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ABSTRACT Offshore oilfield inspections play a crucial role in environmental conservation and resource
management. However, these inspections traditionally depend on manual approaches, which are not only
inefficient but also incur high costs. In response to this challenge, this study introduces an innovative
drone-based approach to optimize offshore oilfield inspections, focusing specifically on minimizing the
total flight duration through effective routing optimization. Based on this approach, we develop a novel
and mathematical model that accounts for drone power limitations and inspection time windows. To solve
this model efficiently, we propose a refined differential evolution algorithm. This algorithm incorporates
both a roulette decoding method and a variable neighborhood search strategy, each contributing uniquely to
enhance the solution quality. Experimental results demonstrate that our method markedly reduces the total
flight duration of drones, substantially outperforming traditional approaches that do not incorporate routing
optimization. This reduction in flight duration leads to more efficient and cost-effective drone operations for
offshore oilfield inspections.

INDEX TERMS Offshore oilfield inspection, drone routing optimization, differential evolution, variable
neighborhood search.

I. INTRODUCTION
In recent years, the development planning of offshore oil
and gas fields has garnered substantial attention, spurred
by the discovery of significant oil and gas reserves glob-
ally in the past decade [1]. However, the exploitation of
offshore oilfields often entails the risk of marine oil spills,
a major environmental concern. Such spills, being a primary
source of water pollution, inflict extensive ecological and
economic damages. They disrupt the marine ecosystem and
adversely affect aquatic biodiversity [2]. Consequently, rig-
orous offshore oilfield inspection is an indispensable part
of their exploitation process. Traditionally, these inspections
have predominantly relied on manual boat patrols, a method
suffering frommarkedly low efficiency. Addressing this inef-
ficiency and enhancing the inspection process is thus a critical
research challenge in the development of offshore oilfields.
In parallel domains, drones equipped with mission-specific
cameras and payloads have been employed for diverse
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purposes, such as powerline wear assessment, search and
rescue operations, and fire surveillance [3]. This versatil-
ity underscores the potential of drones in offshore oilfield
inspections. Accordingly, this study focuses on the offshore
oilfield inspection planning with drone routing optimization
(OOIPDRO), taking into account the power limitations of
drones. By exploring this approach, the research aims to
contribute to the efficiency and effectiveness of offshore oil-
field inspections, proposing solutions that integrate advanced
drone technology with strategic operational planning.

The remainder of this paper is organized as follows:
Section II provides an overview of the related works pertain-
ing to the OOIPDRO and highlights our significant contri-
butions. Section III presents the formulation of the problem
through a comprehensive mathematical model. Section IV
elaborates on a heuristic algorithm developed for solving this
complex problem. In Section V, we conduct and discuss a
series of numerical experiments to validate the effectiveness
of the proposed approach. Finally, Section VI concludes
the paper with key findings and insights derived from this
research.
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II. LITERATURE REVIEW
While the exploitation of offshore oilfields plays a pivotal role
in global energy supply, the associated oil spills during oper-
ations pose severe threats to marine ecosystems. Magris and
Giarrizzo highlighted that these spills resulted in extensive
marine life mortality, damaged coral reefs and seabed ecosys-
tems, and potentially induced long-term adverse effects
on marine biodiversity [4]. Following the trend of marine
ecosystem disruption, the infiltration of oil spill toxins into
the food chain escalates the issue to a human health crisis,
increasing cancer risks among other health problems [5].
Additionally, Câmara et al. underscored the significant eco-
nomic impact on coastal economies, particularly fisheries
and tourism, where oil spills could lead to billions in lost
revenue [6]. In this context, efficient and timely inspections
are paramount to preventing, detecting, and responding to oil
spills. Zhang et al. advocated that effective monitoring and
inspection strategies could identify potential oil spill risks
early, enabling prompt intervention to avert disasters [7].
Such measures were also crucial in quickly responding to
spills, mitigating environmental and economic impacts, and
safeguarding marine and coastal community health. How-
ever, performing inspections in offshore oilfields is inherently
challenging and complex. Shukla and Karki observed that
their remote location far from major landmasses not only
complicated access, increasing both difficulty and time, but
also intensified the overall arduousness of the inspection
process [8]. The unpredictability of the marine environment,
including extreme weather conditions and strong currents,
further escalated the challenges to inspector and equipment
safety. Cheng et al. also highlighted the significant communi-
cation challenges encountered at sea [9]. Therefore, in light of
these significant challenges, it becomes imperative to explore
more efficient methods or approaches to conduct offshore
oilfield inspection planning.

The rapid advancement of drone technology has estab-
lished them as an efficient alternative for offshore oilfield
inspections. Drones are characterized by their high flexibil-
ity, low operational costs, and ability to access remote or
hazardous areas, addressing the critical needs of offshore
oilfield inspections. In contrast to traditional manual boat
patrols, drones offer quicker deployment and can cover larger
areas, significantly enhancing the efficiency and effective-
ness of offshore oilfield inspections. These attributes render
drones particularly suitable for the challenging and complex
environments of offshore oilfields. Drones equipped with
high-resolution cameras capture detailed images, enhanc-
ing the precision of offshore oilfield inspections [10]. Their
ability to gather comprehensive data is invaluable for oil-
field operators. Furthermore, the rapid response capability of
drones is crucial for timely identifying and reporting potential
oil spills, aiding in prompt actions to mitigate environmen-
tal damage. Drones have been widely utilized in offshore
and similar environments, showcasing their adaptability in
a range of applications. Nooralishahi et al. conducted a

comprehensive review of the evolving role of drones in
non-destructive industrial inspections [11]. Chowdhury et al.
examined drone usage in post-disaster scenarios, shedding
light on their utility inefficient disaster management and
assessment [12]. Siddiqui and Park demonstrated a drone-
based system, combined with deep learning, for inspecting
transmission line components [13]. Recent studies have also
explored autonomous drone systems for electrical substation
inspections [14], [15], [16]. In maritime inspection research,
Shafiee et al. emphasized the application of drones in inspect-
ing offshore wind turbines, a key component of advanced
renewable energy maintenance [17]. The innovative use of
drones in large-scale offshore wind farm inspections was
further showcased in studies [18], [19], [20]. These exam-
ples demonstrated drones’ potential in marine environment
monitoring and offshore oilfield inspections, offering novel
perspectives andmethodologies. Despite the promising appli-
cations of drones in offshore oilfield inspections, the drone
routing optimization, particularly under power constraints,
often remains underexplored in existing literature.

Routing optimization plays a critical role in enhancing the
efficiency of drone-based inspections, as it directly influences
inspection completion time and resource utilization. Given
the limited battery life and flight capability of most drones,
optimizing their routes is essential to maximize the inspection
area coverage within the shortest possible time, thereby ele-
vating both the efficiency and quality of inspections. While
routing optimization significantly enhances drone opera-
tional scope in inspections, existing research predominantly
focuses on applications in last-mile logistics and emergency
scenarios.

Significant research has been conducted on drone use for
last-mile delivery, where drones serve either as a standalone
mode of transport or in combination with other methods like
trucks [21], [22], [23], [24], [25]. Another line of inquiry
has focused on the deployment of drones, or drone-truck
combinations, in emergency scenarios [26], [27], [28], [29],
[30]. These studies have developed various mathematical
models to optimize drone routing, offering solutions that
consider technical, operational, and environmental factors in
varying degrees of detail. However, the specific requirements
of offshore oilfield inspections, such as the need to visit
certain points multiple times within a given time window,
present unique challenges not fully addressed in these studies.
Furthermore, our research considers scenarios where drones
return to base and depart multiple times, adding another layer
of complexity to the drone routing optimization problem.

In summary, drone technology has evolved greatly in the
realm of inspections, but its adoption for routing optimization
in offshore oilfields lags behind. Presently, the majority of
studies concentrate on examining the capabilities of drones in
offshore environments, with an emphasis on their basic func-
tionality and operational viability. However, these studies
often overlook the critical role of drone routing optimiza-
tion, a fundamental aspect in enhancing inspection efficiency
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and reducing operational costs. Consequently, there is an
imperative need to focus research efforts on drone routing
optimization to fully harness the potential of drones in the
context of offshore oilfield inspections. Belowwe summarize
our contributions:

1) This study introduces an innovative approach to off-
shore oilfield inspection planning, utilizing drones
with an emphasis on routing optimization to mini-
mize energy costs. Compared to existing methods,
this strategy enhances inspection efficiency, particu-
larly by addressing the energy constraints of drones in
long-duration and extensive area coverage tasks.

2) A comprehensive mathematical model accommodat-
ing multiple takeoffs by drones has been developed,
incorporating various realistic constraints such as drone
power limitations and inspection time windows. This
model offers fresh insights and methodologies for tack-
ling the complexities of maritime inspections.

3) To effectively address the NP-hard nature of the
proposed model, this study designs an improved dif-
ferential evolutionary algorithm. It features an inno-
vative roulette decoding method to handle discrete
problems and incorporates a variable neighborhood
search (VNS) strategy for improved optimization per-
formance. This algorithmic innovation goes beyond
traditional problem-solving methods in the field, offer-
ing a more robust and efficient approach for tackling
complex optimization challenges.

III. PROBLEM FORMULATION
A. PROBLEM DESCRIPTION
In maritime oilfield operations, drones have been increas-
ingly adopted by inspection bases as a more efficient
alternative to manual boat patrols for offshore site inspec-
tions. Over a planning period |T |, the base is tasked with
dispatching |K | drones to conduct multiple inspections at
|N | designated oilfield points. Unlike manual boats, a drone
is constrained by a fixed safe flight duration 1saf due to
battery constraints, ensuring each round trip from the base
does not exceed this time limit. Additionally, each oilfield
point requires regular inspections at an interval 1int within
the planning period |T |, amounting to |T |

/
1int inspections.

Notably, if a drone arrives at the inspection point before the
scheduled window opens, it must hover and wait to start
the inspection at the designated time. Consequently, the core
research problem of this study is to develop an optimal
planning scheme for |K | drones operating from a base to
perform multiple inspections of |N | oilfields. This scheme
must adhere to the inspection time window constraints and
consider the drones’ safe flight duration, with the objective
of minimizing the total flight duration for all drones.

Fig. 1 presents a detailed example of a drone schedul-
ing scheme for offshore oilfield inspections. The illustration
depicts four oilfield points requiring inspections, with each
point scheduled for inspection twice within the planning
period. Each inspection task is constrained by a specific

FIGURE 1. Example of offshore oilfield inspection planning with drones.

time window [tstan,m, tendn,m ], indicating that inspections should
occur within this period. In this example, drone 1 is
tasked with two flight plans: the first covers inspection
points [0]→[1,1]→[2,1]→[4,2]→[0]; the second involves
[0]→[2,2]→ [1], [2]→[3,2]→[0]. Meanwhile, drone 2 is
scheduled to follow a single flight plan, which includes
[0]→[4,1]→[3,1]→[0]. To facilitate the model calculation,
each inspection at every oilfield point is treated as a dis-
tinct pending visitation point denoted by i, included in the
set P, where |P| equals |N ||T |

/
1int . Each pending visita-

tion point i is also associated with its own inspection time
window [tstai , tendi ].

B. ASSUMPTIONS AND NOTATIONS
To optimize the drone-based inspection and scheduling in
the offshore oilfield, and to maintain the model’s scientific
integrity, the following assumptions are made:

1) Each drone is fully charged upon every departure from
the base.

2) Sufficient batteries are available at the base to guar-
antee immediate drone redeployment after return, with
battery replacement time being negligible.

3) Offshore weather conditions permit drones to fly
between points at a constant, safe speed.

4) Drones do not require additional time for on-site
inspections at oilfield points.

Furthermore, Table 1 lists the notations used to formulate
the model.

C. MODEL FORMULATION
Based on the notation defined in Table 1, the objective func-
tion of the integrated model can be expressed as follows:

min f (H ) =

∑
k∈K

∑
r∈F

αr,k (εr − τr ) (1)

The objective function (1) is designed to minimize the total
flight duration required for drones to accomplish all planned
inspections. This includes the hovering time when a drone
arrives at an inspection point ahead of schedule.

1) CONSTRAINTS BETWEEN DRONES AND FLIGHT PLANS∑
s∈F

βk0,s = 1∀k ∈ K (2)
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TABLE 1. Notations and descriptions.

∑
r∈F

βkr,0 = 1∀k ∈ K (3)∑
r∈F+{0}

βkr,l =

∑
s∈F+{0}

βkl,s= 1∀l∈F, k ∈ K (4)

Constraints (2) to (4) establish the scheduling scheme for
each drone k , detailing the sequence in which various flight
plans are to be executed within the schedule. It should be
noted that these constraints specify that only one flight plan
can be undertaken by a drone in each phase.∑

s∈F+{0}

βkr,s − αr,k= 0∀r ∈ F, k ∈ K (5)

Constraint (5) delineates the interrelation between the vari-
ables β and α, a crucial aspect for facilitating the resolution
of the objective function.

εr − τr ≤ 1saf
∀r ∈ F (6)

τs − εr +M
(
1 − βkr,s

)
≥ 0 ∀r, s∈F, k ∈ K (7)

Constraints (6) and (7) define the time window constraints
for each flight plan. Constraint (6) stipulates that the total
flight duration of each plan must not exceed the drone’s safe
flight duration. Constraint (7) mandates that the end time of
each trip for a given drone k must precede the start time of
its subsequent flight plan, thereby ensuring that each drone
executes only one flight plan at any given moment.

2) CONSTRAINTS BETWEEN FLIGHT PLANS AND
INSPECTION POINTS∑

j∈P

br0,j = 1∀r ∈ F (8)

∑
i∈P

bri,0 = 1∀r ∈ F (9)∑
i∈P+{0}

bri,h =

∑
j∈P+{0}

brh,j = 1∀h ∈ P, r ∈ F (10)

Constraints (8) to (10) establish the inspection itinerary for
each flight plan r, outlining the sequence in which various
inspection points are to be visited. Constraints (8) and (9)
ensure that each flight plan starts and ends at the base, respec-
tively. Constraint (10) requires that only one node is visited
in each phase of the flight plan.∑

j∈P+{0}

bri,j − ai,r = 0∀i ∈ P, r ∈ F (11)

∑
k∈K

∑
r∈F

αr,kai,r = 1∀i ∈ P (12)

Constraint (11) defines the interrelation between vari-
ables β and α. Meanwhile, constraint (12) requires that all
inspection points must be visited within the overall inspection
planning.

uj − ui +M
(
1 − bri,j

)
≥Di,j∀i, j ∈ P, r ∈ F (13)

uj − τr +M
(
1 − br0,j

)
≥D0,j∀j ∈ P, r ∈ F (14)

εr − ui +M
(
1 − bri,0

)
≥Di,0∀i ∈ P, r ∈ F (15)

tstai ≤ ui≤tendi ∀i ∈ P (16)

Constraints (13) to (15) dictate the time window require-
ments for the inspection points. Constraint (13) ensures that
the flight time between any two points adheres to the safe
flight duration. Constraints (14) and (15) are employed to
calculate the start and end times of each flight plan, respec-
tively. Lastly, constraint (16) stipulates that the drone’s arrival
at any inspection point i must fall within its designated time
window [tstai , tendi ]. In cases where the drone arrives early,
it is required to hover over point i, waiting until tstai before
proceeding to the next inspection point.

3) DOMAINS FOR THE DECISION VARIABLES

αr,k , β
k
r,s, ai,r , b

r
i,j = {0, 1} ∀i, j ∈ P, r, s∈F, k ∈ K (17)

τr , εr , ui≥ 0∀i ∈ P, r ∈ F (18)

IV. SOLUTION METHOD
A. DE-VNS
Themulti-drone routing optimization problemwith timewin-
dows is classified as an NP-hard problem [12]. To effectively
tackle this challenge, we develop an enhanced DE-VNS
optimization algorithm, building upon the foundation of
the differential evolution (DE) algorithm. The DE-VNS
algorithm incorporates two significant improvements: firstly,
a roulette-based encoding and decoding method tailored to
the specifics of our mathematical model, addressing the lim-
itations of the standard DE algorithm in handling discrete
problems; and secondly, this enhanced approach integrates
VNS optimization, which augments the depth exploration
capability of the standard DE algorithm, thereby boosting
its overall optimization performance. Fig. 2 illustrates a
schematic overview of the solution method.

Our algorithm, rooted in the DE framework, commences
with a random initialization method to generate the ini-

20888 VOLUME 12, 2024



H. Zhang: Offshore Oilfield Inspection Planning With Drone Routing Optimization

FIGURE 2. Overview of the DE-VNS.

tial solution population. This initial phase incorporates a
roulette-based encoding and decoding strategy for individual
solutions, detailed in Section IV.B. During each iteration
loop, the fitness of each populationmember is evaluated, with
the fitness calculationmethod outlined in Section IV.C. In the
population update phase, individuals are first modified using
the DE/BEST/1 strategy. Should this update be unsuccessful,
VNS is then employed for local refinement, providing a sec-
ondary update operator. The specific VNS strategy employed
is elaborated in Section IV.D. The algorithm ends once the
iteration count is met or an early convergence is detected,
at which point it outputs the optimal solution.

B. ROULETTE-BASED ENCODING AND DECODING
The standard DE algorithm is traditionally tailored for
optimizing continuous variables, employing a real-number
encoding mechanism. To address the limitation of the
standard DE algorithm in dealing with discrete problems,
we develop a roulette-based encoding and decoding method,
specifically designed to align with the discrete nature of the
problem addressed in this paper.

Our tailored DE algorithm still employs real-number cod-
ing, with the coding length dimension set to |P|. Each
element’s value lies within the range of [1, |K | +1), where
each element corresponds to a specific inspection point i. This
setup reflects the number of drones, |K |, available for the
offshore oilfield inspections. The decoding process unfolds
in two steps: firstly, the integer part of the coding deter-
mines the drone assigned to each inspection point, allowing
us to ascertain the set of points each drone is responsible

for. Secondly, the flight plans are allocated based on the
roulette wheel rule. To vividly demonstrate this encoding
and decodingmethodology, consider the following arithmetic
example: with |P| = 8 inspection points and |K | = 2 drones,
the encoding length is 8, and the range of values is [1, 3).
Given an initial encoding of [1.1, 1.19, 2.41, 2.27, 1.83, 1.77,
1.96, 1.24], the decoding process is illustrated in Fig. 3. This
process can be detailed as follows:

1) Separate the integer and decimal parts of each code
value. Inspection points with an integer part corre-
sponding to 1 are assigned to drone 1, while those
with an integer part of 2 are allocated to drone 2.
Consequently, this yields the set of inspection points
for drone 1 as {point 1, point 2, point 5, point 6, point
7, point 8}, and for drone 2 as {point 3, point 4}.

2) Determine the specific inspection planning for each
drone, taking drone 1 as an example. Based on Step 1,
drone 1’s corresponding inspection points are {point 1,
point 2, point 5, point 6, point 7, point 8}. These points
can be divided into up to four trips, considering the
drones’ safe flight duration constraints in the problem.
A roulette model is then constructed for drone 1, where
the decimal part of each point’s code dictates its flight
plan allocation. Specifically, inspection points with
decimal values in the interval [0, 0.25) are assigned to
flight plan 1; those in [0.25, 0.5) to flight plan 2; in
[0.5, 0.75) to flight plan 3; and finally, those in [0.75, 1)
to flight plan 4. Within each flight plan, the inspection
points are ordered in ascending sequence based on the
decimal values of their codes, determining the visita-
tion sequence. As a result, the first flight plan for drone
1 is 0→1→2→8→0, while the second and third flight
plans are empty, and the fourth is 0→6→5→7→0.
After removing empty flight plans, drone 1’s final
inspection planning is: 0→1→2→8→0 (flight plan 1)
and 0→6→5→7→0 (flight plan 2). Drone 2, with its
assigned points, has a single flight plan: 0→4→3→0,
where ’0’ denotes the base and numbers 1-8 represent
the inspection points.

C. FITNESS CALCULATION
The encoding and decoding method illustrated in Fig. 3 is
not only succinct and effective but also straightforward to
implement, enabling rapid and complete mapping between
the encoded continuous variable space and the discrete prob-
lem’s solution space. However, this encoding method does
not directly account for the drone’s safe flight duration con-
straints and the inspection time window constraints for each
inspection point. To effectively address these complex con-
straints, we construct the fitness function Fitness(H ) utilizing
a penalty mechanism to evaluate the scheduling scheme H .

Fitness (H)

= F (H) + λd
∑
r∈F

∑
k∈K

max
{
0, αr,k

(
εr − τr − 1saf

)}
+ λp

∑
i∈P

max{0, ui − tendi } (19)
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FIGURE 3. Overview of the DE-VNS.

Here, λd is the penalty factor applied for exceeding the safe
flight duration1saf , and λp is imposed when a drone’s arrival
time is later than the end time tendi of an inspection point.

D. VNS
To avoid the algorithm settling into a local optimum and
to further improve its optimization capabilities, this study
incorporates two VNS strategies tailored to the specific char-
acteristics of the problem: the longest path update operator
and the highest penalty time update operator.

1) The longest path operator is employed to update the
flight plan with the longest path distance. This is
achieved by conducting a neighborhood search aimed
at finding a shorter flight distance. Fig. 4 illustrates
the neighborhood search rule for this strategy. If flight
path 1 has the longest distance in the current plan,
it is targeted for optimization to reorder its inspection
sequence towards a more efficient path. It should be
noted that if flight path 1 is already optimized, then the
operator targets the second longest path in the subse-
quent flight plan for updating.

2) The highest time penalty operator calculates each
point’s time penalty in the schedule, and then selects
and updates the position of the point with the highest
penalty. Fig. 5 demonstrates the neighborhood search
rule for this strategy, focusing on minimizing the time

FIGURE 4. Schematic diagram of the longest path operator.

penalty. In the current scenario, point 1 incurs the
highest time penalty, prompting its relocation to a new
position where it can achieve the lowest total time
penalty in the existing schedule.

V. COMPUTATIONAL EXPERIMENTS
To validate the efficacy of our proposed model and solution
method, we conducted a series of experiments on a computing
server equipped with an Intel(R) Core(TM) i7-1065G7 CPU
@ 1.30GHz, 1.50 GHz, and 16 GB RAM. The experimental
framework is divided into three key segments: i) an experi-
ment involving 6 oil fields and 2 drones; ii) an analysis of the
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FIGURE 5. Schematic diagram of the highest time penalty operator.

effectiveness of our proposed scheme; and iii) an assessment
of solution quality.

A. 6-OILFIELD AND 2-DRONE EXPERIMENT
For the target experiment, we designed a scenario with six oil
field points and two drones within a daily operational cycle.
In this scenario, each oil field requires inspection every two
hours, cumulatively amounting to a total of 72 inspection
points over a 24-hour period. The entire inspection region is
defined within a 100× 100 coordinate system, with the drone
base located at coordinates (50,60). The positions of the six
oilfield inspection points are randomly generated within this
map, as depicted in Fig. 6.

FIGURE 6. Layout of oilfields location.

Following the computation, the inspection planning was
derived as detailed in Table 2. The cumulative flight duration
for the two drones totaled 1703 minutes. Importantly, all
inspection activities occurred within their respective time
windows, and the total flight duration for each drone’s flight
plan adhered to the safe flight duration limits.

B. SCHEME EFFECTIVENESS: COMPARISON WITH THE
FCFS APPROACH
In this subsection, we demonstrate the effectiveness of our
optimization scheme in comparison with the First-Come-
First-Serve (FCFS) approach. FCFS, a traditional method,
selects oilfield inspection points based on the earliest service

TABLE 2. Inspection schedule for 6-oil field and 2-drone experiment.

time windows for inspection, but it mainly focuses on the
safe flight duration. Any exceedance of the time window is
directly counted as a time penalty in the objective function.
Table 3 shows the objective function comparison between
FCFS and our scheme at different scales. Table 4 details the
specific inspection planning differences under the 5-oilfield-
2-drone example. It is evident that as the number of oilfield
points and drones increases, our optimization scheme exhibits
greater superiority. This advantage stems from FCFS’s lack
of consideration for drone routing optimization, resulting in
fewer inspectable points within the safe flight duration for
each drone’s journey.

C. SOLUTION QUALITY: COMPARISON WITH EXISTING
METHODS
In this subsection, we conduct a comparative analysis
between our DE-VNS algorithm and several prevalent algo-
rithms in the field: GUROBI solver, Genetic Algorithm (GA),
Artificial Bee Colony (ABC) algorithm, and Particle Swarm
Optimization (PSO) algorithm. The comparative data results
of these different algorithms across various scales are pre-
sented in Table 5. The parameter settings for these heuristic
algorithms are as follows: i) DE-VNS: Maximum iterations
set to 200, population size at 20, crossover probability at 0.2,
and scaling factor at 0.2. ii) GA: Maximum iterations set to
200, population size at 20, crossover probability at 0.8, and
mutation probability at 0.2. iii) ABC: Maximum iterations
set to 200, with 20 employed bees, 20 onlooker bees, and
20 scout bees. The limit for the acceleration coefficient is
set to 1, and the inertia weight damping ratio at 0.99. iv)
PSO: Maximum iterations set to 200, population size at 20,
maximum flight speed at 0.1, and weights at 1. The inertia
weight damping ratio is set at 0.99, with an individual learn-
ing parameter of 1.5 and a global learning parameter of 2.

From the experimental data, it is evident that our
algorithm’s average deviation from GUROBI’s results is
a mere 1.32%. This modest deviation, coupled with the
significantly faster solution processing of our heuristic
algorithm compared to the commercial solver, demonstrates
our algorithm’s capability for efficiently finding the optimal
inspection plan for the given problem. When contrasted with
the other three heuristic algorithms, our algorithm shows an
average deviation of 5.02% fromGA, 12.86% fromABC, and
2.87% from PSO. This performance highlights not only the
DE-VNS algorithm’s ability to identify the optimal inspec-
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TABLE 3. Comparison of the objective value obtained by the FCFS and our scheme.

TABLE 4. Comparison of the detailed inspection planning obtained by the FCFS and our scheme.

TABLE 5. Comparison of DE-VNS, GUROBI solver, GA, ABC, and PSO.

tion plan but also its effectiveness in reducing flight costs by
at least 2% compared to these other optimization algorithms.

VI. CONCLUSION
The primary objective of this study is to explore and optimize
the application of drones in offshore oilfield inspections, with
a specific emphasis on reducing the total flight duration of
drones through effective routing optimization. We develop
an innovative inspection planning that enhances inspection
efficiency and addresses the battery constraints of drones
in long-duration, wide-coverage missions. The key con-
tributions of this research include the formulation of a
mathematical model considering drone power limitations and
inspection time windows, and the creation of an enhanced
DE-VNS algorithm for solving this NP-hard problem. This
algorithm uniquely integrates a roulette decoding method
with a variable neighborhood search strategy, significantly

boosting solution efficiency and offering novel approaches
for complex optimization challenges.

However, the study is not without its limitations. Onemajor
constraint is the assumption of a fixed charging mode for
drones, without considering variations in available flight time
due to differing power levels, which may impact the model’s
accuracy and practical application. Additionally, our experi-
mental design did not encompass all potential external factors
that could influence the efficiency of drone inspections.
Notably, elements such as varying weather conditions and the
possibility of drone failures were not included in our scenario.
These factors are crucial as they can significantly affect drone
performance and, consequently, the generalization ability of
the model in real-world settings. Future research should thus
focus on optimizing drone charging and power management
strategies, while also considering the dynamic impact of
external factors such as weather conditions and drone reliabil-
ity on flight capabilities and inspection efficiency. Addressing
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these elements could enhance the model’s robustness and
applicability, leading to a more comprehensive understanding
of drone-based offshore oilfield inspections.

In conclusion, this research provides fresh theoretical and
practical insights into drone-based offshore oilfield inspec-
tion and routing optimization. While acknowledging its
limitations, we anticipate that these findings will stimulate
further research into drone power management and mission
planning, contributing to the advancement of this field.
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