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ABSTRACT The emergence of wearable devices has motivated people to actively log their daily exercise
routines using smart apps. However, most current exercise trackers focus on aerobic exercises, and thus
provide limited functionality for tracking and analyzing anaerobic workouts involving complex and repetitive
movements. To fill this gap, we developed uLift, an adaptive workout tracker that uses only a single
wrist-worn accelerometer and has four main functions: workout detection, repetition counting, workout
classification, and quality assessment. First, uLift detects a binary workout state from continuous signals
using the weighted sum of autocorrelation. Second, repetition counting is conducted by filtering out
unwanted peaks. Third, the segments of a workout are used to generate a representative template for workout
classification using the distances calculated from dynamic time warping. Finally, to assess workout quality,
the form score is computed by evaluating the consistency across repetitions. As uLift does not require
a training process, it can easily add new workouts or delete existing ones using an instant adaptation
process. For the evaluation of uLift, we collected a multi-joint workout dataset comprising 15 workouts from
35 participants in a gymnasium. To allow for natural and individual variability, we provided the participants
with minimum instructions. The dataset was open-sourced to facilitate future research on anaerobic workout
analysis. As a result, uLift achieved 93.09% accuracy for workout detection, mean counting error of 0.61,
and classification accuracy of 90.06%. The form score was significantly different among the three subgroups
of participants, divided by workout experience.

INDEX TERMS Anaerobic workout, autocorrelation, classification algorithms, dynamic time warping,
inertial measurement unit, quality assessment, repetition counting, wearable, workout tracker.

I. INTRODUCTION
Regular exercise is essential for promoting health and
improving the quality of life [1], [2], [3], [4], [5], [6],
[7]. Additionally, regularly logging one’s exercise can
encourage the continuation of workout activities. In line with
these trends, smart wearables have started adding tracking
functions that motivate users to exercise regularly [8],
[9], [10], [11], and many people have begun to adopt
this new technology to keep track of their workouts [12],
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[13]. However, smartwatches or smartbands with motion
tracking and logging functions are usually designed for
aerobic exercises, such as walking, running, and cycling.
Although anaerobic exercises or weight training, which help
strengthen body muscles, are critical for maintaining health
in conjunction with aerobic exercise [14], existing solutions
only provide limited functionality for automatic logging and
systematic analysis of anaerobic exercises.

Therefore, we propose uLift, an adaptive anaerobic work-
out tracker that automatically logs and analyzes anaerobic
exercises using a single wrist-worn accelerometer. There
are four main functions that uLift provides: (1) detecting a

21710

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-7417-0657
https://orcid.org/0000-0002-9040-9170
https://orcid.org/0000-0002-5634-908X
https://orcid.org/0000-0001-6389-0221


J. Lim et al.: uLift: Adaptive Workout Tracker Using a Single Wrist-Worn Accelerometer

user’s workout state, (2) counting repetitions, (3) classifying
workout types, and (4) assessing the quality of workouts,
all with minimal user intervention. Figure 1 presents a flow
diagram of uLift. To enable anaerobic workout tracking
without user intervention, the system must be able to
detect whether the user is in a workout state. To detect
the workout state, we first defined anaerobic workouts as
actions involving repetitive movements to exhaust target
muscles. Therefore, the workout state can be detected by
first recognizing consistent repetitions from sensor values.
When uLift determines that the user is in a workout state,
it counts the number of repetitions, classifies the workout
type, and finally assesses the workout quality. Two challenges
must first be overcome before the workout tracker can be
practically applicable to real-world scenarios. First, users
must be able to add custom workout types or delete the
existing ones, based on their needs and progress. Second,
the system must deal with the intraclass variability caused
by variations from the same user performing the same
exercise in different manners, which can also drift with
time. Therefore, the system must adapt to these changes in
the workout types and motions. uLift can accomplish such
tasks via straightforward signal processing techniques, such
as autocorrelation and dynamic time warping, and does not
rely on data-driven parameter updates as machine learning
algorithms do. The absence of a learning process enables
the seamless addition or deletion of custom work types.
The adaptability of uLift, along with its simple unisensory
configuration on the wrist, makes it a practical solution for
anaerobic workout tracking and logging.

The main contributions of the current study are summa-
rized as follows:

• Dataset of real-world multi-joint workouts: To eval-
uate uLift, we collected and open-sourced a dataset1

featuring 15 types of multi-joint workouts from 35 par-
ticipants in a real gym environment. This dataset is
intended to facilitate future research and development in
the field of anaerobic workout analysis while offering an
extended diversity compared with existing datasets [15],
[16], [17], [18].

• Automatic workout analysis without the need for
training: We present a novel method for fully automatic
workout analysis. This comprehensive approach encom-
passes the detection of workout states through repeti-
tive motion recognition, repetition counting, adaptable
workout type classification, and workout form quality
assessment. Notably, uLift does not require a traditional
training process, thereby enhancing its ease of deploy-
ment, and offering an advantage over the predominantly
data-driven approaches in the existing literature [15],
[19], [20], [21], [22], [23], [24], [25], [26]. uLift also
yields consistent and robust performance against the
change of parameters and thresholds.

1https://github.com/JeiKeiLim/uLift-dataset

FIGURE 1. Flow diagram of uLift workout analysis.

• Algorithm for personalized workout classification:
Our method employs a template-based system that
requires only a single action instance from the user
for personalized workout classification. Designed for
flexibility, it allows for the easy addition or removal
of workout types to accommodate the individual’s
motion variations and reflect changes in condition
and skill level. uLift surpasses the previous automatic
workout analysis algorithms [15], [19] as well as
the deep learning models [20], [21] particularly when
the number of available templates is small, which is
crucial for a personalized, adaptive workout tracker.
Unlike these methods that typically rely on a training
process and may take time to adapt to new data, uLift
can immediately incorporate new workouts, offering
a significant advantage in dynamic and personalized
workout scenarios.

• Assessment of workout quality without human anno-
tation: Diverging from conventional methods that often
rely on subjective human annotations [27], [28], [29],
[30], [31], our method assesses workout form quality
by examining the stability of motion. Based on the
premise that skilled individuals perform their workouts
with consistent movements, this approach offers a
practical way to evaluate workout consistency and
form, providing insights into the overall quality of the
exercise.

The remainder of this paper is organized as follows.
Section II reviews the previous studies on automatic workout
analyses. Section III describes the experimental process
and collected dataset as well as the methodologies to
implement- automatic workout motion analysis. Section IV
presents the results of applying the four methodologies to
the collected dataset described in Section III-A. Finally,
Section V concludes the paper with a discussion of the
results.
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II. RELATED WORK
A. SEMI-AUTOMATIC WORKOUT ANALYSIS
Unlike a fully automatic workout analysis, which is discussed
in Section II-B, a semi-automatic workout analysis requires
manual user input. A primary example is the requirement
for users to manually indicate the beginning and end of their
workout sessions. Nonetheless, many studies in this category
provide workout classification, repetition counting, and
optional workout quality assessments using wearable inertial
sensors. However, the requirement for user intervention
during workouts inevitably lowers the usability of practical
workout-tracking systems. Hosein et al. [22] performed
workout classification using feature extraction, and compared
the results from multiple classifiers. Ebert et al. [23] utilized
multiple inertial measurement units (IMUs) to classify
workout types and compared the results from different
combinations of attached sensor locations. Their results
indicated that using a single sensor attached to the wrist
resulted in a classification accuracy comparable to that of
other combinations. Margarito et al. [32] applied dynamic
time warping (DTW) to classify workout types. However,
they focused on aerobic workouts such as walking, yoga, and
cycling. Zhou et al. [33] adopted a pressure array sensor to
classify the movement type, count the number of repetitions,
and estimate quality. Hussain et al. [24] applied a long short-
termmemory (LSTM) neural network to classify 42 exercises
targeting six muscle groups. Because the entire session lasted
six weeks, only four subjects were able to complete it. Coates
andWahlström [28] introduced LEAN,which simultaneously
classifies and estimates the quality of three free-weight
(dumbbell) workouts in addition to measuring the range of
motion (ROM). However, they tested their algorithms on only
three isolated muscle movement sets.

B. FULLY AUTOMATIC WORKOUT ANALYSIS
To achieve a fully automatic workout analysis without
user intervention, the system must be able to detect the
beginning and end of a workout, classify the workout type,
and count repetitions. One of the pioneers of automatic
workout analysis was RecoFit [15], which uses a support
vector machine (SVM) to recognize the state and type of
workout. Repetition counting was performed by extracting
the peak candidates and filtering out false positives based on
the known minimum and maximum time parameters for a
single repetition of the recognized workout. This approach
requires prior knowledge of the individual repetition time
range of each workout, which complicates the addition of
custom workout types. Following the successful study by
RecoFit [15], MiLift [19] proposed the use of autocorrelation
and revisited algorithms for workout state recognition. The
repetition counts were reliably tracked by detecting the
appropriate peaks and valleys. However, this method has
limitations when applied to complex multi-joint workout
motions where two or more peaks may appear in a single
motion. In addition, most of the movements were conducted

as isolation workouts, which might result in lower accuracy
of the multi-joint workout motion. FitCoach [25] attempted
to identify the similarities between the movements of regular
users and trainers. Additionally, the workout state was
detected using the peak number of autocorrelations. However,
an autocorrelation peak may not occur when one repetition
of the workout is prolonged. For workout-type classification,
both MiLift [19] and FitCoach [25] utilize RecoFit’s [15]
approach with customized features. Kowsar et al. [26] applied
an unsupervised algorithm to detect and count the repetitions
of new workout routines. However, they tested the algorithm
for a relatively small real gymnasium setup with two subjects
performing 11 workouts. Ishii et al. [34] presented ExerSense
which segments, classifies, and counts exercises using a
correlation-based method and DTW. The authors also tested
different device locations to achieve the best performance.
However, their study was limited to testing five exercises,
including both aerobic and anaerobic workouts (running,
walking, jumping, push-ups, and sit-ups). Džaja et al. [35]
utilized the frequency spectrum of acceleration magnitude
for workout segmentation and DTW for classification, using
data from three body-worn IMU sensors. They applied this
algorithm to nine anaerobic workouts.

These studies showed that combining workout state detec-
tion, repetition counting, and workout-type classification can
successfully track a user’s anaerobic workouts. However,
tracking workouts using machine learning has limitations in
that only pre-trained workout types can be tracked. Adding
and deleting workout types is an essential requirement for
practical use because new workout types can be defined
by users. However, studies employing non-machine learning
algorithms often focus on a limited range of workouts and
subjects, which may leave their generalizability more open
to exploration and confirmation.

C. WORKOUT QUALITY ASSESSMENT
The effect of anaerobic workouts depends on how well the
posture is maintained. Therefore, it is essential to assess the
correctness of a user’s workout format. Velloso et al. [27]
measured the workout form quality of a user through four
sensors. In addition, they identified the angle of the wrong
posture using a Kinect. The joint angle is a useful indicator
for measuring the workout form. However, obtaining a
joint angle with an inertial sensor requires multiple sensors
to extract the angle, complicating its implementation in
practical applications. Pernek et al. [30] proposed a method
for measuring the exercise intensity using sensor data.
However, measuring workout intensity with inertial sensors is
challenging due to the highly subjective nature and individual
variability of proper workout intensity. Kowsar et al. [31]
exploited anomaly detection to identify incorrect work-
out motions using only correct posture data. Coates and
Wahlström [28] estimated range of motion (ROM) in three
free-weight exercises. Spliz and Munz [29] trained a neural
network model to assign Functional Movement Screening
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FIGURE 2. Experiment setup.

scores to four exercises with 17 inertial measurement
units.

Assessing workout quality is a challenging problem
because the definition of ‘correct form’ is inherently
ambiguous, varying with the workout’s context and indi-
vidual differences. Furthermore, defining the correct form
necessitates manual annotation by human experts, a process
that is both costly and challenging to scale for diverse
workouts. Additionally, estimating human poses with inertial
sensors is often noisy and unreliable in many scenarios.
Therefore, we designed uLift to indirectly assess workout
quality by measuring the consistency of each repetition
during a workout.

III. METHOD
A. DATASET
1) HARDWARE
To collect workout data, we developed a custom-designed
wristband and an Android data collection application
(Figure 2). We used the IMU unit of BNO055 [36] and
the Bluetooth module of nRF51822 [37] for Bluetooth low
energy (BLE) communication. Given that BLE, a wireless
communication method, was used for interaction with the
data collection application, the sampling rate varied and
averaged around 60 Hz. We utilized a single accelerometer
sensor for data collection because multiple studies [18], [22],
[23], [30], [38] have shown desirable results using a single
accelerometer sensor on the wrist.

2) WORKOUT ENVIRONMENT
We collected data from 15 distinct multi-joint workout types,
chosen over isolated workouts to capture complex and more
realistic data. Figure 3 shows the 15 selected workouts: Squat,
Push-up, Lunge, Jumping Jack, Bench Press, Good Morning,
Deadlift, Push Press, Back Squat, Arm Curl, Barbell Military

FIGURE 3. Workout types.

Press, Barbell Bent-over Row, Burpee, Leg-raised Crunch,
and Lateral Raise. To collect workout data as close to
an unconstrained environment as possible, we asked the
participants to exercise as usual. They were informed of the
standard workout motion only when they had no previous
knowledge of the exercise. Additionally, for workouts in
which hand movements could be performed differently,
such as squats, lunges, leg-raised crunches, and burpees,
the participants were requested to perform in a manner
that was comfortable for them. Consequently, not only did
we observe variations in hand movements among different
participants performing the same workout, but we also noted
inconsistencies within the same individual’s execution of the
exercise across attempts.

To clarify the analysis framework, we define a ‘session’ as
the period from the start to the end of data collection. Each
session comprises ‘workout segments’ and ‘rest segments’.
During each session, participants were asked to complete
15 different types of workouts and perform repetitions
according to their condition in each ‘workout segment.’
Consequently, while the target was 10 repetitions per
workout, we observed variations ranging from fewer than
eight to more than 12 repetitions, reflecting the diverse
conditions of participants.

3) PARTICIPANTS
35 volunteers participated in this study and all of them signed
the informed consent prior to participation. Their ages ranged
from 20 to 35 years, with male and female percentages of
72% and 28%, respectively. To ensure diversity in workout
experience, we recruited people with different workout
experiences, from those without any experience to those
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TABLE 1. Data collection Table.

with up to five years of workout experience. The maximum
number of sessions allowed per day for each participant was
two, with up to six sessions per person. The total number
of collected sessions was 158, and the total number of
exercise repetitions was 23,738. Segment annotation for the
beginning and end of the workout was performed directly
by the experimenters through a data collection application,
and video recording was conducted to adjust the labeling
details. The total data collection duration was approximately
40 h. After each workout segment, participants were allowed
as much rest time as required through the resting segments.
Furthermore, we did not provide any instructions on what
to do during the rest segment, which led the participants
to perform natural actions such as walking, drinking water,
intermittent running, and stretching. Table1 summarizes the
collected data.

B. WORKOUT DETECTION
To recognize user engagement in a workout, it is essential
to establish a criterion for the workout motion. Anaerobic
workout motion is defined as the act of exhausting the
target muscle by intentionally repeating the samemovements.
Detecting the workout state thus requires determining
whether the same movement is performed repeatedly. From
the perspective of an inertial sensor, this translates to
identifying the periods during which a consistent signal is
observed repeatedly.

1) COMPUTING SIGNAL PERIOD
Assuming repetitive movements, autocorrelation can be
utilized to determine the periodic rate. While typically
one axis is chosen for autocorrelation analysis in a three-
axis accelerometer sensor [32], this study employed a
weighted sum across all three axes after the autocorrelation
analysis. Furthermore, to ensure consistent data size for
autocorrelation, a sliding window method was adopted.

S(X) =

i=x,y,z∑
i

ACF(X i) ·
exp||ACF(X i)||∑j=x,y,z

j exp||ACF(X j)||
(1)

Equation (1) defines S(X), a function that calculates the
weighted sum of autocorrelations (ACFs) along the three
axes, x, y, and z. Here, ACF(X i) signifies the autocorrelation
analysis performed independently on each axis i. By utilizing

FIGURE 4. Weighted autocorrelation of jumping jack workout (a) Raw
accelerometer data from workout segment, (b) Autocorrelation applied
on the raw accelerometer sensor data, (c) Weighted autocorrelation using
3-axis of autocorrelation from (b).

a softmax function, each axis is assigned a weight derived
from its respective ACF. This methodology facilitates the
extraction of stable autocorrelation values amidst complex
multi-joint movements, a phenomenon depicted in Figure 4.
Subsequently, the determined weighted autocorrelation value
becomes a crucial parameter in identifying the periodicity of
the repetitive signal:

τ (W ) =
P(S(X[k −W + 1 : k]))

H
(2)

where τ (W ) represents the computed signal period derived
from a window W applied to the signal X . The function P
denotes the extraction of the period, or peak index, from
the weighted autocorrelation function S(X). It is important
to note that H represents the sampling rate (in Hz) of
the sensor, providing a scalar divisor to normalize the
period. Equation (2) forms a foundation for establishing the
periodic characteristics of the signal X in the ensuing signal
processing.

2) WORKOUT STATE RECOGNITION
Using the signal period of the repetitive motions as deter-
mined by the method described in the previous section,
the binary workout state can be detected. During repetitive
motion segments, the signal period remains relatively stable.
In contrast, during segments with irregular movements, the
signal period experiences rapid fluctuations. Therefore, con-
sistent signal periods are indicative of anaerobic workouts,
whereas segments with rapidly fluctuating signal periods
typically correspond to non-exercising intervals, such as rest
segments.

To effectively analyze workout states based on these
derived characteristics, the computed signal periods τ are
aggregated into a vector, denoted as SP(W ):

SP(W ) = [τn, τn−1, · · · , τn−W+1] (3)

where each τn denotes a signal period, calculated with a
window W of the signal X , culminating at the nth sample.
In a more explicit formulation, each τn reflects a localized
measure of the signal period, based on the W samples of
X terminating at the nth sample. This stacking of periods
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FIGURE 5. Predictions by SP(W4) and SP(W8): (a) Raw sensor data and
ground truth of workout state, (b) Prediction result by SP(W4),
(d) Prediction result by SP(W8), (e) Comparison of each prediction and
combined prediction.

in SP(W ) is integral to developing an understanding of the
temporal consistency or variations within the repetitive signal
being analyzed.

To identify the segments where the previously defined
anaerobic exercise movements occurred, we examined
whether there were intervals where the value of SP(W ) was
above a certain threshold for a specific duration. In this study,
we detected both quick and slow repeated exercisemotions by
calculating two SP(W ) values with different sliding window
lengths. The lengths of the sliding windows were set to
4 and 8 s for the fast and slow motions, respectively, and the
SP values using these lengths were denoted as SP(W4) and
SP(W8), respectively.

These lengths were selected based on observations of the
exercise data, which indicated that the majority of single
repetitions were completed within 4 s. However, we also
noted occurrences of movements extending beyond 4 s, such
as burpees. Consequently, a 4-s window was employed to
detect rapid workouts, while an 8-s window was utilized for
exercises with prolonged duration.

After computing SP(W4) and SP(W8) with window sizes
of 4 and 8 s, respectively, any τ (W ) values exceeding 0.7 in
SP(W4) and 1.8 in SP(W8) were considered to be in the
workout state (Figure 5). Our rationale for using the threshold
of 0.7 in SP(W4) is that one repetition cannot be completed in
less than 0.7 s. A threshold of 1.8 in SP(W8) was established
to address instances where τ (W ) might not be accurately
captured for movements extending beyond 2 s with the
sliding window size used in SP(W4). In scenarios where
repeated movements are consistent and stable, a 4-s window
may suffice to correctly extract τ (W ) for actions exceeding
2 s. Conversely, for exercises performed with irregular and
unstable movements, a longer window, specifically the 8-s
window of SP(W8), is required to ensure accurate detection
of prolonged repetitions.

Our thresholds for SP(W4) and SP(W8) were designed
to optimize the detection accuracy for both fast and slow

FIGURE 6. Finding final peaks from peak candidates: (a) Raw sensor data,
(b) Peak candidates and threshold, (c) Final peaks.

movements, and refining the interpretation of the recognized
states could enhance the overall robustness. Consequently,
intervals that are recognized as the workout state and
are shorter than a predetermined duration are dismissed.
Furthermore, if the workout state was identified again within
a specific duration, it was interpreted as a continuation of the
previous state.

C. REPETITION COUNTING AND WORKOUT
SEGMENTATION
In principle, the number of repetitions within a workout
segment can be determined by counting the signal peaks
during the active workout state. However, this approach
encounters challenges due to the variability in real-world
data. For instance, complex workout motions might result in
more than two peaks within a single repetition, as illustrated
in Figure 6. To address this, our methodology filters out
extraneous peaks by utilizing what we refer to as the ‘workout
rate’, the representative signal period within the workout
segment.

It is crucial to differentiate between ‘workout segments’ as
defined in our dataset, specific periods of exercise activity,
and ‘workout segmentation,’ a distinct methodology we
introduce here. ‘workout segmentation’ is the analytical
process of dissecting sensor data into individual repetitions
within each workout segment.

1) COMPUTING WORKOUT RATE
The workout rate in the workout segment is determined using
the signal period SP as the following equation.

WR =
η45(SP(W )) + η95(SP(W ))

2
(4)

where WR denotes the workout rate within the segment; the
terms η45 and η95 represent the 45th and 95th percentiles
of SP, respectively. During our observations of the workout
movements, we noted slight variations in τ during the
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FIGURE 7. Final peaks and repetition segmentation.

initial phases. As the workout progresses to its middle
and later phases, a more consistent τ value emerges,
possibly because individuals find a rhythm or pace that
suits them. To best represent the typical movement pattern
throughout the workout and minimize the influence of minor
variations, particularly during the initial phases, we employed
the 45th and 95th percentiles of SP. These percentiles
encompass a broad range of central τ values, filtering out
the extreme values that may not indicate the overall workout
pattern.

2) FINDING FINAL PEAKS USING PEAK CANDIDATES
Once the workout rate WR was obtained, the axis with the
largest amplitude was selected from the workout segment.
The reason for choosing the axis with the largest amplitude,
and not the weighted sum of autocorrelation, is to utilize
the unaffected sensor data to extract the most appropriate
peak candidates. Afterward, among the detected peaks, those
below 80% of the percentile in amplitude were filtered out.
The remaining peaks were regarded as peak candidates, and
the final peaks were determined after the peaks within half the
time of the workout rate WR

2 were eliminated, as illustrated in
Figure 6(b) and Figure 6(c).

3) REPETITION SEGMENTATION
In general, to conduct segmentation, it is necessary to first
recognize the start and the end point of each workout repe-
tition. However, it is usually difficult to clearly distinguish
them from noisy and complex sensor data. Therefore, in this
study, one segment was defined as from and to the time
corresponding to half the workout rate around the final peak
points obtained in the previous section.

si = [xpi−H WR
2

, xpi+H WR
2
] (5)

Figure 7 shows the segmentation using WR
2 time to the final

peak center.

D. WORKOUT CLASSIFICATION
1) ADDING CUSTOM WORKOUT TYPE
Numerous studies [15], [19], [23], [25] have employed
machine-learning models to classify workout types and have
achieved reliable results. However, there are cases where
equivalent exercises are conducted differently over time by
the same user. Furthermore, different users could perform the
same workout differently. Therefore, a practical solution to
real-world workout classification must address the motion
variability. In addition, the classifier must allow the addition
of new workout types when necessary. In machine-learning
methods, to add a new workout type or embrace a variation of
a workout, the model must be retrained before being fetched,
which is expensive and impractical. To solve the limitations
of machine learning methods, this study proposes a method
that does not involve learning, so that our method can add or
delete workout types and adapt to workout variability.

2) GENERATING TEMPLATE DATA
As multiple segments were generated from a single workout
through the process of workout segmentation, the remaining
issue was the selection of the segment for classification,
as this choice could significantly influence accuracy. One
straightforward approach might be to randomly choose a
segment or select the first one. However, this method does
not guarantee the selection of the segmentmost representative
of the entire set. Moreover, averaging all segments could
lead to inaccuracies, as certain segments might contain sharp
peaks or deformations that skew the overall representation.
Therefore, as shown on the left side of Figure 8, dynamic
time warping (DTW) [39] was conducted for the number of
combinations nC2 in all segment pairs.
DTW in (6) computes the similarity between two time-

series sequences and the optimal alignment path specifying
the correspondence of points between the sequences.

(D(n,m),P (n,m)) = DTW(sn, sm)

P (n,m)
= (P (n,m)

n ,P (n,m)
m ) (6)

whereD(n,m) and P (n,m) represent the distance and the opti-
mal alignment path between segments sn and sm computed
by DTW. The optimal alignment path has two components:
P (n,m)
n is the optimal alignment path of sn with respect to sm

and P (n,m)
m is the optimal alignment path of sm with respect

to sn. After performing DTW for each pair, the pair with
the lowest Euclidean distance was chosen. The equivalent
process was then conducted on the pair with the second-
lowest distance to generate an average segment by (7) and (8).

(i, j) = arg min
(n,m)∈C

(D(n,m))

C′
= C \ (i, j)

(p, q) = arg min
(n,m)∈C′

(D(n,m)) (7)

where (i, j) and (p, q) are the pairs with the minimum
distances and the second-minimum distances, respectively.
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FIGURE 8. Generating template data (a) Computing DTW distance with
each combination of the segments, (b) Distance map to extract the lowest
distance pair, (c) Generating representative template using the lowest
pairs.

The functions identify these pairs by finding the minimum
distances within the sets of segment combinations C and C′.
Then, the transform function T in (8) warps signal s into the
optimal alignment path P .

sr1 =
1
2

(
T (si,P (i,j)

i ) + T (sj,P (i,j)
j )

)
sr2 =

1
2

(
T (sp,P (p,q)

p ) + T (sq,P (p,q)
q )

)
(8)

Finally, as shown on the right side of Figure 8, the two
averaged segments are used to generate the representative
template data:

R =
1
2

(
T (sr1,P (r1,r2)

r1 ) + T (sr2,P (r1,r2)
r2 )

)
(9)

3) CLASSIFYING WORKOUT TYPES WITH DTW
The representative template data produced through the
earlier process were compared with pre-registered template
data using DTW to calculate the distance between them.
The workout type corresponding to the template with the
minimum distance was then identified as the recognized
workout. Nevertheless, the same individual may perform
the same workout differently based on their condition on
any given day. Therefore, to accommodate this intraclass
variability, multiple templates for a single type of workout
were adopted, as illustrated in Figure 9. Finally, the workout
type (class) of a test template x is determined by:

class(x) = argmax
k

1 −
e

1
mk

∑mk
j D(x,yk,j)∑n

i e
1
mi

∑mi
j D(x,yi,j)

 (10)

where n is the number of currently stored workout types, mk
is the number of templates corresponding to the k th workout
type, and yi,j is the jth template stored in the ith workout type.
Therefore, k with the highest softmax value is classified as

FIGURE 9. Classifying workout type with DTW.

the k th workout type. In this study, the number of templates,
mk , was set to a maximum of three, as in our findings
in Section IV, and every time the same workout type was
performed, the stored templates were replaced with the latest
templates.

E. WORKOUT QUALITY ASSESSMENT
Measuring the joint angles from inertial sensors requires
attaching multiple sensors with delicate calibrations, which
adds a burden to users. Furthermore, a workout form that
appears incorrect may be the correct form, depending on the
physical condition of the user. Therefore, in this study, the
factor that measures workout quality was defined as how
consistently the motion was performed for each repetition
of the workout. This factor was determined based on the
observation that a personwith experience in a certain workout
is more likely to perform it more consistently than those with
less experience. Therefore, to measure the form score, the
method depicted on the left side of Figure 8 was reused.

When calculating distances using DTW across paired
repetition segments, we only considered the top third of the
total distance when computing the form score. This approach
was adopted to eliminate potential outliers within the workout
movements and measure motion consistency more reliably.
Although physical workouts often exhibit considerable
variability between individual actions due to factors such as
fatigue, technique, and individual biomechanics, the focus of
this study was to gauge the consistency of the most similar
workout motions. The form score F is given by:

Dall = {D(n1,m1),D(n2,m2), · · · ,D(n|C|,m|C|)}

F =
1

⌊
|C|

3 ⌋

⌊
|C|

3 ⌋∑
i=1

sort(Dall)[i] (11)

where |C| and Dall represents the total length and the
collection of all DTW distances for the pairs (n,m) in
the segment combination C, respectively. The notations
n1,m1, n2,m2, · · · , n|C|,m|C| specify individual pairs within
the set. Each pair (ni,mi) indicates a unique comparison
between specific repetitions. Consequently, a lower value of
F indicates consistentmotion quality in theworkout segment,
while a higher value suggests inconsistency.
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FIGURE 10. Workout detection rate by session numbers.

FIGURE 11. Workout detection rate by workout types.

IV. EVALUATION
This section evaluates the accuracy and performance of the
methods described in Section III by applying them to the
collected dataset introduced in Section III-A. Evaluations
included workout detection, repetition counting, classifica-
tion, and quality assessment.

A. WORKOUT DETECTION
Ensuring the ability of a workout detection system to detect a
broad spectrum of workout types reliably is fundamental for
its utility and efficacy in real-world applications. As we aim
to ascertain the robustness of the uLift system in this context,
the subsequent analysis provides a detailed exploration of its
performance metrics across varied session numbers, as well
as its proficiency in identifying different types of workouts.

We defined the detection rate as the proportion of correctly
detected time points out of those in the entire session and
used it as a metric for workout detection. We evaluated the
detection rates separately for individual sessions in which the
subjects participated (Figure 10). The global mean detection
rate was 93.09% and exceeded 92% in all individual sessions,
showing robustness to intra- and inter-class variability among
subjects.

In addition, workout detection rates were calculated for
each workout type (Figure 11). The results demonstrated
stable detection rates for the majority of workout types.
A relatively low detection rate with higher variability was
observed for lunge motions, possibly because of the inherent
asymmetry in lunge movements. Furthermore, because only
minimal instructions were given to the participants regarding
the execution of the workout motions, some subjects changed
their arms mid-motion during the lunge exercises. It is

FIGURE 12. Receiver operating characteristic (ROC) curve.

TABLE 2. Error rate of repetition.

anticipated that instructing users to maintain consistent arm
movements will lead to improved results.

Detection of a workout state was determined from the two
thresholds, 0.7 for SP(W4) and 1.8 in SP(W8), as described
in section III-B. To test the sensitivity of the detection rate
on different thresholds, a constant ranging from -1 to 3 was
multiplied to both thresholds, and the resulting false positive
rates and the true positive rates were calculated (Figure 12).
The estimated area under the curve was 0.936, indicating the
robust performance of uLift on workout detection.

The proposed method is characterized by its ability
to detect repetitive motions inherent in activities such as
anaerobic workouts and anticipate stable performance across
different types of workouts. Notably, the design of the
method, which does not rely on a training process, suggests
its potential to robustly detect workout states even when
presented with previously unseen workout motions.

B. REPETITION COUNTING
The number of repetitions of the entire workout dataset
was measured using the proposed method and the estimated
average error was 0.61 per single workout session, which
consisted of approximately 10 repetitions.

Figure 13(a) shows the average number of errors for
each workout. Relatively high error rates were observed for
Jumping Jack, Burpee, and Lunge. For the Jumping Jack,
the average movement speed was faster than that in other
workouts, and errors could have occurred while the user
was jumping up and down, leading to a disturbance in the
balance of the user. For Burpee and Lunge, errors could
occur because the participants often became distracted by
the difficulty in maintaining the body’s center of gravity.
In particular, the lunge is more likely to cause errors because
of its asymmetrical movements. Figure 13(b) presents the
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FIGURE 13. Repetition error by workout type and participants
(a) Repetition error by workout types (b) Repetition error by participants.

TABLE 3. Workout classification accuracy.

TABLE 4. Workout classification F1-score.

average number of errors for each participant. The maximum
error was less than one for all participants despite their
diversity in workout experiences (Section IV-D). According
to a user survey conducted by MiLift [19], the number of
errors in our study is in the range of the maximum number
of errors tolerable by users.

C. WORKOUT CLASSIFICATION
The same workout performed by the same person can vary
depending on the body condition on the day, muscle fatigue
accumulatedwith repetition, or simple progress with practice.
Therefore, it is essential for a workout classifier to adapt to
the variability in workout patterns. Accordingly, uLift uses
multiple templates from the same workout. To verify the
optimal number of templates, classification experiments were
conducted by changing the number of templates from one to
five.

FIGURE 14. Confusion matrix of workout classification. (row) True
classes. (column) Inferred classes.

FIGURE 15. Classification accuracy against number of workout classes.

The results of the workout classification accuracy based
on the number of templates are shown in Table 3. The
classification accuracy remained stable (88-90%) regardless
of the number of templates used, and the highest accuracy
was achieved with three templates. Given this result, along
with the fact that increasing the number of templates
results in higher computational costs, the optimal number
of templates was set to three. Additionally, the performance
of uLift was compared to other fully automatic workout
analysis algorithms, MiLift [19] and RecoFit [15], as well
as deep learning methods based on convolutional neural
networks [20] and recurrent neural networks [21]. For each
of these algorithms, the number of sessions used for training
varied from one to five, and the remaining sessions were used
for testing. The result for each number of training sessions
and the global averages are displayed in Table 3. Overall,
uLift gave the best performance among these models,
outperforming the other two fully automatic algorithms for all
five numbers of sessions, and performed better than the deep
learning models for session numbers up to three. As deep
learning models require large amounts of data for training,
it was expected that they become better with more sessions
used for training. However, this characteristic of data demand
makes deep learning models impractical to be deployed in a
realistic environment. In addition, uLift, when evaluated on
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FIGURE 16. Mean form scores by groups. (a) Mean workout form scores. (b)-(g) Mean form scores by the workout type.

an Intel Core i9-10900X (20-cores) CPU, took the shortest
inference time on average (24 ms) compared to RecoFit (36
ms), MiLift (37 ms), CNN (97 ms), and LSTM (719 ms).
Figure 15 shows the classification accuracy of uLift against
the number of workout classes. Starting from 100% with
2 and 3 classes, the accuracy slightly decreased to 90.06%
with 15 classes, showing the potential scalability of uLift with
an increasing number of workouts.

The confusion matrix that represents the result of the
workout classification using three templates is shown in
Figure 14. Lunge motion displayed the lowest accuracy in the
confusion matrix. This low accuracy can be attributed to the
asymmetric nature of lunge movements combined with the
fact that they do not fundamentally involve hand movements,
allowing participants to change hand positions midway
through the exercise, which is a significant contributor to
the decreased accuracy. In addition, push press movements
showed relatively low accuracy and were mostly confused
with the military press, a movement that shares many
similarities with the push press. The principal difference
between the two movements arises from whether the lower
body momentum is utilized at the outset of the movement.
Similarly, misclassification was observed in Burpee motion,
primarily because it encompasses a push-up position at a
certain stage, which can cause confusion in the classification.
Given the variability in the workouts, the classification results
showed a robust performance. Moreover, uLift demonstrates
crucial adaptability by being able to immediately incorpo-
rate new workout types without the need for a training
process.

D. WORKOUT QUALITY ASSESSMENT
Workout quality is suggested as a score that reflects the
consistency of posture across each repetition of a workout.
The form score was measured for three subgroups of
participants divided by their workout experiences. The basic
hypothesis was that workout experience distinguishes how
consistently each participant performs workouts. Thus, the
form score could serve as an indirect workout quality
measurement.

Of the three subject subgroups, the first group was
the beginner group, with the criterion of less than two

months of workout experience. This group was expected
to have little experience with workouts, thus exhibiting
inconsistent movements over the repetitions. The second
group comprised the intermediate group, in which the
participants’ workout experience ranged from 2 to 12months.
These participants had a certain level of knowledge about
exercise performance and could understand most workout
postures with little guidance. The last group consisted of
participants with workout experience extending beyond one
year (> 12 months). Members of this group were adept
at performing most workouts independently. Furthermore,
a simple verbal explanation is typically sufficient for them
to understand and perform previously unknown workouts.

The form scores for the three groups are shown in
Figure 16. These groups had significantly different form
scores; the more experienced groups had lower form scores,
indicating that theyweremore stable and consistent (Kruskal-
Wallis test, H (2) = 36.3, p = 1.29 × 10−8). Post-hoc
analysis using Dunn’s test revealed that the most experienced
group (> 12months) had a significantly lower form score than
all other groups. In addition, the second-experience group
(2-12 months) had a significantly lower form score than
the least-experience group (< 2 months). Significance was
determined at the level of α = 0.05 with Holm adjustment.
However, there were exceptions; the form scores of squats,
lunges, jumping jacks, and Deadlift were higher in the most
experienced group. There are various reasons for this finding.
One possible reason is that when a given workout was simple
and basic, the more experienced participants tended to give
some variation, while the less experienced participants simply
tried to follow simple routines.

V. CONCLUSION
In this paper, we present uLift, an adaptive workout
tracker that automatically detects the workout state, counts
repetitions, classifies workout types, and seamlessly assesses
workout quality without the need for user intervention.
To evaluate our methods, we collected a multi-joint workout
dataset based on an anaerobic workout in a real gymna-
sium environment from participants with various workout
experiences. Compared to other deep learning methods,
uLift’s algorithms do not require a learning process, which
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makes it a practical and adaptable solution for workout
tracking. Moreover, uLift effectively adapts to continuously
changing workout patterns and possesses the capability to
add or remove workout types without the need for retraining.
Our evaluation results for workout detection, repetition
counting, and workout classification exhibited an accuracy
comparable to that of machine learning methods. In addition,
the workout quality measured by the form score matched well
with the three participant groups divided by their workout
experiences. This is an encouraging result because uLift’s
assessment of workout quality does not depend on manual,
possibly subjective, annotations from human experts. Finally,
uLift’s lightweight algorithms and minimal dependence on
hardware configurations make it adaptable to widely different
scenarios for workout tracking.
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