notice that the performance of our method
strongly depends on the number of parameters it has
available. That is, the problem can not be solved easily in
case the number of parameters is significantly lower than the
number of vehicles in any local neighborhood of any RSU in
the system.

B. SMART CITY EXAMPLE STUDY
Here, we present our results for several scenarios based on the
more realistic graph explained in Section III-B. We simulate

vehicle traffic using different numbers of vehicles driving
though the city over a period of 200 time steps. The
vehicles appear in the city at randomized entry nodes at
randomized points in time and drive to their randomized
target locations where they leave the system. Vehicle speed is
chosen uniformly such that each time step marks a transition
of the wireless connection from one RSU to another RSU for
every vehicle in the system. For reasons of simplicity and to
highlight the algorithm behavior in scenarios of significant
overload, we chose to limit the computational resources of
the RSUs to a maximum of one vehicle association. The
paths through the city are also randomized for each vehicle
resulting in a minimum length of 2 and amaximum of 29 road
segments. On average vehicles establish wireless connections
to about 16 different RSUs during their journeys.

We consider four different traffic scenarios: one with low
traffic (200 vehicles), moderate traffic (400 vehicles), heavy
traffic (800 vehicles), and intentional overload (1600 vehi-
cles). For the lower traffic scenarios it is typically possible
not to overload the system, which does not hold true for
the heavier traffic situations up to the intentional overload
scenario. Fig. 4 shows the average number of cars per time
step that are present and connected at RSUs of the graph
shown in Fig. 2 for the different traffic scenarios. Recall that
in our setup each RSU can only handle one car. Blue and
green colors show nodes where the number of cars is low
enough that a computation on the local node is possible in
the average case such that the scenarios with 200 and 400 cars
are expected to be solvable with only little overload. Yellow
and orange show loads exceeding the local computational
resources that may still be offloaded to lightly loaded RSUs
in the permissible proximity, whereas red indicates that
unavoidable overloads are to be expected.

For the evaluation we run each of the algorithms once
at every time step such that a vehicle may experience
a maximum number of association switches equal to the
number of time steps it remains in the city. Like with the
simple examples of the previous chapter, we repeat each
run for a total of 10 times and present mean values with
corresponding standard deviations. Due to the complexity
of the problem, it is not possible to compute the optimal
ground truth solution. Hence, we compare the results purely
numerically.

We consider two metrics. The main metric is the average
percentage of nodes that are overloaded over the entire time
interval. Hence, the best score is 0% and the worst is 100%.
This essentially tests if the system would perform well with
respect to the amount of computational load. The numerical
study for this metric can be found in table 2. We find
that the performance of our method is superior to the two
advanced baselines at 200 and 400 vehicles, except for the
cases of very large neighborhoods. For larger numbers of
vehicles, however, our method consistently outperforms the
baseline approaches by a significant margin. We note that
our method performs especially well with a low number of
parameters.
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TABLE 1. Performance and ablation study.

FIGURE 4. Average number of vehicles at RSU locations during the simulated time period for different traffic scenarios. The color scale from blue to red
indicates increasing overlaod.

TABLE 2. Smart city - evaluation.

The standard Greedy algorithm is utterly outperformed by
most other approaches, but shows seemingly good results at
very high system loads. To illustrate the underlying effect,
we show the percentage of time every individual RSU was
overloaded for one specific scenario in Fig. 5. Since the stan-
dard Greedy algorithm cannot perform any load balancing,

it drastically overloads RSUs at traffic hotspots impacting
a large number of vehicles, whereas a small number of
vehicles in lightly loaded areas intermittently receive a
much higher service quality. This effect becomes more and
more exaggerated the more the system is overloaded in an
asymmetric way. Furthermore, we can see that not only do
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FIGURE 5. Percentage of time steps that a node is overloaded for different methods given 400 cars and a 2-neighborhood. The color scale from blue to
red indicates an increasing percentage.

all other methods achieve effective load balancing, relieving
in particular the nodes with the highest traffic density from
Fig. 4, but also that the suggested approach leads to less
overloading compared to the other methods.

The second metric is the number of RSU association
switches during the journey of a vehicle as shown in table 2.
These values were obtained by averaging the number of
switches over all cars during the 200 time steps. Here we
find that the G/PAK baseline algorithm provides the best
results for a low number of cars while performing similar to
DOM once the number of vehicles is 800 or 1600. DOM still
outperforms the other two baselines regarding this metric.
We would like to highlight that this secondary metric is
of lower importance, because the association switches only
matter when the system is not overloaded.

Summarizing our findings, it can be stated that our
method outperformed all baseline approaches in high traffic
situations, while performing similarly or better in the simpler
cases. Note that in order to provide a fair comparison, we only
considered optimization criteria that can also easily be
incorporated into Greedy settings. But in general, our method
can be easily updated with any other kind of differentiable
loss function and even extended to other problems regarding
CAVs as well.

Regarding the runtime behavior, we found that DOM
primarily scales with the number of vehicles and secondly
with the number of hops in the local neighborhood in the same
way as G/PAK does. While all reference algorithms require
only a few milliseconds to complete their calulcations for
one step in time, the actual optimization within DOM takes
more time. The smaller scenarios with 200 and 400 vehicles
took on average 0.291–0.307 and 0.532–0.563 seconds to
complete. For 800 vehicles this increased to a range of
1.04–1.59 and for 1600 vehicles even up to 2.12–3.20 sec-
onds. While the scope and methods were vastly different in
the related work, it can be noted that these numbers are very
comparable to the results given in [16] where it is stated that
the optimization completed in under 2 seconds for 1000 cars,

and to the results in [18] where a scenario with 10 RSUs
and 120 vehicles required 0.5 seconds to complete. We point
out that the evaluation was performed using a single-threaded
implementation of DOM. However, the entire process is
parallelizable such that every n-hop neighborhood of each
RSU in the smart city can run in its own thread. This should
allow for a significant increase in speed, as well as scalability
to environments of arbitrary size.

Furthermore, in order to make this study easily repro-
ducible and serve as baseline in future research projects we
make the smart city graph and car simulations available on
GitHub.1

VII. CONCLUSION
In this work, we have presented a novel gradient-based
optimization approach and applied it to a computation
offloading problem between vehicles and RSUs in a smart
city environment. We have formulated this scenario as a
combinatorial optimization problem on a dynamic graph.
The evaluation has shown that the proposed approach is not
only very fast in terms of runtime thanks to its differentiable
property, but also that it outperformed several baseline
methods consisting of increasingly intelligent heuristics by
a significant margin in most cases. Especially for very large
and complex vehicle scenarios it is up to 36%better compared
to the most advanced baseline.

While the presented version of the offloading problem was
limited in terms of real-world parameters, there is no principal
argument not to extend it to arbitrary complexity as long as
the objective function can be formulated in a differentiable
way. This extensibility and good scaling behavior make the
algorithmic approach a very good candidate to solve similar
problems in smart city environments that are currently being
built in multiple countries (e. g., New York, London, Wuxi
IOT city)

1The data is publicly available at https://www.github.com/etas/SynTiSC

23806 VOLUME 12, 2024



T. Strauss et al.: Differentiable Optimization for Orchestration

Furthermore, the algorithmic approach is not just applica-
ble to these scenarios, but can be used to solve all kinds of
assignment problems that can be formulated as graphs like
coordination of wireless transmissions for vehicular ad-hoc
communication networks, software – hardware mapping in
vehicle architectures or any generic resource assignment
problem. We are looking forward to exploring these options
in future works.
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