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ABSTRACT Military Camouflage Target Detection (MCTD) is a special object detection task that aims to
detect military camouflaged targets in the wild. In the challenging MCTD task, the confusing appearance
and contours of military camouflaged targets often lead to the poor performance of existing methods. In this
study, we propose an end-to-end Military Detection Transformer (MilDetr) for MCTD. We introduce two
improvements to enhance the model’s performance. First, we employ the Reverse Features Feed Forward
Neural Network (R3FN) for local information aggregation in the encoder of MilDetr. In addition, the Fusion
Previous Query (FPQ) module is utilized for multi-stage query feature fusion in the decoder of MilDetr.
To overcome data limitations for MCTD, we build two simulation military camouflaged target datasets
calledMilDet andMilCls. The ablation experiments onMilDet reveal the effectiveness of our improvements.
Experimental results demonstrate that MilDetr obtains 95.6 AP on MilDet. Furthermore, MilDetr obtains
96.4 AP on MilDet with the pre-trained weights on ImageNet and MilCls. Compared with other object
detectors, MilDetr achieves end-to-end military camouflaged target detection with superior performance.

INDEX TERMS Military camouflaged target, object detection, deep learning.

I. INTRODUCTION
Object detection is an important and challenging task in
computer vision, which aims to identify and localize objects
in images. As a result, object detection has found widespread
use in practical applications such as visual surveillance [1],
human-machine interaction [2], and autonomous driving [3].

Military camouflage target detection (MCTD) aims at the
detection of military camouflaged targets in the wild. It is a
special object detection task. Military target camouflage [4]
is the alteration of the outline and appearance of a target.
Using colors and patterns similar to those of the environment,
the targets are more difficult to detect or hit by military
equipment [5]. This technology has a long history and
has evolved in response to developments in technology
and warfare. Military target camouflage allows soldiers to
increase their survivability and mission effectiveness by
preventing visual detection by other military equipment [6].
The performance of object detectors has been signifi-

cantly enhanced with the growth of datasets and the rapid
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development of deep learning. Two typical architectures
for object detectors are the CNN-based object detectors
and the Transformer-based object detectors. CNN-based
object detection models can be classified into two-stage
models and one-stage models. Classical two-stage models
include RCNN [7] and subsequent improvements such as
Fast-RCNN [8], Faster-RCNN [9], Mask-RCNN [10], and
Cascade-RCNN [11]. One-stage models include SSD [12],
RetinaNet [13], and YOLO series [14], [15], [16], [17],
[18], [19]. CNN-based object detectors use hand-crafted
components, such as anchor generation and non-maximum
suppression (NMS), which means they cannot be considered
full end-to-end detectors. In 2020, the DEtection TRans-
former (DETR) [20] was proposed as a successful application
of the Transformer for object detection. Recently, several
Transformer-based detectors have been proposed, including
Conditional DETR [21], DAB-DETR [22], Deformable
DETR [23], DN-DETR [24], and DINO [25]. Transformer-
based object detectors eliminate the need for hand-crafted
components, simplifying the object detection pipeline and
achieving full end-to-end object detection. Transformer-
based object detectors achieve comparable performance to
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CNN-based object detectors. Therefore, Transformer-based
object detectors are a recent area of focus in object detection
methods.

MCTD is more difficult due to the confusing appearances
and contours of the military camouflaged targets. MCTD has
been researched since the 1950s [26], and there are six stages
in the development of MCTD: statistical pattern recogni-
tion, knowledge-based object detection, model-based object
detection, multi-modal information fusion methods, hybrid
systems of artificial neural networks and expert systems,
and deep learning methods. Multi-modal information fusion
methods, such as the use of infrared imaging, can effectively
detect camouflaged tanks, armored vehicles, and other targets
with heat sources [27], [28]. However, the cost of infrared
imagers is significantly higher than that of conventional
cameras. In addition, camouflaged targets will try to avoid
emitting heat signals to avoid being detected. Therefore,
the detection of camouflaged targets using RGB images
captured by conventional cameras is a current research
focus. In 1998, Tankus et al. [29] proposed a non-edge-
based mechanism for the detection of regions of interest for
detecting camouflaged targets in both natural environments
and battlefields. Since then, many researchers have started
to use human visual features (e.g., color, texture, optical
flow, etc.) to describe camouflaged targets and proposed
the feature-based camouflaged target detectors [30], [31],
[32], [33]. Compared with object detection, there are
fewer deep learning-based methods for MCTD due to the
limited data available. Some CNN-based detectors have
been improved and introduced to MCTD. Recently, Bowen
Yu [34] introduced an improved YOLOv3 for detecting
military targets, while Deng et al. [35] introduced an
improved RetinaNet with attention mechanisms for detecting
camouflaged people. However, the well-hidden targets often
lead to the poor performance of existing methods. In addition,
the above methods do not achieve full end-to-end military
camouflaged target detection. Our research reveals that no
transformer-based object detector has been applied toMCTD.
Therefore, there is still potential for further exploration of the
end-to-end Transformer-based object detectors for MCTD.

To find better military camouflaged target detection
methods, our research is focused on exploring end-to-
end object detectors and overcoming data limitations for
MCTD. We generate available military camouflaged target
data and propose a novel end-to-end military camouflaged
target detector called the Military Detection Transformer
(MilDetr). The overview of the proposed MilDetr is shown
in Fig. 1. In summary, the main contributions of this paper
are threefold.

1) We propose an end-to-end Transformer-based object
detector called Military Detection Transformer
(MilDetr) for MCTD. MilDetr includes our novel
Reverse Features Feed Forward Neural Network
(R3FN) and Fusion Previous Query (FPQ) module
to enable better military camouflaged target detection

performance than existing object detectors. In the
encoder of MilDetr, the proposed R3FN reintroduces
local information by convolutional blocks after MSDA.
In the decoder of MilDetr, the proposed FPQ fuses
multi-layer queries by Geometric Sequence Sum
Fusion (GSSF) and Fusion Gradient Truncation (FGT)
approaches.

2) We build two simulation military camouflaged target
datasets called MilDet and MilCls.

3) The ablation experiments show that the proposed
methods improve the performance of military camou-
flaged target detection. The comparison experiments
indicate that MilDetr achieves state-of-the-art (SOTA)
performance on the MilDet by training with the
Contrastive DeNoising (CDN) strategy.

II. RELATED WORKS
A. DETR
Proposed by Facebook AI Research in 2020, DETR is a
Transformer-based object detector that analyzes the relation-
ship between objects and global information with learnable
object queries. Compared to common CNN-based object
detectionmethods, DETR predicts object classes and position
boxes directly from the whole image without generating
candidate boxes. Specifically, DETR treats object detection
as an ensemble prediction problem, which means that the
targets in an image are treated as an ensemble rather than
a series of discrete bounding boxes. DETR allows the
position and size variations of overlapping objects to be
better handled. The NMS process is avoided, and the object
detection pipeline is greatly simplified.

As shown in Fig. 2, DETR uses a CNN backbone to learn
a 2D representation of the input image and flattens the 2D
representation with spatial positional encoding added. Then
a Transformer encoder extracts features and computes global
information through Multi-head Self-Attention (MHSA)
blocks. A Transformer decoder then considers a fixed
number Nnum of learned positional embeddings called object
queries, and the output of the encoder, generating Nnum
decoder output embeddings. Each output embedding is fed
into a shared prediction feed-forward network (FFN) and
gives a prediction. During the training stage, DETR uses
the Hungarian matching algorithm to match the prediction
bounding boxes and the ground truths and calculates the
bipartite matching loss based on the matching results.

DETR lays the foundation for the subsequent Transformer
object detection framework. However, the framework faces
challenges such as expensive training costs, high dependence
on large datasets, slow convergence speed, and poor perfor-
mance on small objects.

B. MULTI-SCALE DEFORMABLE ATTENTION
To address the problem of slow convergence speed and poor
small object detection performance of DETR, Deformable
DETR is proposed with the Multi-scale Deformable Atten-
tion (MSDA) mechanism to speed up the model convergence
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FIGURE 1. Overview of MilDetr.

and introduce the multi-scale features into the encoder for
attention computation. Deformable DETR claims that no
matter how large the spatial size of the feature map, the
model only needs to focus on a small set of sample points
around the reference point. As shown in Fig. 3,MSDAapplies
the Multi-head Deformable Attention module to multi-scale
feature maps to collect multi-scale information with low
computational cost.

The Deformable Attention module takes into account the
deformations of objects at different scales when calculating
attention weights. Specifically, the Deformable Attention
module uses a deformable convolutional layer to generate
deformation parameters that are used to adjust the shape and
size of the active area. Given input multi-scale feature maps{
x l

}L
l=1, where x ∈ RC×H×W and L is the total number

of feature maps. Given K sampled points, the multi-scale
deformable attention can be expressed in Equation (1):

MSDA(zq, p̂q,
{
x l

}L
l=1

)

=

M∑
m=1

Wm

[
L∑
l=1

K∑
k=1

Amlqk ·W ′
mx

l(φl
(
p̂q

)
+ 1pmqlk )

]
(1)

where pq is the initial sample point, m is the index of the
attention head, and k is the index of the sampled key. 1pmlqk
and Amlqk denote the sampling offset and attention weight
of the k th sampling point in the l th feature map in the mth

attention head. The attention weights Amlqk are normalized,
and the function φl

(
p̂q

)
serves to remap the normalized

coordinates p̂q to the l th input feature map.

C. CONTRASTIVE DENOISING TRAINING APPROACH
To speed up the training process of DETR and address the
unclear meaning of the object queries, DN-DETR effectively
mitigates the problem of unstable bipartite graph matching

FIGURE 2. The framework of DEtection TRansformer.

by introducing the DeNoising (DN) training strategy. DINO
proposes a Contrastive DeNoising (CDN) training strategy.
This strategy feeds the model with positive and negative
samples generated from the real images by a noise generator
during the training process.

As shown in Fig. 4, the noise generator has two hyper-
parameters λ1 and λ2 (λ1 < λ2). Positive samples in
the inner square have less noise than λ1 and are used to
reconstruct the corresponding positive samples. Negative
samples generated between the internal and external square
have noise scales greater than λ1 and less than λ2 and
are expected to be in the ‘‘no object’’ class. Negative
samples are useful for suppressing duplicate boxes and
stable bipartite graph matching. When a smaller λ2 is
used, the negative samples are more similar to the ground
truth boxes, and suppressing these negative samples can
improve the model performance effectively. In this way,
all ground truth boxes have multiple sets of positive and
negative samples, which are used to improve the efficiency of
denoising.
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FIGURE 3. The structure of multi-scale deformable attention mechanism.

FIGURE 4. The structure of CDN group and demonstration of attention
mask and noise generator.

III. METHODS
A. OVERVIEW OF MILDETR
As shown in Fig. 1, MilDetr is an end-to-end object
detection framework consisting of a CNN backbone for
generating image features, a multi-layer Transformer encoder
for encoding the image features, a multi-layer Transformer
decoder for decoding, and the multiple prediction heads to
generate the object predict position box and class label.

Given an RGB image x ∈ R3×H×W , MilDetr extracts
corresponding multi-scale feature maps

{
x l

}L
l=1 through the

CNN backbone, and then feeds them into the encoder along
with the corresponding position embedding. MilDetr uses the
ImageNet [36] pre-trained ResNet50 [37] as the backbone
and generates feature maps at four scales. Following the
setting of Deformable DETR, the encoder of MilDetr has N
encoder layers (N = 6), and the fixed positional encodings
are added to the input of each attention layer. Moreover, each
encoder layer consists of an MSDA module and a proposed

Reverse Features Feed ForwardNeural Network (R3FN). The
output of the last encoder layer will be used as the key and
value for cross-attention computation in the decoder. The
decoder of MilDetr has M decoder layers (M = 6), and
we introduce a novel feature fusion module named Fusion
Previous Query (FPQ) in the decoder. MilDetr uses the CDN
training strategy by taking the generated positive samples and
negative noise samples as the input query of the Decoder.
Finally, the outputs of all decoder layers are passed to the
independent prediction heads to generate the prediction boxes
and the prediction labels. The prediction results are then
matched with the ground truth by the Hungarian algorithm
for loss calculation.

B. R3FN
In object detection tasks, the targets often exist in a specific
environment or coexist with other targets. Therefore, the
target’s neighborhood region can provide effective contextual
information to help detect it. Many Transformer-based
object detectors that focus on global information, such as
Deformable DETR, show good performance in object detec-
tion. Using MSDA in the encoder layers helps Deformable
DETR to converge faster and improves the performance
of detecting irregular objects. However, we analyze the
characteristics of camouflaged targets and highlight the
need for object detectors to consider both local and global
information in MCTD. Fig. 5 displays the results of the
attention visualization from the Encoder of DETR and
Deformable DETR. Both models focus on the unimportant
edge regions of the images. The attention mechanism in
the Transformer-based object detectors can be expressed in
Equation (2). The attention mechanism takes a series of
sampled pixels as input and transforms them into queries
( Q ∈ R(n+1)×d ), keys ( K ∈ R(n+1)×d ) and values
( V ∈ R(n+1)×d ), where n is the sequence length of
the tokens and d is the embedding dimensions. Based on
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Equation (2), the attention mechanism allocates attention
based on feature similarity. We observe that the camouflaged
targets blend in with the background due to their similar
appearance. The visual features of the background regions
are very similar to some regions in the camouflaged targets.
Therefore, the camouflaged targets have a misleading nature
for attention computation, and the attention mechanism may
misallocate attention to a feature-similar background pixel
that is unimportant for a camouflaged target. In addition,
we find that Deformable DETR places more emphasis on
the edge region of the input images. We hypothesize that
MSDA makes the receptive field of each reference point in
the query more sparse. The sampled pixels of each reference
point in MSDA may come from different areas at different
scales, which can lead to the lack of local information,
causing the omission of well-camouflaged targets and the
misdetection of background. Therefore, we suggest that
the Transformer-based camouflaged object detectors should
aggregate more local information.

Attention(Q,K ,V ) = softmax(
QKT
√
d
V ) (2)

To mitigate the negative effects of MSDA, we reintroduce
local information for each feature map using the Reverse
Features Feed Forward Network (R3FN) module. Specif-
ically, the R3FN module aggregates local information by
performing a convolutional block on each feature map.
Convolution is capable of aggregating local information in
a specific region due to its limited receptive field. In contrast
to MSDA, R3FN samples feature from dense regions of the
single-scale feature maps to emphasize local information.
The ability of R3FN to aggregate local information is
verified in the experimental section. As shown in Fig. 6,
R3FN consists of three steps. First, R3FN reverses the
sequence features back to 2D features according to the
shape sets of the multi-scale feature maps. Second, Stand
Conv (SConv) or Efficient Conv (EfConv) is applied to
aggregate the local information. Finally, the aggregated
feature maps are flattened into sequence features. The Stand
Conv module combines a 3×3 convolutional layer, a Group
Normalization layer, a GELU activation layer, and another
3×3 convolutional layer.

The SConv fuses the channel information within the local
feature with low computational cost. In addition, we design
the Efficient Conv module that replaces the conventional
convolution in the SConv module with EConv to reduce
computation. EConv divides the features equally into two
parts, one part passes through the conventional convolution
layer and the other part is sent to the Depthwise Separable
Convolution (DwConv) [38]. Given input feature map xc ∈

RC×H×W , where c is the channel size of the feature map, the
SConv and EfConv can be expressed as Equation (3). The
computational complexity of SConv is of O(HWC2), while
that of EfConv is ofO(HWC2/2+HWC/2). The features are
concatenated after the convolutions and the channel size of
the feature maps is preserved. We use the EfConv module

FIGURE 5. Input images (row 1), visualization of the attention maps from
DETR (row 2), and visualization of the attention maps from Deformable
DETR (row 3).

FIGURE 6. The structure of R3FN.

for large-scale feature maps and the SConv module for
small-scale feature maps.

SConv(xc) = Conv(GELU (GN (Conv(xc)))

EfConv(xc) = EConv(GELU (GN (EConv(xc)))

EConv(xc) = Concat(Conv(xc/2),DwConv(xc/2)) (3)

C. FPQ
Each output of the decoder is put into weight-independent
prediction heads for bounding box regression and class label
prediction. Based on our literature review, previous works
have not performed fusion operations on the intermediate
decoder queries. The decoder simply uses the predicted box
offsets to update the candidate boxes in the next layer.
We believe that since the candidate boxes are updated
iteratively layer by layer, there is a connection between
these queries. However, simply concatenating or adding these
queries cannot exploit the dependency information between
layers and may lead to performance degradation. Therefore,
we propose Fusion Previous Query (FPQ), a hierarchical
query fusion mechanism based on the Geometric Sequence
Sum Fusion (GSSF) and Fusion Gradient Truncation (FGT)
approaches.

The structure of FPQ is shown in Fig. 7. We consider the
input queries of each decoder layer as a sequence. Except for
the first query, FPQ fuses the current query with all previous
queries. Intuitively, the further away the previous query is,
the less influence it has on the current query. Instead of
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FIGURE 7. The structure of FPQ.

query fusion by simple concatenation, FPQ introduces the
Geometric Sequence Sum Fusion approach. GSSF needs to
set the Geometric Factor (GF) to control the fusion scales.
For the l th query Ql (l > 1), FPQ can be achieved through
Equation (4). For example, if GF = 2, for the 5th query, the
geometric sequence is [1, 2, 4, 8], and the scales for fusing the
previous queries are [1/15, 2/15, 4/15, 8/15]. With GF > 1,
the closer queries have larger fusion weights than the further
queries.

FPQ(Ql,GF) =

l−1∑
i=0

GF i(GF − 1)
GF l−1 − 1

Qi + Ql (4)

The GSSF approach is effective in adjusting the fusion
scale of each query, but there is a problem. Even if the
GF is set to a large number, the fusion weight of the
forward query is close to 0. The fusion operation causes the
redundant information of the current layer to be transmitted
to the previous layers through gradient backpropagation.
Therefore, we use the Fusion Gradient Truncation (FGT)
approach to partially truncate the negligible fusion gradient.
Given a hyper-parameter called Gradient Reflow Layers
(GRL), gradient backpropagation is allowed in the fusion
of the current layer and the previous GRL layers. The
fusion gradients of all layers further forward are truncated
by the detach operation. By using both GSSF and FGT
methods, FPQ effectively facilitates the integration of queries
at different levels of the decoder. By adjusting GF and
GRL, FPQ achieves different fusion effects. According to the
following ablation experiments, GF is configured to 2, and
GRL is configured to 4 in MilDetr.

IV. MILDET AND MILCLS
Unlike the common objects in large-scale visual datasets
such as ImageNet, COCO [39], and Pascal VOC [40], the
image data of military camouflaged targets are difficult to
collect in the real world. For research purposes, we build
two simulation military camouflaged target datasets called
MilDet and MilCls based on Blenderproc [41].
We collect four main categories of 3D military target

simulation models that are publicly available on the Internet.
The main categories include armor, plane, tank, and truck,

FIGURE 8. The structure and some examples of MilCls.

each of which has two sub-categories. We choose snowfield,
grassland, and desert as the simulated backgrounds for
the military camouflaged targets. By randomly selecting
the simulation model and performing random scaling and
rotation, we obtain simulated images of military camouflage
targets in different backgrounds. In addition, we randomly
change the position of the camera, the lighting of the scene,
and other factors during the sampling process to enrich the
diversity of MilDet. The MilDet dataset comprises images
with a resolution of 960 × 540 pixels. Each image contains
one or more military camouflage targets. The training set
MilDetTR and the test set MilDetTE in MilDet are obtained
by independent sampling without overlapping. The category
information of MilDet is shown in Table 1, and more details
can be found in our previous work [42].
The MilCls dataset is made for military camouflaged

target classification with the same 3D simulation models and
backgrounds for MilDet. The MilCls dataset has the same
image resolution as MilDet, at (960, 540). Compared with
MilDet, each image in the MilCls dataset only contains one
military camouflage target with random size, rotation, and
illumination. The structure and some examples of MilCls
are shown in Fig. 8. The training set MilClsTR and the test
set MilClsTE of MilCls are constructed by two independent
renderings for sampling. For MilClsTR, each 3D simulation
model renders 50 images in the order of major category,
subcategory, background, and size. Therefore, MilClsTR
contains 3600 different training images. Similarly, MilClsTE
renders 5 images for each simulation model, generating
360 test images.

V. EXPERIMENTS
We conduct experiments on the MilDet dataset. All models
are trained on the MilDetTR and validated on the MilDetTE.
We use the standard COCO AP metric to evaluate the
performance of all methods.
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TABLE 1. The details of MilDet.

TABLE 2. The experiment environment information.

The experimental environment is displayed in Table 2. The
ResNet-50 pre-trained on ImageNet is used as the backbone
of MilDetr. The hyperparameters of both the encoder and the
decoder follow Deformable DETR. We follow the training
strategy of DINO and train the model for 12 epochs. We set
each GPU training batch size to 2 and use AdamW as
the optimizer with a learning rate of 1e-4. We use the
MultiStepLR learning rate adjustment strategy with the
multiplicative factor set to 0.1. Data enhancement includes
random cropping and random flipping. For the comparison
experiments, pre-trained ImageNet backbones are used for
all models. The training strategies of the existing methods
on MilDet follow their default configuration on the COCO
dataset. The one-stage detectors use an input size of (640,
640). Meanwhile, the two-stage and Transformer-based
detectors randomly scale the size of the input images during
the training process. However, during validation and testing,
the input size is fixed at (800, 1333).

A. COMPARISON WITH SOTA OBJECT DETECTORS
Table 3 compares our proposed MilDetr with SOTA object
detectors. We compare the speed and accuracy of all
detectors. The experimental results show that MilDetr
exhibits SOTA performance on MilDet with 95.6 AP. In the
experiments, the top-performing detector among the SOTA
models is the two-stage detector, Cascade-RCNN, which
achieves 94.6 AP. However, Cascade-RCNN has a slower
detection speed and large parameters. YOLO detectors
have lower Params and higher GFLOPs. YOLOv5-s and
YOLOv7-t have poor detection performance. YOLOv6-s and
YOLOv8-s have comparable performance to the two-stage
detectors. Furthermore, there are significant performance
differences among the Transformer-based detectors. DETR
had the lowest detection performance at 78.7 AP, followed
by Conditional-DETR and DAB-DETR. Deformable DETR
with MSDA achieves 90.4 AP. DINO, which applies the
CDN training approach, achieves 92.6 AP under 12 training
epochs. Deformable DETR and DINO show relatively good
performance but are still not as good as Cascade-RCNN.

Compared to YOLOv5-s, YOLOv6-s, YOLOv7-t, and
YOLOv8-s, MilDetr improves accuracy significantly by

19.0%, 5.7%, 28.7%, and 1.9% AP respectively. Compared
to Faster-RCNN and Cascade-RCNN, MilDetr achieves
an improvement in accuracy of 3.4% AP and 1.1% AP
respectively.MilDetr achieves an improvement in accuracy of
21.5%, 8.3%, 9.6%, 5.7%, and 3.2% AP compared to DETR,
Conditional-DETR, DAB-DETR, Deformable DETR, and
DINO, respectively. Compared to YOLO detectors, MilDetr
shows a significant improvement in detection performance
and slower detection speed. Although MilDetr outperforms
YOLOv8-s in overall accuracy, its accuracy in detecting
small objects is inferior to that of YOLOv8-s. Compared to
the two-stage detector and the Transformer-based detector,
MilDetr demonstrates improved detection performance and
similar detection speed.

B. ABLATION EXPERIMENTS
We validate the effectiveness of our improved methods on
MilDet. The results of the various methods with optimal
hyper-parameter settings are available in Table 4.
We first verify the effectiveness of MDSA and CDN.

BothMDSA and CDN significantly improve the performance
of model detection when used individually. However, the
method combining both MDSA and CDN performs worse
than Deformable DETR and DINO. We suggest that the
deformed receptive fields produced by MDSA may partially
overlap with the receptive fields of the negative samples
produced by CDN, causing problems for model training.

We verify the effectiveness of R3FN in improving
detection performance through ablation experiments. We use
R3FN to reintroduce local information after MDSA in the
encoder of MilDetr. By using R3FN, MilDetr achieves
93.1 AP. We then evaluate the effectiveness of FPQ. We use
FPQ in the decoder of MilDetr to fuse multi-stage query
features. By using FPQ, the accuracy increases to 95.6 AP
without extra training parameters. The proposed MilDetr
achieves the best results, suggesting that our proposed
modules effectively mitigate the aforementioned problem
and improve the performance of military camouflaged target
detection.

1) R3FN
To solve the sparse receptive field problem, we propose
R3FN and present the EfConv module to reduce the number
of model parameters. To explore the structure of R3FN,
we design ablation experiments with different feature layers
using different convolutional blocks, and the experimental
results are shown in Table 5. In the table, F1-F4 denotes
feature maps of different sizes after being reversed from 1D
features. F1 is the feature map with the largest size and F4
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TABLE 3. Comparisons results with SOTA object detectors on MilDet.

TABLE 4. Ablation results of various methods on MilDetTE.

is the feature map with the smallest size. e indicates the use
of the EfConv module and s indicates the use of the SConv
module.

From Table 5, it can be seen that the performance of the
network model after using the R3FN strategy has improved
considerably compared to the Baseline experiments using
FFN. In S1, the model has a 2.6% performance improvement
after replacing FFN with R3FN. To reduce the number
of parameters, S2-S5 sequentially replaces the SConv with
EfConv. The results in Table 5 show that EfConv can
significantly reduce the number of parameters. S5 replaces
all SConv modules with the EfConv modules. Compared to
S1, S5 has a 20.37% reduction in parameter amount and a
0.7% reduction in detection performance.

In S3, only two SConv modules are replaced with EfConv
modules in R3FN, and the model achieves 93.1 AP. The
comparison of the Precision-Recall curves of baseline and
S3 is shown in Fig. 9. By using R3FN, the blue and purple
areas in the Precision-Recall curve decreased significantly,
indicating that the model has better positioning ability.
Especially, the area of the purple region decreased a lot.
It proves that R3FN is capable of avoidingmisdetection of the
background. As shown in Fig. 10, MilDetr focuses more on
the neighborhood of the targets, confirming R3FN’s ability
to aggregate local information. The experimental results
show the effectiveness of the R3FN, and subsequent ablation
experiments are conducted based on the configuration of S3.

2) FPQ
For better feature fusion, we propose FPQ, which includes
GSSF and FGT. There are two hyper-parameters in FPQ:
Geometric Factor (GF) and Gradient Reflow Layers (GRL).
By adjusting these two hyper-parameters, FPQ achieves

different fusion effects. We conduct comparison experiments
on these two hyper-parameters with different settings.

Firstly, We select 0, 1, 2, 3, and 4 as GF for comparative
experiments, and the experimental results are shown in
Table 6. If GF = 0, the decoder queries are not fused.
When GF = 1, the decoder queries are fused proportionally.
When GF > 1, queries are fused using the sum of the
geometric sequence. When GF=1, the performance of the
model decreases by 0.4% compared to the model without
query fusion. The result indicates that the simple query
fusion brings too much redundant information, leading to a
performance flop. The model’s performance is improved by
2.0% AP when using GSSF with GF = 4 compared to model
without query fusion. Other models that have applied GSSF
also perform better than the model without query fusion.

When GF is set to 2, 3, and 4, we explore the setting of
GRL. MilDetr has 6 decoder layers, so the maximum number
of gradient propagation layers is 5, which means GRL ∈

{1, 2, 3, 4, 5}. When the FGT strategy is not used, GRL is
set to 5, which means that gradient propagation is performed
between all queries. The experimental results are shown
in Table 7. According to the results, the complex gradient
propagation leads to a decrease in model performance.
Truncating the partial gradient propagation by reducing the
GRL can significantly improve performance. When GRL=2,
the model performance reaches 95.5 AP, which improved
by 0.6% compared to the model without gradient truncation.
When GF=3, reducing the number of gradient propagation
layers to 3, the model achieves 95.6 AP. Therefore, when the
number of gradient propagation layers is set to 3, the model
achieves better performance.

From the experimental results, it can be seen that choosing
an appropriate fusion method for queries in decoder can
preserve important information, and truncating redundant
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TABLE 5. The ablation results on R3FN.

FIGURE 9. The precision-recall curves of baseline and MilDetr applying R3FN with settings in S3.

FIGURE 10. Input images (col 1) and visualization of the attention maps
of MilDetr (col 2).

gradient propagation can also simplify the model training
process.

3) PRE-TRAINING ANALYSIS
Pre-training refers to training a model on a large dataset and
then using its ability for other tasks. The main advantage
of pre-training is that the model can learn rich common

TABLE 6. The ablation results on FPQ with different GF settings.

TABLE 7. The ablation results on FPQ with different GRL settings.

features and improve generalization ability. We further
perform pre-training experiments on the DETR series with
the different pre-training settings: training from scratch,
using weights pre-trained on MilCls, and using weights
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TABLE 8. The experimental results of various models with different pre-training settings.

TABLE 9. The comparison of DINO and MilDetr with different pre-trianing strategies.

FIGURE 11. The AP curves of Deformable DETR and DINO.

pre-trained on ImageNet. DETR is not included due to its
slow convergence speed. The experimental results for the
models are shown in Table 8.

The Conditional DETR and DAB-DETR algorithms
using only single-scale features without pre-training have
extremely poor performance, with only 37.7 AP and 35.5 AP
respectively. Deformable DETR and DINO using multi-scale
feature layers achieve 85.6 AP and 89.7 AP, respectively.

By using pre-trained weights on the MilCls dataset, Con-
ditional DETR has about 36% improvement and DAB-DETR
has 39% improvement, demonstrating the effectiveness of
pre-training. For network models using multi-scale features,
DINO has only 0.7% improvement, and Deformable DETR
decreases by 0.4%. Fig. 11 shows the AP curves of the
Deformable DETR and DINO without pre-training and pre-
training with MilCls. It can be seen that although MilCls
pre-trained weights do not bring significant performance
improvements to Deformable DETR and DINO, the conver-
gence speed of both models is significantly accelerated. The
prediction performance of MilCls pre-trained wights cannot
be comparable to that of the ImageNet pre-trained wights.
The reason for this may be that MilCls has only 3600 training
images, which is much fewer than in ImageNet.

We select the best-performing DINO in the Transformer-
based object detectors and the proposed MilDetr for further
experiments. The backbone of both models is the ImageNet
pre-trained ResNet50 and then finetuned on MilCls for
25 epochs with the weights of the first three blocks

FIGURE 12. The visualization detection results of DETR, DINO and MilDetr.

frozen. The experimental results in Table 9 show that both
models have improved. Specifically, DINO has a 0.9 AP
improvement while MilDetr has a 0.8 AP improvement.

Experiments demonstrate the importance of pre-training
for downstream tasks in large models. In future work, we will
expand the MilCls dataset to serve as a large-scale pre-
training dataset for MCTD.

C. VISUALIZATION ANALYSIS
We visualize the military camouflaged target detection
results of DETR, DINO, and MilDetr in the MilDetTE, and
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TABLE 10. Paired samples t-test on YOLOv8-s, Cascade-RCNN, DINO and
Mildetr.

five different examples are shown in Fig. 12 (a-f). DETR
encounters the background misdetection problem in (a) and
the omission problem in (b), (c), and (f). DINO has omission
problems in (b), (d), and (e). At the same time, MilDet does
not encounter any issues in these instances, indicating that
MilDetr’s military camouflaged target detection performance
is significantly better than DETR and DINO.

D. STATISTICAL SIGNIFICANCE ANALYSIS
To determine the effectiveness of MilDetr, we perform a
paired samples t-test at significance level α = 0.05 using AP
metric. We choose YOLOv8-s, Cascade-RCNN and DINO as
the best representatives of each type of detector and perform
five replicated experiments on MilDet. Given the five sets of
accuracies for each model, we calculate the p-value between
each model and MilDetr independently. Table 10 shows the
results of the experiments. Since all p-values are less than
the significance level α = 0.05, we validate that MilDetr
outperforms other object detectors.

VI. CONCLUSION
In this paper, two simulation datasets called MilDet and
MilCls are constructed. Through experiments on MilDet,
we find that Transformer-based object detectors, which
perform well in detecting general objects do not perform
as well in MCTD. We propose the end-to-end Military
Detection Transformer (MilDetr) by integrating Multi-scale
Deformable Attention (MSDA), R3FN, and FPQ into DETR.
First, We design the Reverse Features Feed Forward Neural
Network (R3FN) in the encoder of MilDetr for local
information aggregation. Furthermore, we use the Fusion
Previous Query (FPQ) module in the decoder of MilDetr for
multi-stage query feature fusion.

The ablation experiments demonstrate the effectiveness
of R3FN and FPQ. The comparative experiments with
the SOTA object detectors demonstrate that MilDetr can

effectively detect military camouflage targets. In addition,
we demonstrate the importance of pre-training for down-
stream tasks, where pre-training on ImageNet and fine-tuning
onMilCls can bring significant performance and convergence
speed improvements to the object detection model and the
convergence speed of models. With the pre-trained weight on
ImageNet andMilCls, MilDetr achieves the best performance
with 96.4 AP on MilDetTE.

The experimental results illustrate that MilDetr achieves
state-of-the-art (SOTA) performance on the MilDet. How-
ever, compared with YOLO detectors, MilDetr has a slow
detection speed and large parameters. Our future work will
focus on expanding the dataset for MCTD and improving
the detection speed of MilDetr. We believe that model
compression is a promising direction to pursue. We hope that
our initial efforts can accelerate the development of end-to-
end object detectors on MCTD.
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