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ABSTRACT The field of Natural Language Processing (NLP) is currently undergoing a revolutionary
transformation driven by the power of pre-trained Large LanguageModels (LLMs) based on groundbreaking
Transformer architectures. As the frequency and diversity of cybersecurity attacks continue to rise, the
importance of incident detection has significantly increased. IoT devices are expanding rapidly, resulting
in a growing need for efficient techniques to autonomously identify network-based attacks in IoT networks
with both high precision and minimal computational requirements. This paper presents SecurityBERT,
a novel architecture that leverages the Bidirectional Encoder Representations from Transformers (BERT)
model for cyber threat detection in IoT networks. During the training of SecurityBERT, we incorporated a
novel privacy-preserving encoding technique called Privacy-Preserving Fixed-Length Encoding (PPFLE).
We effectively represented network traffic data in a structured format by combining PPFLE with the Byte-
level Byte-Pair Encoder (BBPE) Tokenizer. Our research demonstrates that SecurityBERT outperforms
traditional Machine Learning (ML) and Deep Learning (DL) methods, such as Convolutional Neural
Networks (CNNs) or Recurrent Neural Networks (RNNs), in cyber threat detection. Employing the
Edge-IIoTset cybersecurity dataset, our experimental analysis shows that SecurityBERT achieved an
impressive 98.2% overall accuracy in identifying fourteen distinct attack types, surpassing previous records
set by hybrid solutions such as GAN-Transformer-based architectures and CNN-LSTM models. With an
inference time of less than 0.15 seconds on an average CPU and a compact model size of just 16.7MB,
SecurityBERT is ideally suited for real-life traffic analysis and a suitable choice for deployment on
resource-constrained IoT devices.

INDEX TERMS Cyber threat detection, IoT networks, generative AI, BERT, large language models.

I. INTRODUCTION
According to a Statista report [1], it is projected that the global
number of Internet of Things (IoT) connected devices could
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potentially reach 30 billion by the year 2030. With the rise
in the number of IoT devices, there is also a growing inci-
dence of cyber threats, posing substantial challenges to the
security of diverse systems and networks [2]. As adversaries
consistently evolve their tactics, the need for advanced and
effective detection mechanisms becomes paramount. Manual
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detection methods and conventional approaches are becom-
ing outdated, and variousMachine Learning (ML) techniques
have emerged, combating these new threats more effectively.
In this context, Natural Language Processing (NLP) tech-
niques are gaining attention as a promising approach for cyber
threat detection [3]. Among these techniques, the Bidirec-
tional Encoder Representations from Transformers (BERT)
model [4], a pre-trained transformer-based language model,
has achieved remarkable success in several NLP applications.
By exploiting BERT’s contextual understanding, security
researchers have found unique techniques to handle diverse
cybersecurity concerns [5]. Researchers have recently been
exploring using BERT and pre-trained language models
in a wide range of cybersecurity applications, including
malware detection in Android applications, identification of
spam emails, intrusion detection in automotive systems, and
anomaly detection in system logs [6], [7], [8]. Network-
based traffic, such as port scans and packet floods, primarily
consists of numerical data rather than textual information.
This characteristic poses a challenge when attempting to
leverage models like BERT to understand the semantic
relationships between various types of network packets.
While employing complex Large Language Models (LLMs)
with billions of parameters can improve threat detection
accuracy, their extensive computational needs render them
impractical for implementation in embedded devices.

We present SecurityBERT, a novel lightweight
privacy-preserving architecture for cyber threat detection in
IoT networks. By employing a dedicated encoding technique
designed for this specific purpose, we surpassed the perfor-
mance of all existing ML algorithms and models in cyber
threat detection. During the design of SecurityBERT,
we had three primary goals in mind:
• To create an exceptionally compact model capable of
executing rapid inferences without causing noticeable
delays. This design choice enables real-time traffic
analysis and facilitates embedding the model in IoT
devices;

• To maintain the confidentiality of the extracted network
data, ensuring that classification can be performed on
untrusted servers;

• To surpass the accuracy levels of previous ML models
in this field.

Achieving superior accuracy compared to existing hybrid
solutions has proven a significant challenge in our archi-
tectural design. Striking the right balance is crucial. If the
architecture becomes overly complex, it may become imprac-
tical for real-life traffic analysis. Conversely, if the model is
overly simplistic, it may not provide the necessary accuracy
for effective multi-classification, thus hindering its overall
performance. Our original contributions are as follows:
• Our research introduces a novel privacy-preserving
encoding approach called Privacy-Preserving Fixed-
Length Encoding (PPFLE). By combining PPFLE with
the Byte-level Byte-Pair Encoder (BBPE) tokenizer,
we can effectively represent network traffic data in

a structured manner. By implementing this technique,
we have achieved significant performance improve-
ments compared to using text data with varying sizes;

• We have designed a 15-layer BERT-based architecture
with only 11 million parameters for multi-category
classification. We trained the model on PPFLE encoded
data, which we refer to as SecurityBERT;

• We evaluated the efficiency of our proposed approach
using the Edge-IIoTset cyber security dataset [9].
Various ML techniques have recently been tested on
this dataset, providing a solid foundation for fair
comparison. According to our experimental analysis,
our method effectively identifies fourteen distinct types
of attacks on an average CPU in less than 0.3 seconds,
achieving an overall accuracy of 98.2%. To the best
of our knowledge, this achievement showcases the
highest accuracy ever attained among allML algorithms,
outperforming both the Convolutional Neural Network
(CNN) and Transformer models.

This paper is organized as follows: Section II presents an
exploration of the related work. Subsequently, Section III out-
lines the significant steps in developing SecurityBERT.
In Section IV, we evaluate the performance of the proposed
model. Lastly, we conclude our research and provide
insight into potential future research directions of interest in
Section V.

II. RELATED WORK
As various researchers have already demonstrated, the
BERT model proves to be an exceptional starting point for
identifying cybersecurity threats. BERT has been utilized in
various fields, from detecting log anomalies to identifying
malicious web requests.

A noteworthy study by Alkhatib et al. [10] demonstrated
the feasibility of using BERT for learning the sequence of
arbitration identifiers (IDs) in a Controller Area Network
(CAN) via a ‘‘masked language model’’ unsupervised
training objective. They proposed the CAN-BERT trans-
former model for anomaly detection in current automotive
systems and showed that the BERT model outperforms its
predecessors regarding accuracy and F1-score. Rahali and
Akhloufi [6] introduced MalBERT, a tool that conducts static
analysis on the source code of Android applications. They
used BERT to comprehend the contextual relationships of
code words and classify them into representative malware
categories. Their results further underscored the high per-
formance of transformer-based models in malicious software
detection.

Chen and Liao [8] introduced BERT-Log, an anomaly
detection and fault diagnosis approach in large-scale com-
puter systems that treat system logs as natural language
sequences. They leveraged a pre-trained BERTmodel to learn
the semantic representation of normal and anomalous logs,
fine-tuning the model with a fully connected neural network
to detect abnormalities. Seyyar et al. [7] proposed a model
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for detecting anomalous HTTP requests in web applications,
employing Deep Learning (DL) techniques and BERT.
Aghaei et al. [11] presented SecureBERT,1 a language model
tailored explicitly for cybersecurity tasks, focusing on Cyber
Threat Intelligence (CTI) and automation. The SecureBERT
model offers a practical way of transforming natural language
CTI into machine-readable formats, thereby minimizing the
necessity for labor-intensive manual analysis. The authors
devised a unique tokenizer and a method for adjusting
pre-trained weights to ensure that SecureBERT understands
general English and cybersecurity-related text. However,
SecureBERT is not designed to process network-based cyber
threat attacks.

CyBERT, introduced by Ranade et al. [12], is a custom
version of BERT designed specifically for cybersecurity
applications. This model has been fine-tuned using a vast
corpus of cybersecurity data to enhance its ability to
process intricate information concerning threats, attacks,
and vulnerabilities. Yu et al. [13] explored a deep-
learning-based approach for detecting advanced persistent
threats (APTs) in the Industrial Internet of Things (IIoT),
using the BERT model to address the challenges of long
attack sequences. Their experimental results demonstrate
the method’s effectiveness, yielding high accuracy and a
low false alarm rate in APT detection. Breve et al. [14]
proposed using NLP techniques, specifically a BERT-based
model, to detect potentially harmful automation rules in
trigger-action IoT platforms that could breach user security or
privacy. Their evaluation on the If-This-Then-That platform
with over 76,000 rules demonstrated high accuracy, signif-
icantly outperforming traditional information flow analysis
methods. Recently Wang et al. [15] developed BERT-of-
Theseus, Vision Transformer, and PoolFormer (BT-TPF),
an IoT intrusion detection model tailored for resource-limited
IoT environments, using a knowledge-distillation approach.
The model employs a Siamese network for feature reduction
and a Vision Transformer to train a compact Poolformer
model, achieving a significant parameter reduction while
maintaining high accuracy. The aforementioned studies
leverage pre-trained BERT models and customize them to
meet their unique security needs by fine-tuning or using
them as feature generators. These models benefit from
the textual form and sequential nature of their security-
related data, including sources such as code, emails, and log
sequences. These studies effectively utilize BERT’s ability
to comprehend contextual relationships within sequences to
carry out precise detection and classification tasks.

In cyber threat detection, it is vital to compare different
research efforts. In real-world cyber threat detection scenar-
ios, support is crucial for extracting features from network
traffic, often relying on PCAP files. In addition to analyzing
real packet data and detecting cyber threats on networks, it is
important to consider privacy in training data, especially since

1While the names may sound similar, it is important to note that
SecureBERT is separate from our recently introduced SecurityBERT.

IoT devices and network data may contain sensitive infor-
mation. Given the uniqueness of each network infrastructure
and the need for high accuracy through fine-tuning or new
training, sharing actual network traffic data for training pur-
poses can raise privacy concerns. SecurityBERT has been
developed as a pioneering, lightweight, privacy-preserving
architecture specifically designed with this consideration in
mind. TABLE 1 provides a comparison of various recent
works on cyber threat detection in terms of four key
parameters:

• D = Detect: Network-based Cyber Threat Detection
• L = LLM: Utilization of LLMs
• N = Network PCAP: Packet data analysis of a traffic
• P = Privacy: Privacy-preserving training data

TABLE 1. Comparison with recent works on cyber threat detection.

The majority of the research conducted in 2022, including
[6], [10], and [11], integrated LLMs, but they did not support
detection, nor did they utilize packet data. However, contrary
to the norm, Hamouda et al. [16] and Friha et al. [17] demon-
strated support for cyber threat detection and utilized packet
data but did not rely on the capabilities of LLMs. Works from
2023, such as [18], [20], and [25], emphasize more cyber
threat detection and the use of packet data, but they largely
lack in the application of LLMs.

III. SecurityBERT ARCHITECTURE DESIGN
FIGURE 1 visually presents the comprehensive workflow
of the model, encompassing all relevant steps from dataset
preparation to classification. Each of these steps will be
extensively covered in this section. Developing a BERT
model from the ground up for network-based cyber threat
detection demands a thorough and intricate approach. Below

VOLUME 12, 2024 23735



M. A. Ferrag et al.: Revolutionizing Cyber Threat Detection With Large Language Models

FIGURE 1. High-level workflow of our SecurityBERT model.

is a comprehensive outline detailing the main steps in the
process:

STEPS 1Main steps of building SecurityBERT
1: Dataset Utilization
2: Feature Extraction
3: Privacy-Preserving Fixed-Length Encoding (PPFLE)
4: Byte-level BPE (BBPE) Tokenizer
5: SecurityBERT Embedding
6: Contextual Representation
7: Training SecurityBERT

• Text Normalization
• Text Tokenization
• Frequency Filtering
• Vocabulary Creation
• Special Token Addition
• Tokenizer Training

8: Fine-tuning with Softmax activation function

A. DATASET UTILIZATION (EDGE-IIoTSET DATASET)
Generating our dataset through real-life traffic analysis would
be time-consuming, and there’s the risk of specific attacks
not being adequately simulated or missing from our dataset.
Hence, acquiring and utilizing realistic datasets for our
research is crucial.

Cybersecurity and network security data can be gathered
from various online sources using open-source databases
and repositories. Notable examples include the Common
Vulnerabilities and Exposures (CVE) database, theOpenWeb
Application Security Project (OWASP), and numerous others
for network security [28]. The primary challenge presented
by these sources is their heavy reliance on artificial scenarios,
which results in a deficiency of authentic data. Training
a model exclusively on such data can potentially lead to
unrealistic outcomes. Furthermore, most of these databases
do not include packet network data, which poses a challenge

in simulating realistic scenarios. Our primary aim is to opt for
a dataset that tackles this constraint by strongly emphasizing
genuine network data. Furthermore, we intend to ensure
maximum diversity within this dataset, encompassing a
comprehensive range of attack types, including ransomware,
XSS, SQL injection, DoS, and other widely recognized
attack categories. This diversified dataset’s rationale is to
assess our newly proposed model’s classification capabilities
comprehensively. In 2022, Ferrag et al. introduced Edge-
IIoTset [9], a new and extensive cybersecurity dataset
specifically designed for IoT and IIoT applications. This
dataset serves as a valuable resource for ML-based intrusion
detection systems. The Edge-IIoTset dataset includes diverse
devices, sensors, protocols, and cloud/edge configurations,
rendering it highly representative of real-world scenarios
and aligning perfectly with our research objectives. This
dataset contains fifteen (15) attacks related to the Internet of
Things (IoT) and Industrial IoT (IIoT) connectivity protocols,
categorized into five threats: DoS/DDoS attacks, Information
gathering, Man-in-the-middle (MITM), Injection attacks,
and Malware attacks, which can be seen in Figure 2. The
DoS/DDoS attack category encompasses TCP SYN Flood,
UDP flood, HTTP flood, and ICMP flood attacks. The
Information Gathering category includes attacks like port
scanning, operating system fingerprinting, and vulnerability
scanning. MITM attacks include tactics such as DNS Spoof-
ing and ARP Spoofing. Injection attacks include Cross-Site
Scripting (XSS), SQL injection, and file-uploading attacks.
Lastly, the Malware category covers backdoors, password
crackers, and ransomware attacks.

B. FEATURES EXTRACTION
Given a PCAP file with a network traffic log, we extract
relevant features from a specific time window and return
them in a structured format suitable for analysis. Specifically,
we identify and separate each network flow in the PCAP
file. For each flow identified, we extract a set of predefined
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FIGURE 2. Categories of the Edge-IIoTset dataset.

features. Then, we organize the extracted features into a
CSV file format for analysis. We removed null features
from the Edge-IIoTset dataset during our initial exploration,
identifying 61 distinct and diverse features. These features
are sufficiently various to distinguish the distinctive patterns
of network attacks exclusively.

The Edge-IIoTset dataset comprises features gathered
from various sources, including network traffic, logs, system
resources, and alerts. To better understand these features, the
initial 15 can be seen in TABLE 2. For a comprehensive view
of all 61 features, please see Table 7 in [9].

TABLE 2. The first 15 features gathered from PCAP files.

Numerous studies have already shown that these 61 distinct
features are sufficient to detect specific network-based
cyberattacks. This dataset, therefore, serves as an optimal
foundation for comparing various ML algorithms [29]. After
discussing the exact architectural design, the evaluation and
comparison of SecurityBERT with other research will be
detailed in Section IV.

C. PRIVACY-PRESERVING FIXED-LENGTH ENCODING
A pivotal aspect of the design involves representing the
unstructured network data in a manner that allows BERT to
comprehend the context and relationships between various

features. BERT is designed to understand English profi-
ciently but may not be the most suitable ML model for
comprehending relationships between numbers. In our case,
many features are numerical values, i.e., unsigned integers,
not strings (as illustrated in TABLE 2), making it difficult
to discern their interrelationships using natural language
processing methods.

To leverage the power of BERT natural language under-
standing, we process the dataset, comprising numerical
and categorical values, and transform it into textual rep-
resentation. Specifically, we added context to the data by
incorporating column names and concatenating them with
their respective values. Then, each new value is hashed and
combined with other hashed values within the same instance,
resulting in the generation of a sequence. By employing
this technique, we have developed a new language compre-
hensible to BERT and introduced privacy into the training
data through cryptographic hash functions. We call this
novel textual representation technique as Privacy-Preserving
Fixed-Length Encoding (PPFLE).

Significant similarities in log files, TCP scans, and
memory dumps may lead to misinterpretation and incorrect
classification of various attacks. Employing a hash function
allows for handling even minor deviations in the data,
effectively representing them as distinct data points for ML.
Moreover, specific attacks, like UDP scans and others that
are challenging to represent as plain text, can be better
understood by the model when they are converted into hashed
values. Put simply, we have developed a new linguistic format
that the BERT model comprehends much more effectively
than mere numerical data, and it aligns more closely with
the natural English language for which the BERT model is
specifically tailored.

Through this method, we fashioned a representation
of the numbers that closely align with natural language,
allowing themodel to attain enhanced classification accuracy,
as detailed in Section IV-A. Correctly converting network
data and applying PPFLE can achieve higher accuracy than
using the original pre-trained BERT model architecture.

1) PPFLE DESCRIPTION
The objectives of PPFLE are twofold. On the one hand,
it is designed to convert unstructured network data into a
structured format that better mimics the natural English lan-
guage, aligning well with the BERT model’s specialization.
On the other hand, it focuses on maintaining privacy by
ensuring that only encoded data is observed, thereby hiding
sensitive information in the network data while preserving
key classification features.

Let us define a matrix denoted by M with i rows and
j columns. Here, M[i, j] represents the matrix element at the
intersection of the ith row and jth column in M. We denote
the ith row of M by ri =M[i, :]. In M, the first row contains
the column names, which serve as labels or identifiers for
each column. We denote these column names as cj, where
j represents the column index, i.e.,M[1, j] = cj.
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Let us define s(i, j) as a concatenation operation where the
column name cj, a dollar sign, and the value of the jth column
in the (i + 1)th row ri are concatenated into a single string,
excluding the first rowwhich contains the column names, i.e.,

s(i, j) = cj ∥ "$" ∥ M[i+ 1, j] (1)

Next, define H (x) as a hashing operation on a string x and let
L is a list where each element is separated by a space, i.e.,
L = {l1 l2 l3 . . . lk}.
Then, the textual representation of each row i in the matrix

M can be expressed as follows:

L ← L ∪ {H (s(i, n))} ∀ (1 ≤ n ≤ j) (2)

Repeating this procedure for each row in M, we obtain a
new matrix called DataList denoted as DL. In DL, each row
represents an L list, i.e.;

DL =


L1 = [H (s(1, 1))H (s(1, 2)) . . . H (s(1, j))]
L2 = [H (s(2, 1))H (s(2, 2)) . . . H (s(2, j))]

...

Li = [H (s(i, 1))H (s(i, 2)) . . . H (s(i, j))]



FIGURE 3. Creating dataList example.

In other words, the DataListDL lists where each inner list
contains the hashed, concatenated column values for each row
in the matrix M. The M matrix in ML is commonly called a
DataFrame. FIGURE 3 showcases a simple DataList creation
example. The pseudocode of the PPFLE algorithm can be
seen in Algorithm 1.

The PPFLE algorithm, despite its simplicity, effectively
translates unstructured data into a fixed-length format.
This representation mirrors the characteristics of natural
languages, offering considerable advantages when utilized by
ML algorithms.

2) REMOVED FEATURES FOR PPFLE ENCODING
A natural question arises as to whether all 61 features are
suitable for PPFLE encoding. For instance, features like
‘‘ip.src_host’’ and ‘‘ip.dst_host’’ contain IP addresses, which
can lead to overfitting, especially if they have unique identi-
fiers or particular details that don’t generalize well in different
network. Similarly, hashing timestamps with millisecond
precision could introduce confusion during training, so it may

Algorithm 1 Privacy-Preserving Fixed-Length Encoding
Require: MatrixM with i rows and j columns
1: procedure PPFLE(M)
2: DL← [] ▷ Initialize DL to be empty
3: for m = 1 to i do ▷ Iterate through rows inM
4: L = [] ▷ Initialize L to be an empty list
5: for n = 1 to j do ▷ Column iteration
6: L ← H (s(m, n)) ▷ Append H (x) to L
7: end for
8: DL← L ▷ Append L to DL
9: end for
10: return DL
11: end procedure

be necessary to remove such features if one intends to apply
PPFLE encoding. For this reason, several features related to
network traffic and packet captures were excluded. High-
cardinality features such as ‘‘http.request.full_uri’’ can be
challenging to encode effectively and might not offer gen-
eralizable patterns. Features with potential redundancy, like
the presence of both ‘‘ip.src_host’’ and ‘‘arp.src.proto_ipv4’’,
could introduce multicollinearity, affecting model stability.
Features such as ‘‘frame.time’’, indicating packet capture
timestamps, might not directly relate to the predictive
modeling task. Other columns like ‘‘tcp.payload’’ and
‘‘http.file_data’’ represent raw data payloads, which, without
extensive preprocessing, could introduce noise rather than
clarity. Removing these columns streamlines the dataset,
enhancing computational efficiency and ensuring the model
focuses on the most relevant and generalizable patterns while
maintaining user privacy.

D. BYTE-LEVEL BPE (BBPE) TOKENIZER
Tokenization is performed on the PPFLE-encoded data.
This ensures that no sensitive information is fed to the
model during training. A natural question arises: Doesn’t the
PPFLE compromise the semantics of network data, rendering
tokenization unfeasible? By applying PPFLE encoding,
we convert numerical values to align with the characteristics
of natural language more closely. Each feature is encoded
independently, allowing the adjacent hashed values to provide
the model with sufficient information about the type of
attacks it encounters. Hashing all 61 features together,
however, would destroy the semantics of the attacks.

Figure 4 demonstrates the functionality of the PPFLE
algorithm, including tokenization.

For instance, using PPFLE to encode a feature for an
attack on port 443 with the GET method would appear
as: H(TCP.DSTPORT$443) H(HTTP.METHOD$GET).
Conversely, a DNS poisoning attack would have a distinct
representation, lacking any HTTP.METHOD and thus con-
sistently hashed as H(HTTP.METHOD$0). It has turned
out during our experimental analysis that these 61 features
are highly effective in representing different types of
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FIGURE 4. PPFLE encoding and BBPE tokenization example.

network attacks with great accuracy. Furthermore, the model
can recognize all attack patterns based on these features,
even when hashed. For the data encoded with PPFLE,
we employed the ByteLevelBPETokenizer from the
Hugging Face Transformers library. This tokenizer, initially
utilized for GPT-2 [30], breaks down text into subword units
for tokenization. It is based on the Byte-Pair Encoding (BPE)
algorithm [31], a data compression technique that replaces the
most frequent pair of consecutive bytes in a sequence with
a single, unused byte. The ByteLevelBPETokenizer
is particularly useful for handling out-of-vocabulary (OOV)
words, which are not present in the tokenizer’s vocabulary
of human language [32]. By breaking down our language

Algorithm 2 Encode Evaluation Data Sequences
1: chunk_size← 5000
2: num_chunks← ⌈ len(eval_data) / chunk_size⌉
3: input_ids_eval← [] ▷ Initialize as an empty list
4: attention_masks_eval← [] ▷ Initialize as an empty list
5: for i = 0 to num_chunks do
6: start_idx ← i× chunk_size
7: end_idx ← (i+ 1)× chunk_size
8: chunk ← eval_data[start_idx : end_idx]
9: encoded_seqs← encode(chunk)
10: iic, amc← UNPACK(encoded_seqs)
11: append icc to input_ids_eval
12: append amc to attention_masks_eval
13: end for
14: concatenate the input IDs and attention masks as

input_ids_eval, attention_masks_eval

presentation of network traffic data into smaller subwords
likely present in the tokenizer’s vocabulary as a sequence of
bytes, we can efficiently process traffic data by leveraging the
power of BERT.

During the training of the tokenizer, a vocabulary size of
5000 was employed, along with a set of specific tokens,
including ["<s>", "<pad>", "</s>", "<unk>",
"<mask>"]. The tokenizer’s training involved utilizing
the file name, setting the vocabulary size, establishing a
minimum frequency of 2, and incorporating the list of
special tokens. For a visual representation of the various
tokens within the PPFLE encoded data, refer to FIGURE 4.
Understanding the semantics of these tokens functions
similarly to interpreting a typical sentence. The hash output
for a specific attack remains constant; thus, if these subword
hexadecimal values appear in a particular sequence, BERT
can recognize that this unique order corresponds to a hash
output and categorize it as a specific attack.

E. SecurityBERT EMBEDDING
Algorithm 2 showcases the SecurityBERT embedding.
The algorithm starts by setting the chunk_size to 5000.

It then calculates the number of chunks, num_chunks,
by dividing the length of the eval_data by chunk_size,
and rounding up to the nearest integer. Two empty
lists, input_ids_eval and attention_masks_eval, are ini-
tialized to hold the encoded input IDs and attention
masks, respectively. The algorithm then enters a loop,
iterating from 0 to num_chunks. This loop deter-
mines the start and end indices for each chunk of the
eval_data. It retrieves a chunk of data using these
indices and encodes each sequence in the chunk, storing
the result in encoded_seqs. This encoded data is then
unpacked into two components: input_ids_chunk and
attention_masks_chunk, denoted by iic and amc.
These components are appended to the input_ids_eval
and attention_masks_eval lists. Once all chunks

VOLUME 12, 2024 23739



M. A. Ferrag et al.: Revolutionizing Cyber Threat Detection With Large Language Models

have been processed, the algorithm concatenates all the
input IDs and attention masks in input_ids_eval and
attention_masks_eval respectively, along dimension
0, thereby creating a complete set of input IDs and attention
masks for the evaluation data. Here, we note that the
input_ids_eval and attention_masks_eval are
important components of the input to transformer-based
models. The input_ids_eval is a sequence of integers
representing the input data after being tokenized. Each integer
maps to a token in the model’s vocabulary.

The attention_masks_eval informs the model
about which tokens should be attended to and which should
not. In many cases, sequences are padded with special tokens
to make all sequences the same length for batch processing.
Attention masks prevent the model from attending to these
padding tokens. Typically, an attention mask has the same
length as the corresponding input_ids sequence and
contains a 1 for real tokens and a 0 for padding tokens.

F. CONTEXTUAL REPRESENTATION
We adopted the BERT architecture, which leverages trans-
formers for textual representation and cyber threat classi-
fication. Specifically, we pre-trained our SecurityBERT
using our newly created tokenized dataset. In this process,
SecurityBERT takes each token from the tokenized text
and represents it as an embedding vector, denoted as X ∈ Rd ,
where d represents the dimensionality of the embedding
space. Then SecurityBERT utilizes a transformer-based
architecture consisting of multiple encoder layers. Each
encoder layer comprises multi-head self-attention mecha-
nisms and position-wise feed-forward neural networks. The
self-attention mechanism [33] allows the model to capture
dependencies and relationships between words within a
sentence, thus facilitating contextual understanding. The
self-attention mechanism in BERT can be mathematically
expressed as follows:

Attention(Q, K, V) = σ

(
QKT
√
dk

)
V , (3)

where σ is the softmax function, Q, K , and V are the
query, key, and value matrices, respectively, dk represents
the dimensionality of the keys vector, and T denotes the
transpose operation. Through self-attention, BERT encodes
contextual representations by capturing the importance of
different words within a sentence based on their semantic and
syntactic relationships. The resulting contextual embeddings
are obtained through feed-forward operations and layer
normalization.

G. TRAINING SecurityBERT
The training of SecurityBERT involves several crucial
steps, each carefully calibrated to ensure optimal perfor-
mance in security-centric tasks. These steps include data
collection and preprocessing, tokenizer training, model con-
figuration, and the training process itself. SecurityBERT
works with PPFLE-encoded data, simplifying certain steps

in the tokenizer training process and requiring alternative
approaches for other steps. Here, we detail the distinct aspects
of SecurityBERT’s training process.

1) TEXT NORMALIZATION

n(D) = {n(d)|d ∈ D} (4)

In this function, n(D) represents the normalization process
applied to each document d in the set of all documents
D. Text normalization typically involves converting all text
to lowercase, removing punctuation, and sometimes even
stemming or lemmatizing words (reducing them to their root
form). This process is part of the original BERT architecture;
however, when working with PPFLE-encoded data, this
element becomes unnecessary and does not provide any extra
value to our architecture.

2) TOKENIZATION

t(d) = {t(w)|w ∈ d, d ∈ D} (5)

The tokenization function t(d) breaks down each document
d in the set D into its constituent words or tokens w. These
tokens are the basic units of text that a machine-learning
model can understand and process.

3) FREQUENCY FILTERING

f (D,F) = {w ∈ D|freq(w,D) ≥ F} (6)

This function f (D,F) defines a High-Pass filter, cutting out
tokens w that have a frequency of occurrence, freq(w,D) less
than the minimum frequency F in the set of all documents
D. This is to remove rare words that might not provide much
informational value for further processing or model training.

4) VOCABULARY CREATION

v(D,V ) = {w|w ∈ D, rank(w,D) ≤ V } (7)

Here, the function v(D,V ) creates a vocabulary by choosing
the top V words w from the set of all documents D based on
their frequency rank rank(w,D). This forms the vocabulary
that the model will recognize.

5) SPECIAL TOKEN ADDITION

v′ = v ∪ S (8)

This states that the new vocabulary, v′, is a union of the
original vocabulary v and the set of special tokens S. These
special tokens typically include markers for the start and end
of sentences, unknown words, padding, etc., and are essential
for certain SecurityBERT operations.
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TABLE 3. Comparison of original BertBase, BertLarge, and SecurityBERT.

6) TOKENIZER TRAINING

Td = map(v′) (9)

Finally, the function map(v′) trains the tokenizer Td .
The trained tokenizer now maps future text inputs to the
established vocabulary v′, effectively turning unstructured
text into a form that the SecurityBERT can process. The
trained tokenizer Td can take any text segment from the
document ′d ′ into a series of tokens that SecurityBERT
can understand.

These steps allow us to transform the raw text into a
numerical representation that SecurityBERT can process
effectively.

H. FINE TUNING SecurityBERT
After the pre-training stage, we fine-tuned SecurityBERT
for the cyber threat detection classification task. We added
one linear layer followed by a Softmax activation function on
top of the pre-trained SecurityBERTmodel, and the entire
network is fine-tuned using our labeled data. This process
enables SecurityBERT to adapt its learned contextual
representations to the specific threat detection requirements,
improving performance.

1) TRAINING SETUP
The training and fine-tuning were conducted on an Intel
Xenon(R) 2.20 GHz CPU and an Nvidia A100 GPU with
40GB of RAM. The training on this specific hardware
configuration was completed in 1 hour and 47 minutes. The
following Section will extensively discuss a comprehensive
performance evaluation of our novel SecurityBERT
model.

I. LAYERS OF THE SecurityBERT MODEL
Throughout the research, the primary objective was to attain
exceptional accuracy in data classification while ensuring the
model’s size remained compact, with a focus on optimizing
performance. After extensive experiments, the final model
comprises 15 layers, specifically engineered to accurately

comprehend PPFLE data while mitigating overfitting issues
by incorporating suitable dropout layers. The comprehensive
structure of the 15-layered SecurityBERT is illustrated in
FIGURE 5. In the architectural design of SecurityBERT,
we utilized just 4 Encoder Layers and modified the original
parameters to suit our problem better. Additionally, we intro-
duced a new layer in the final stage, comprising a Dropout
layer, another new layer, and a Classifier Layer. TABLE 3
highlights the key parameter differences between the original
two BERT models and SecurityBERT.

1) BERT EMBEDDINGS
The BERT Embeddings section starts with Word embed-
dings, succeeded by Position embeddings and then Token
type embeddings. To stabilize the activations, there is a Layer
Normalization with a size of 128, followed by aDropout layer
with a rate of 0.1.

2) BERT SELF ATTENTION
The BERT Self Attention comprises three primary linear
transformations for the Key, Query, and Value. Each of these
transformations has input and output features sized at 128.
Another Dropout layer with a rate of 0.1 is included to prevent
overfitting.

3) BERT SELF OUTPUT
The BERT Self Output section features a Linear dense layer
with an input and output feature size of 128. A Layer
Normalization complements this, also sized at 128, and a
Dropout layer with a rate of 0.1 for regularization.

4) BERT INTERMEDIATE
In the BERT Intermediate part, there’s a dense layer with
input features of 128 and output features expanded to 512.
This section employs the GELU activation function.

5) BERT OUTPUT
In the BERT Output segment of the model, the final layer is
a Linear dense layer that transforms the 512 features back
to 128.
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FIGURE 5. SecurityBERT architecture.
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6) BERT POOLER+BERT FINAL
After a Tanh activation in the Bert Pooler, the output is
streamlined through another Linear layer, further reducing
the feature size to 15, representing the final output. This
reduction is a crucial aspect of the model, preparing it for the
15 distinct classification tasks (14 attacks+ 1 normal traffic).

J. MODEL PARAMETERS
The precise parameter choices are among the most critical
aspects of a BERT model. Incorrectly selected parame-
ters can significantly influence the model’s performance.
The model uses a Byte-Pair Encoding Tokenizer, which
provides a reliable and effective means of splitting input
data into manageable tokens. The training data utilized by
the model amounts to 661,767,168 tokens, with a limited
vocabulary size of 5000. The minimum token frequency
for SecuriyBERT is set at 2, while the model supports a
maximum sequence length of 737 and a minimum sequence
length of 619. The truncation settings limit the sequence
length to a maximum 512, ensuring data consistency and
model stability. Special tokens used by the model include
<s>, <pad>, </s>, <unk>, and <mask>. Regarding
processing power, the model works with a batch size of
128 and a hidden size of 128. The model architecture
comprises two hidden layers and utilizes four attention heads
to process the input data. The intermediate size is set at 512,
and the maximum position embeddings at 512, providing
enough room for extensive and complex computations. The
model can identify and respond to 14 different attacks,
demonstrating its versatility and broad applicability. The
SecuriyBERT is based on 11,174,415 parameters that are
fine-tuned for optimal performance. Lastly, the model runs
on an Nvidia A100 GPU, a powerful hardware accelerator
that enables rapid data processing and real-time response
capabilities.

TABLE 4 summarizes the experimental parameter con-
figuration, carefully designed to optimize performance and
functionality. With the application of these parameters,
our new SecurityBERT model exhibits the capability to
identify fourteen distinct types of attacks with remarkable
accuracy.

IV. PERFORMANCE EVALUATION OF SecurityBERT
In this section, we evaluate the performance of the newly
proposed SecurityBERT model, through rigorous testing
and comparative analysis. We show that the newly proposed
model achieves a remarkable accuracy of 98.2%, which,
to the best of our knowledge, stands as the highest accuracy
ever attained using an ML algorithm detecting IoT attacks on
realistic real-world network traffic.

A. EXPERIMENTAL RESULTS
To ensure appropriate comparisons with results from other
models, we rely on standard measurements, namely Preci-
sion, Recall, F1-Score, and Support measurements. These

TABLE 4. Configuration and parameres of SecurityBERT.

metrics are crucial in comprehensively evaluating themodel’s
performance and providing a meaningful assessment of its
capabilities.

We partitioned the Edge-IIoTset dataset conventionally,
allocating 80% of the samples for training and reserving 20%
for evaluation. The model has not previously been exposed
to the evaluation data, and we assess its effectiveness using
those samples. TABLE 5 presents the distribution of different
types of cyber attack samples across training and evaluation
data sets.

TABLE 5. Distribution of data across 14 attack types.

TABLE 6 presents the detailed classification report for the
SecuriyBERT model on various network attack classes.

FIGURE 6 shows the accuracy and loss history during the
SecuriyBERT training changes over four epochs.

1) ROC AUC SCORES FOR CYBER THREAT CLASSIFICATION
FIGURE 7 presents various classes’ Receiver Operating
Characteristic Area Under the Curve (ROC AUC) scores.
These scores indicate the SecurityBERT model’s per-
formance, with a value of 1.0 being perfect. Classes
‘‘Normal’’, ‘‘UDP’’, ‘‘TCP’’, and ‘‘MITM’’ demonstrate
perfect classification with an AUC score of 1.0, which
suggests that the model can flawlessly differentiate these
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FIGURE 6. Accuracy and loss history of SecurityLLM training in 4 epochs.

TABLE 6. Classification report of SecurityBERT.

FIGURE 7. ROC AUC Scores for Cyber Threat Classification.

classes from the others. The classes ‘‘ICMP’’, ‘‘SQL’’,
‘‘Pass’’, ‘‘HTTP’’, ‘‘Scan’’, ‘‘Upload’’, ‘‘Back’’, ‘‘Port’’,

‘‘XSS’’, and ‘‘Rans’’ all have AUC scores exceedingly close
to 1.0, ranging from approximately 0.9976 to 0.999988.
This implies a near-perfect classification for these classes,
with very minor misclassifications. On the lower end of the
performance spectrum, the class ‘‘Fing’’ has an AUC score of
0.991569, which, while still indicative of strong performance,
means it has a slightly higher misclassification rate than the
other classes. TheSecurityBERTmodel generally exhibits
stellar performance across all classes, with almost all of them
achieving near-perfect or perfect classification.

2) CONFUSION MATRIX
A visual depiction of the confusion matrix from the
SecuriyBERT classification is presented in FIGURE 8.

FIGURE 8. Confusion matrix of SecurityBERT classification.

For the ‘Normal’ class and most types of DDoS attacks,
including ‘DDoS_UDP’, ‘DDoS_ICMP’, and ‘DDoS_TCP’,
the model achieved perfect scores in terms of precision,
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recall, and F1-score, showing a high accurate classification
performance on these types (c.f. TABLE 6). It is noteworthy
to mention the high support count for the ‘Normal’ class,
which amounts to 323, 129 instances. The performance on
‘SQL_injection’, ‘Password’, ‘DDoS_HTTP’, ‘Uploading’,
‘Backdoor’, and ‘Port_Scanning’ classes was relatively lower
but still commendable, with F1-scores ranging from 0.83 to
0.94. Notably, ‘DDoS_HTTP’ and ‘Port_Scanning’ achieved
a remarkably high recall of 0.99 and 1.00, respectively,
indicating that the model could identify almost all instances
of these attacks when they occur. ‘Vul_scanner’ had a high
precision and a slightly lower recall of 0.94, resulting in an
F1-score of 0.97, showing good performance in identifying
this type of attack. ‘Ransomware’ showed a high precision of
1.00, but with a significantly lower recall of 0.40, resulting
in an F1-score of 0.57, suggesting that while the model made
correct predictions for the ‘Ransomware’ class, it missed a
significant portion of actual instances.

An examination of the confusion matrix reveals that,
while the ransomware classification did experience mis-
classification in a substantial proportion of instances, most
misclassifications occurred within the ‘Backdoors’ category.
This category bears notable similarities with the ransomware
category in real-life traffic data. Consequently, if our
model misclassifies ransomware as a backdoor, it will not
have a significant impact, maintaining satisfactory results
in practical applications. The classes ‘XSS’ and ‘MITM’
showed good performance with F1-scores of 0.84 and
1.00, respectively, demonstrating that the model handled
these classes well. Interestingly, the ‘Fingerprinting’ class
had a precision, recall, and F1-score of 0, indicating a
complete misclassification for these instances by the model.
We again highlight that, much like the backdoor-ransomware
misclassification scenario, a considerable proportion of
the ‘Fingerprint’ misclassifications pertain to the ‘ICMP’
class. Misclassifying ‘Fingerprint’ as ‘XSS,’ for example,
would ordinarily be a substantial issue in misclassification.
However, in practical applications, these misclassifications
bear no real consequence since the ‘Fingerprint’ and ‘ICMP’
classes closely resemble each other.

The average recall and F1-score were all 0.84 on the
macro level. The weighted average was considerably higher
at 0.98 for all three metrics, suggesting a good performance
overall. The slight difference between these two averages
may be due to the imbalanced nature of the dataset, as classes
with larger support have a greater influence on the weighted
average. The overall accuracy of the model, measuring the
proportion of correct predictions made out of all predictions,
was 0.982, showing a high degree of the predictive power of
the SecurityBERT model in identifying different types of
network attacks.

3) WeightWatcher - EMPIRICAL SPECTRAL DENSITY (ESD)
WeightWatcher (WW) is an open-source diagnostic tool
designed for examining Deep Neural Networks (DNNs) and
can analyze various layers within a model. WeightWatcher

can assist in identifying signs of overfitting and underfitting
within particular layers of pre-trained or trained DNNs.
We employed WW to optimize performance throughout
our experiments, modifying the model’s parameters to
achieve optimal results. FIGURE 9 presents the Power Law
(PL) exponent (α) values when plotted against layer IDs,
revealing intriguing insights into the weight matrix properties
of SecurityBERT. FIGURE 10 presents the Empirical
Spectral Density (ESD) for Layer 14. FIGURE 11 presents
the Log-Lin Empirical Spectral Density (ESD) for Layer 14.

FIGURE 9. Power Law (PL) exponent (α) values.

Initial layers, especially the first, show a significantly
high α value of around 10.43, suggesting a distinct weight
initialization or early layer behavior. As we progress deeper
into the network, the α values stabilize around 2 to 3, with
many layers hovering close to the 2 mark. An α value
near 2 indicates weight matrices possessing heavy-tailed
properties, which, according to [34], smaller values (α ≈ 2)
are associated with models that generalize better.

According to the measurements presented, Security-
BERT can generalize effectively to new data that closely
resembles the patterns observed during testing on the training
dataset.

B. PERFORMANCE COMPARISON
Numerous research studies have assessed the accuracy of
detecting the 14 attacks in the Edge-IIoTset dataset. In this
section, we have specifically analyzed research conducted by
various authors.

The creators of the Edge-IIoTset dataset tested various
traditional ML algorithms on it, including Decision Tree
(DT), RandomForest (RF), Support VectorMachines (SVM),
and K-Nearest Neighbor (KNN). Among these traditional
methods, DT exhibited the lowest performance with an
accuracy of only 67.11%, while RF outperformed the others
with an accuracy of 80.83%. In addition to these traditional
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TABLE 7. Comparison of SecurityBERT with traditional ML and DL models.

FIGURE 10. Empirical Spectral Density (ESD) for Layer 14.

algorithms, a Deep Neural Network (DNN) test was
conducted, which outperformed the others, boasting an
accuracy of 94.67%. The ultimate objective of this research
is to develop a model capable of achieving nearly flaw-
less real-time accuracy while maintaining a relatively
compact model size suitable for deployment on IoT-
embedded devices. This requirement explicitly rules out
resource-intensive solutions like utilizing pre-trained LLMs,
which, although capable of delivering high accuracy, are
impractical for constrained devices regarding real-time
packet analysis due to their significant resource demands.
Following the initial dataset release, numerous authors
tried to enhance accuracy using various model combina-
tions and novel architectural designs. TABLE 7 presents
the comparative accuracy of the proposed model, namely
SecurityBERT, against the traditional ML models and
Deep Learning (DL) models.

FIGURE 11. Log-Lin Empirical Spectral Density (ESD) for Layer 14.

Friha et al. [23] explored the potential of CNNs to
exceed the 95% accuracy. They experimented with various
setups, including Centralized Learning (CL) and Federated
Learning (FL), both with and without Differential Privacy
(DP). Using CL without DP, their best model attained an
accuracy of 94.84%. E. M.d. Elias et al. combined the
CNN approach with Long-Short Term Memory (LSTM).
This combination surpassed the 95% threshold, reaching an
impressive accuracy of 97.14% on the Edge-IIoTset dataset,
solely by extracting features from the transport and network
layers. A recent research paper by Ferrag et al. [29] explored
an innovative method. They introduced a simple GAN and
Transformer-based architecture without any tokenization or
embeddings. Themodel obtained a 94.55% accuracy rate, and
in this study, they raised the question of whether tokenization
could pose challenges when applied to IoT datasets due
to the unstructured nature of IoT network data, making it
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challenging to capture the semantics of closely resembling
patterns like TCP scans or UDP scans.

The main objective of our paper was to create a novel
model capable of exceeding an already exceptionally high
level of accuracy. To the best of our knowledge, we have
reached a record-breaking accuracy of 98.2% in classifying
the 14 types of attacks, as showcased in TABLE 6. This
achievement represents the highest accuracy ever achieved in
the multiclassification of these attack categories.

C. REAL-LIFE ENVIRONMENT INTEGRATION
In the original Edge-IIoTset dataset, feature extraction
is derived from genuine PCAP files. This implies that
replicating the same results in real-life scenarios becomes
feasible if we possess real traffic data. We can substitute the
PCAP files used in the Edge-IIoTset dataset [9] with real-life
internal network traffic, employing a suitable sniffing tool to
generate the PCAP file. FIGURE 12 provides a visual repre-
sentation of the experimental setup where SecurityBERT
is seamlessly integrated into a real-life network environment.
This system is designed to detect network incidents with
remarkable accuracy, leveraging real-time network packet
data.

1) INFERENCE TIME
To implement the model on IoT devices, evaluating whether
the inference time is sufficiently fast is essential. If the
model is overly complex and exhibits slow inference times
on an average CPU, its viability in real-world environments
becomes questionable. TABLE 8 offers a detailed compara-
tive analysis of computation times across different hardware
platforms, specifically focusing on the inference task of the
SecuriyBERT model. The figures in the table denote the
average inference time derived from 1000 measurements.

TABLE 8. Inference time of SecuriyBERT across different hardware
platforms.

The devices evaluated include three NVIDIA GPUmodels
(A100, T4, and V100), Google’s Tensor Processing Unit
(TPU), and a general-purpose CPU. Each entry, denoted in
seconds, reflects each hardware platform’s time to perform
the inference using SecuriyBERT. The A100 GPU is
the most efficient in this context, completing the inference
quickly. The pivotal metric here is the 0.15 sec CPU
inference time, signifying that the model can be efficiently
deployed on resource-limited devices for analyzing real-life
traffic. Additionally, given its compact size of just 16.7 MB,
the model is well-suited for deployment in embedded
devices.

FIGURE 12. Real-life experimental setup using SecurityBERT.

2) REDUCING MTTR
Integrating SecurityBERT into an embedded device and
deploying it within an IoT network makes it possible
to substantially enhance detection accuracy and leverage
its high-speed performance to identify malicious activities
within internal networks in real-time quickly. This, in turn,
can lead to a notable reduction in Mean Time to Remediate
(MTTR).

Implementing AI in software security and incident han-
dling is not a recent development in software security. For
instance, companies like Rubrik2 andMicrosoft have adopted
generative AI models to optimize operations and enhance
efficiency. For instance, if Rubrik’s Security Cloud machine
detects abnormal behavior, it automatically generates an
incident in Microsoft’s Sentinel. By employing this proactive

2https://www.rubrik.com/products
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approach, they can achieve faster response times and more
effective management of potential security threats.

Similarly, SecurityBERT can be seamlessly integrated
into existing real-world systems, thereby augmenting the
overall accuracy and detection rate of these pre-existing
systems.

V. CONCLUSION
The innovative application of BERT architecture for cyber
threat detection, embodied in SecurityBERT, demon-
strated remarkable efficiency, contradicting initial assump-
tions regarding its incompatibility due to the reduced sig-
nificance of syntactic structures. Experimental results under-
scored the superiority of this approach over conventional ML
and DL models, including CNNs, deep learning networks,
and recurrent neural networks. The SecurityBERTmodel,
tested on a collected cybersecurity dataset, exhibited an
outstanding capability to identify fourteen distinct types of
attacks with an accuracy rate of 98.2%.

While this paper has made significant progress in advanc-
ing the use of LLMs in cybersecurity, future research
directions can take several routes to enhance these promising
findings further. One potential avenue involves fine-tuning
and expanding the SecurityBERT model to enhance
its performance across various attack types, incorporating
adversarial attacks and more complex threats. In addition,
due to the evolving nature of cyber threats, continuous
updating and training of SecurityBERT model on the
latest real-world datasets will be imperative to maintain its
efficacy.

An exciting and promising avenue for future research
is delving into methods to autonomously implement mit-
igations based on the classification of SecurityBERT.
This advancement could lead to automated patch manage-
ment, antivirus management, network reconfiguration, port
management, and numerous other facets of cybersecurity
management.
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