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ABSTRACT Inspired by the cyber-physical systems (CPS) of numerical methods for stochastic differential
equations, we present a CPS model of sampled-data control systems (typically a synonym for computer
control systems), which regards the intersection of the physical and the cyber (the key feature of CPS).
As a theoretic foundation, we develop by the Lyapunov method a stability theory for a general class of
stochastic impulsive differential equations (SiDE) which is formulated as a canonical form for CPS that may
work in feedback loops and thus include those of sampled-data control systems. Applying the fundamental
theory, we study stability of the CPS, which implies that of the sampled-data control system. By our
CPS approach, we not only obtain stability criteria for the CPS of sampled-data control systems but also
reveal the equivalence and intrinsic relationship between the two main approaches (viz. controller emulation
and discrete-time approximation) in the literature. As the applications of our CPS theory, we propose a
control design method for feedback stabilization of the CPS of sampled-data stochastic systems. Illustrative
examples are conducted to verify that our method significantly improves the existing results. In this paper,
we initiate the study of a systems science of design for CPS. This provokes many open and interesting
problems.

INDEX TERMS Cyber-physical systems, exponential stability, feedback stabilization, Lyapunov method,
sampled-data control, stochastic impulsive differential equations.

I. INTRODUCTION
Feedback mechanisms were discovered and exploited at all
levels in nature, which are crucial to homeostasis and life [3],
[10], [72]. As a technology, feedback control can be found
in many examples from ancient times. In the modern era,
it was fundamental to the industrial evolution that JamesWatt
successfully adapted the centrifugal governor for the steam
engine and, in the later designs, the governor became an
integral part of all steam engines. Theorectic investigation
on the mechanical systems of governors started with the
classical paper of Maxwell that placed stability at the core of
his analysis of feedback mechanisms [47]. Stability analysis
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and feedback stabilization of dynamical systems are at the
core of systems and control theory [2], [3], [5], [8], [32],
[33], [34], [37], [39], [40], [44], [65], [74]. As is well
known, the Lyapunovmethod is an efficient and powerful tool
for stability analysis and synthesis of control systems. The
Lyapunov-type theorems have been developed for stability
analysis and application to feedback stabilization of various
systems [5], [14], [15], [25], [28], [37], [40], [66]. In the
enormous literature, there is a number of Lyapunov-type
theorems on stability and feedback stabilization of impulsive
systems [13], [21], [31], [58], [74].

Practically all control systems that are implemented
today are based on computer control, which contain
both continuous-time signals and sampled, or discrete-
time, signals. Such systems have traditionally been termed
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sampled-data systems and have motivated the study of
sampled-data control systems [2], [49]. There is a wealth
of impressive results along two main approaches [2], [13],
[43], [48], [49], [50], [51], [52], [54], [62]. The first
starts with a designed continuous controller and focuses
on discretizing the controller on a sampler and zero-
order-hold (ZOH) device, which employs the strategy of
controller emulation and is called the process-oriented
view. The second disccretizes a continuous plant given
implementation-dependent sampling times and designs a
controller for the discretized plant, which utilizes some
approximate discrete-time model for controller design and is
called the computer-oriented view. There is another approach
based on the hybrid modelling of sampled-data systems [18],
[48], [63] which describes the sampled state as a pure
jump process and is a special case of our canonical form
(see Remark 2 below). Over the recent years, sampled-data
control of stochastic systems has also been studied [12], [45],
[46], [76] since stochastic modelling has come to play an
important role in engineering and science. In fact, sampled-
data control has an enormous range of applications (with a
lot outside the field of computer control) as many practical
systems are inherently sampled due to the measurement
procedure and/or pulsed operation [2], [28], [29], [60]. For
instance, biological systems are fundamently sampled since
the signal transmission in a nervous system is in the form of
pulses [2], [72].
Sampled-data control systems are generally used as

a synonym for computer control systems and have an
exemplary structure of cyber-physical systems (CPS)
[38, Figure 1], where computers are embeded as components
in control systems to monitor and control physical processes
with feedback loops [1], [2], [29], [52], [60]. The science
of design for CPS has been identified as a key research
priority due to the utmost importance and urgency of CPS in
the age of networking and information technology [1], [10],
[11], [35]. Cyberphysicality spans the gamut of engineering
domains. Among the hardest problems, the CPS is not the
union of the physical and the cyber but their seamless, fully
synergistic integration [35], [38]. As such the CPS demands
a model/theory that comprehends both the cyber and the
physical sides [11], [38]. The author [30] has constructed the
CPS theory of numerical methods for stochastic differential
equations (SDE). The CPS of a numerical method, say, the
widely-used Euler method is a seamless integration of the
SDE and the Euler scheme, unlike in the literature where they
are two separate systems united by inequalities [22]. As the
physical subsystem of the CPS is driven by itself only,
the canonical form (1) in [30] does not involve any impact of
the cyber on the physical and thus the established theory may
not apply to synthesized CPS that are considered in the study
of stabilization problems (see [30] for more detials). The CPS
theory [30] of numerical methods for SDE has transformed
the way we understand the relationship between the physical
and the cyber, which is fundamental to a much bigger holistic

worldview emerging in the age of networking and informa-
tion technology.

As has been recognized [11], [35], [38], it is the
intersection of the physcial and the cyber that is the key
feature and renders it a challenging problem to create a
theoretic foundation for CPS. To cope with the challenging
problem, we formulate a general class of stochastic impulsive
differential equations (SiDE) to serve as a canonical form
for CPS that involve interactions between the physical and
the cyber subsystems, which is a substantial generalization
of [30, SiDE (1)]. The general class of SiDE can represent
CPS that may work in feedback loops such as those of
sampled-data control systems while the particular class
[30, SiDE (1)] may not be used for such a purpose.
As a theoretic foundation, we develop a Lyapunov stability
theory for the general class of SiDE. As has been noted,
sampled-data control systems have an exemplary structure of
synthesized CPS [38, Figure 1] and thus they can naturally be
expressed in our canonical form of SiDE. As a matter of fact,
a special case of our canonical form has been employed to
study sampled-data systems for a few decades (see [13], [18],
[48], [63] and the references therein). Since it just depicts
its cyber subsystem as a pure jump process, such special
form of CPS may disregard some intersample dynamics.
It may actually be the union rather than the intersection of
its physical and cyber subsystems (see Remark 2 below).
In light of the CPS theory [30] of numerical methods for
SDE, we present our CPS of the sampled-data control system
in which its physical subsystem represents the state of the
control system and its cyber subsystem describes the error
between the state and the sampled state. Thus the stability
of the CPS implies that of the sampled-data control system.
As the CPS [30] of numerical methods for SDE, our CPS of
the sampled-data control system regards the intersection of
the physical and the cyber, which is the key feature of CPS.

Our CPS of sampled-data control systems are definitely
expressed by means of the canonical form of SiDE which
we formulate for sythesized CPS. Applying the Lyapunov
stability theory, we study stability of the CPS of sampled-data
control systems and address the key questions in the two
main approaches, respectively. By our CPS approach, we not
only develop stability criteria for the CPS of sampled-data
control systems but also reveal the equivalence and intrinsic
relationship between the two main design methods in the
literature. As the applications of our CPS theory, we study
state-feedback stabilization of the CPS of linear sampled-data
stochastic systems and propose a control design method for
feedback stabilization of the CPS. Particularly, we present
an algorithm for the control design in the form of generic
linear matrix inequalities (LMI) so that it can conveniently be
implemented with some toolboxes [8], [16], [17]. Numerical
examples are conducted to illustate the applications of our
established results and verify that our proposed method
substantially improves the exsting results. In this paper,
we construct a foundational theory for CPS of sampled-data
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control and initiate a systems science for CPS. This provokes
many interesting and challenging problems.

II. STABILITY OF A CLASS OF STOCHASTIC IMPULSIVE
DIFFERENTIAL EQUATIONS FOR SYNTHESIS OF CPS
Throughout this paper, unless otherwise specified, we employ
the following notation. Denote by (�,F , {Ft }t≥0, P) a
complete probability space with a filtration {Ft }t≥0 satisfying
the usual conditions [44] and by E[·] the expectation
operator with respect to the probability measure. Let B(t) =[
B1(t) · · · Bm(t)

]T be an m-dimensional Brownian motion
defined on the probability space. If x, y are real numbers, then
x ∨ y (resp. x ∧ y) denotes the maximum (resp. minimum)
of x and y. Denote by AT the transpose of a vector or a
matrix A. If P is a square matrix, P > 0 (resp. P < 0)
means that P is a symmetric positive (resp. negative) definite
matrix of appropriate dimensions while P ≥ 0 (resp. P ≤ 0)
is a symmetric positive (resp. negative) semidefinite matrix.
Let λM (·) and λm(·) be a matrix’s eigenvalues with the
maximum and the minimum real parts, respectively, and | · |

the Euclidean norm of a vector and the trace (or Frobenius)
norm of a matrix. Denote by In the n× n identity matrix and
by 0n×m the n × m the zero matrix, or, simply, by 0 the zero
matrix of appropriate dimensions. Let C2,1(Rn

×R+; R+) be
the family of all nonnegative functions V (x, t) on Rn

× R+

that are continuously twice differentiable in x and once in t ,
and C2(Rn

; R+) the special class of C2,1(Rn
× R+; R+) that

is independent of t . Let K be the class of continuous strictly
increasing functions ϕ from R+ to R+ with ϕ(0) = 0 and
K∞ be a family of functions ϕ ∈ K with µ(r) → ∞ as
r → ∞. Let N be the set of all natural numers and 4m

N be the
set of all independent and identically distributed sequences
{ξ (k)}k∈N with ξ (k) =

[
ξ1(k) · · · ξm(k)

]T and ξj(k) obeying
the standard Gaussian distribution for j = 1, 2, · · · ,m.
Denote by {tk}k∈N with t1 > t0 := 0 a strictly increasing
sequence on (0,∞) that satisfies

0 < 1t := inf
k∈N

{tk − tk−1}

≤ 1t := sup
k∈N

{tk − tk−1} < ∞

and hence tk → ∞ as k → ∞. Upon the sequence {tk}k∈N
and t0 = 0, for each t ∈ [0, ∞), define

t∗ := sup{tk : t ≥ tk , k ≥ 0}

and therefore t∗ = tk−1 if t ∈ [tk−1, tk ) for some k ∈ N.
Let us consider a stochastic impulsive system

dx(t) = f (x(t), y(t), t)dt + g(x(t), y(t), t)dB(t) (1a)

t ∈ [0, ∞)
dy(t) = f̃ (x(t), y(t), t)dt + g̃(x(t), y(t), t)dB(t) (1b)

t ∈ [0, ∞) \ {tk}k∈N
1̃(x(t−k ), x(tk−1), y(t

−

k ), y(tk−1), k) := y(tk ) − y(t−k )
= h̃f (x(t

−

k ), x(tk−1), y(t
−

k ), y(tk−1), k)
+ h̃g(x(t

−

k ), x(tk−1), y(t
−

k ), y(tk−1), k)ξ̄ (k)
k ∈ N (1c)

with initial values x(0) ∈ Rn and y(0) ∈ Rñ, where ξ̄ ∈ 4n̄
N

is the measurement noise with ξ̄ (k) being independent of
{x(t), y(t),B(t) : 0 ≤ t < tk} for every k ∈ N; f :

Rn
× Rñ

× R+ 7→ Rn, g : Rn
× Rñ

× R+ 7→ Rn×m,
f̃ : Rn

× Rñ
× R+ 7→ Rñ, g̃ : Rn

× Rñ
× R+ 7→ Rñ×m,

h̃f : Rn
× Rn

× Rñ
× Rñ

× N 7→ Rñ and h̃g : Rn
× Rn

×

Rñ
× Rñ

× N 7→ Rñ×n̄ are measurable functions. To study
the stability, assume that the functions obey

f (0, 0, t) = 0, g(0, 0, t) = 0, f̃ (0, 0, t) = 0,

g̃(0, 0, t) = 0, h̃f (0, 0, 0, 0, k) = 0, h̃g(0, 0, 0, 0, k) = 0

for all t ∈ R+ and k ∈ N and thus the trivial solution
is an equilibrium of SiDE (1). Moreover, the functions
f , g, f̃ , g̃, h̃f , h̃g all satisfy the local Lipschitz condition.
Assumption 1: For every integer n̂ ≥ 1, there is a constant

Ln̂ > 0 such that

|f (x, y, t) − f (x̄, ȳ, t)| ∨ |g(x, y, t) − g(x̄, ȳ, t)|

∨ |f̃ (x, y, t) − f̃ (x̄, ȳ, t)| ∨ |g̃(x, y, t) − g̃(x̄, ȳ, t)|

∨ |h̃f (x, x̃, y, ỹ, k) − h̃f (x̄, ¯̃x, ȳ, ¯̃y, k)|

∨ |h̃g(x, x̃, y, ỹ, k) − h̃g(x̄, ¯̃x, ȳ, ¯̃y, k)|

≤ Ln̂(|x − x̄| ∨ |x̃ − ¯̃x| ∨ |y− ȳ| ∨ |ỹ− ¯̃y|)

for all (x, x̃, y, ỹ, x̄, ¯̃x, ȳ, ¯̃y) ∈ Rn
×Rn

×Rñ
×Rñ

×Rn
×Rn

×

Rñ
× Rñ with |x| ∨ |x̃| ∨ |y| ∨ |ỹ| ∨ |x̄| ∨ | ¯̃x| ∨ |ȳ| ∨ |¯̃y| ≤ n̂,

t ∈ R+ and k ∈ N.
The SiDE (1) is formulated as a canonical form

for synthesized CPS that may work in feedback loops,
in which the cyber y(t) interacts with the physical x(t)
and the impulses on the cyber y(t) involve delayed as
well as current states. It is a substantial generalization of
[30, SiDE (1)] as the impluses on the physical x(t) and the
simulation sequence are omitted for the sake of simplicity.
The interactions between the subsystems clearly demonstrate
that our knowledge/resources on both the physical and the
cyber sides may be utilized to control the physical processes.
The canonical form (1) for synthesized CPS has a wide range
of applications, which can represent the CPS dynamics for
sampled-data control systems and also for observer-based
control of systems with impulse effects such as a robot model
in [19].
Let z(t) = [xT (t) yT (t)]T ∈ Rn+ñ, C = [In 0n×ñ] and

D = [0ñ×n Iñ], then x(t) = Cz(t) and y(t) = Dz(t) for all
t ≥ 0. SiDE (1) can be written in a compact form

dz(t) = F(z(t), t)dt + G(z(t), t)dB(t) t ̸= tk (2a)

1̄(z(t−k ), z(tk−1), k) := z(tk )−z(t
−

k )

= HF (z(t
−

k ), z(tk−1), k)

+ HG(z(t
−

k ), z(tk−1), k)ξ̄ (k) k ∈ N (2b)

with initial data z(0) = [xT (0) yT (0)]T ∈ Rn+ñ, where
functions F : Rn+ñ

× R+ 7→ Rn+ñ, G : Rn+ñ
×

R+ 7→ R(n+ñ)×m, HF : Rn+ñ
× Rn+ñ

× N 7→ Rn+ñ and
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HG : Rn+ñ
× Rn+ñ

× N 7→ R(n+ñ)×n̄ are given as

F(z, t) =

[
f (Cz,Dz, t)
f̃ (Cz,D z, t)

]
, G(z, t) =

[
g (Cz,Dz, t)
g̃ (Cz,D z, t)

]
,

HF (z, z̃, k) =

[
0n×1

h̃f (Cz,Cz̃,Dz,Dz̃, k)

]
,

HG(z, z̃, k) =

[
0n×n̄

h̃g (Cz,Cz̃,Dz,Dz̃, k)

]
;

and they obey F(0, t) = 0, G(0, t) = 0, HF (0, 0, k) = 0 and
HG(0, 0, k) = 0 for all t ∈ R+ and k ∈ N. Clearly, the trivial
solution is an equilibrium of SiDE (2). For simplicity only,
fix any z(0) = [xT (0) yT (0)]T ∈ Rn+ñ. These functions
satisfy the local Lipschitz condition, that is, there is a constant
Lz,n̂ > 0 for every integer n̂ ≥ 1 such that

|F(z, t) − F(z̄, t)| ∨ |G(z, t) − G(z̄, t)|

∨ |HF (z, z̃, k) − HF (z̄, ¯̃z, k)| ∨ |HG(z, z̃, k) − HG(z̄, ¯̃z, k)|

≤ Lz,n̂(|z− z̄| ∨ |z̃− ¯̃z|) (3)

for all (z, z̃, z̄, ¯̃z) ∈ Rn+ñ
× Rn+ñ

× Rn+ñ
× Rn+ñ with |z| ∨

|z̃| ∨ |z̄| ∨ |¯̃z| ≤ n̂, t ∈ R+ and k ∈ N, which is exactly the
compact form of Assumption 1.
For a function V̄ ∈ C2,1(Rn+ñ

×R+; R+), the infinitesimal
generator L V̄ : Rn+ñ

× R+ 7→ R associated with
system (2a) is defined as

L V̄ (z, t) = V̄t (z, t) + V̄z(z, t)F(z, t)

+
1
2
tr

[
GT (z, t)V̄zz(z, t)G(z, t)

]
(4)

where V̄t (z, t) =
∂V̄ (z,t)

∂t , V̄zz(z, t) =

[
∂2V (z,t)
∂zi ∂zj

]
(n+ñ)×(n+ñ)

,

V̄z(z, t) =

[
∂V̄ (z,t)

∂z1
· · ·

∂V̄ (z,t)
∂z(n+ñ)

]
and trA stands for the trace

of matrix A. Under condition (3), we obtain a result on the
existence and uniqueness of solutions to SiDE (2).
Proposition 1: Under the local Lipschitz condition (3),

SiDE (2) has a unique (right-continuous) solution on [0,∞)
if there is a function V̄ ∈ C2,1(Rn+ñ

× R+; R+) and positive
constants c̄1, p, K̄ such that, for all (z, z̃) ∈ Rn+ñ

× Rn+ñ,

V̄ (z, t) ≥ c̄1|z|p, t ≥ 0 (5a)

L V̄ (z, t) ≤ 2K̄
(
1 + V̄ (z, t)

)
, t ̸= tk (5b)

E[V̄ (z+ 1̄(z, z̃, k), tk )|z, z̃] − V̄ (z, tk )

≤ K̄1t
[
2 +

(
V̄ (z, tk ) + V̄ (z̃, tk−1)

)
/2

]
, k ∈ N. (5c)

The proof of is relegated to Appendix A. Now that we
have the existence and uniqueness of solutions to SiDE (2),
namely, SiDE (1), we shall exploit the structure and study the
stability of the unique solution of the SiDE. Similarly, for a
function V ∈ C2,1(Rn

× R+; R+), the differential generator
L V : Rn+ñ

× R+ → R associated with subsystem (1a) is
defined as

L V (z, t) = Vt (x, t) + Vx(x, t)f (x,Dz, t)

+
1
2
tr

[
gT (x,Dz, t)Vxx(x, t)g(x,Dz, t)

]
(6)

with x = Cz for all t ≥ 0 and, for a Ṽ ∈ C2,1(Rñ
×R+; R+),

the differential generator L Ṽ : Rn+ñ
× R+ → R associated

with subsystem (1b) is defined as

L Ṽ (z, t) = Ṽt (y, t) + Ṽy(y, t)f̃ (Cz, y, t)

+
1
2
tr

[
g̃T (Cz, y, t)Ṽyy(y, t)g̃(Cz, y, t)

]
(7)

with y = Dz for all t ∈ [0, ∞) \ {tk}k∈N. The definition of
exponential stability is cited from the literature [44].
Definition 1: The system (2) is said to be pth (p > 0)

moment exponentially stable if there is a pair of positive
constantsK and cwithK ≥ |z(0)|p such thatE|z(t)|p ≤ Ke−ct

for all t ≥ 0 , which implies lim supt→∞
1
t ln(E|z(t)|p) ≤

−c < 0 for all z(0) ∈ Rn+ñ.
Let us establish by the Lyapunov method a stability theory

for the general class (1) of SiDE.
Theorem 1: Suppose that Assumption 1 holds and there

is a pair of candidate Lyapunov functions V ∈ C2,1(Rn
×

R+; R+) and V̄ ∈ C2,1(Rn+ñ
× R+; R+) for the subsystem

(1a) and the whole system (2), respectively, such that
(i) for all (x, z, t) ∈ Rn

× Rn+ñ
× R+, some positive

constants p, c1, c̄1, c̄ and some functions c2, c̄2 of K∞ class,

c1|x|p ≤ V (x, t) ≤ c2(|x|p), (8a)

c̄1|z|p ≤ V̄ (z, t) ≤ c̄2(|z|p), (8b)

V (Cz, t) ≤ c̄ V̄ (z, t); (8c)

(ii) for all (z, t) ∈ Rn+ñ
× R+ and some constants α1 > 0,

α2 ≥ 0, ᾱ1 ≥ 0, ᾱ2 > 0,

L V (z, t) ≤ −α1V (Cz, t) + α2V̄ (z, t), t ≥ 0 (9a)

L V̄ (z, t) ≤ ᾱ1V (Cz, t) + ᾱ2V̄ (z, t), t ̸= tk ; (9b)

(iii) at t = tk for each k ∈ N,

E
[
V̄ (z+ 1̄(z, z̃, k), tk )

∣∣z, z̃] ≤ β0V (Cz, tk )

+ β1V (Cz̃, tk−1) + β̄0V̄ (z, tk ) + β̄1V̄ (z̃, tk−1) (10)

for all (z, z̃) ∈ Rn+ñ
× Rn+ñ, where β0, β1, β̃0, β̃1 are

nonnegative constants such that

0 <
α2

α1
(β0 + β1) + β̄0 + β̄1 < 1. (11)

SiDE (2) has a unique (right-continuous) global solution.
Moreover, it is pth moment exponentially stable provided that
the impulse time sequence {tk}k∈N satisfies

0 < 1t ≤ 1t < τ̂ (q) :=
− ln q

(α1 q)−1α2ᾱ1 + ᾱ2
(12)

for some q ∈
(
α−1
1 α2(β0 + β1) + β̄1 + β̄2, 1

)
.

Theorem 1 is a substantial advancement of
[30, Theorem 1], which copes with not only delayed states
but also the interactions between the physical and the cyber
subsystems that should/must be taken into account by a
model/theory of CPS that may work in feedback loops [11],
[35], [38]. This distinguishes its proof from the one of
[30, Theorem 1] as the latter shows the stability of the cyber
subsystem and hence of the whole CPS based on the stability
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of the physical subsystem (that is exactly the SDE itself). The
proof of Theorem 1 is rather more technical, so we give it in
Appendix B. As the general class (1) of SiDE is formulated
as a canonical form for CPS that may work in feedback loops,
Theorem 1 is the fundamental result in our study on stability
of CPS of sampled-data control systems.
Remark 1: In application of Theorem 1, the time sequence

{tk}k∈N is chosen/designed to satisfy inequality (12) (see
Sections III-V below). In (12), τ̂ (q) > 0 for every q ∈

(0, 1). If constants α1, α2, ᾱ1, ᾱ2, are all positive, τ̂ (q) is a
continuously differentiable function on (0, 1) with derivative

dτ̂ (q)
dq

= −
( α2ᾱ1

α1
√

ᾱ2
+

√
ᾱ2q

)−2
τ ′(q), (13)

where τ ′(q) =
α2ᾱ1
α1 ᾱ2

(
1 + ln q

)
+ q. Notice that τ ′(q) is

increasing on (0, ∞) and the maximum of τ̂ (q) is achieved
at q = q∗ given by

τ ′(q∗) =
α2ᾱ1

α1 ᾱ2

(
1 + ln q∗

)
+ q∗ = 0 (14)

and q∗ ∈ (e−(α1 ᾱ2+α2ᾱ1)/(α2ᾱ1), 1) since τ ′(1) =
α2α̃1
α1 α̃2

+

1 > 0 > τ ′(e−(α1 α̃2+α2α̃1)/(α2α̃1)). One can compute q∗ by
solving (14) with initial guess

q0 =
[α2(β0 + β1)

α1
+ β̄0 + β̄1

]
∨ e−(α1 ᾱ2+α2ᾱ1)/(α2ᾱ1).

Obviously, 0 < q0 < 1. It is observed from condition (12)
that, for expoonential stability of SiDE (2), the choice of q is
confined to q ∈ (q0, 1). By (13) and (14),

sup
q∈(q0,1)

τ̂ (q) =

{
τ̂ (q∗), 0 < q0 ≤ q∗ < 1
τ̂ (q0), 0 < q∗ < q0 < 1.

So the condition (12) in Theorem 1 can be specified as

0 < 1t ≤ 1t < τ̂ (q∗ ∨ q0) = sup
q∈(q0,1)

τ̂ (q).

Recall that τ̂ (q) is continuously differentiable on (0, 1).
Hence there is a number q ∈ (q0, 1) sufficiently close to
q∗ ∨ q0 such that (12) holds.

III. STABILITY OF CPS OF SAMPLED-DATA CONTROL
SYSTEMS
Let us consider a sampled-data control system

dx(t) = [f̄ (x(t)) + ū(x(t∗))]dt + ḡ(x(t))dB(t) t ≥ 0 (15)

with initial value x(0) = x0 ∈ Rn and sampling sequence
{tk}k∈N, where ū ∈ C2(Rn

; Rn) with ū(0) = 0 is the control
input; f̄ : Rn

→ Rn and ḡ : Rn
→ Rn×m are measurable

functions with f̄ (0) = 0 and ḡ(0) = 0, which both satisfy the
local Lipschitz condition, that is, there is a constant L̄n̂ > 0 for
every integer n̂ ≥ 1 such that

|f̄ (x) − f̄ (x̄)| ∨ |ḡ(x) − ḡ(x̄)| ≤ L̄n̂|x − x̄| (16)

for all (x, x̄) ∈ Rn
× Rn with |x| ∨ |x̄| ≤ n̂. A notable case

of (16) with L̄n̂ =

√

L̄ > 0 for all n̂ ≥ 1 is called the global
Lipschitz condition

|f̄ (x) − f̄ (x̄)| ∨ |ḡ(x) − ḡ(x̄)| ≤

√
L̄ |x − x̄| (17)

for all (x, x̄) ∈ Rn
×Rn, which also implies the linear growth

condition. Let us consider sampled-data system (15) that has
a linear feedback control ū(x) = B̄x with matrix B̄ ∈ Rn×n

dx(t) = [f̄ (x(t)) + B̄x(t∗)]dt + ḡ(x(t))dB(t) t ≥ 0. (18)

The linear feedback control law can easily be implemented
and it preserves some important properties of the uncontrolled
system such as the global Lipschitz condition and the linear
growth condition [31], [45], [55], [68]. We shall illustrate
with a classical example the application of Theorem 1 to
sampled-data system (15) that has a nonlinear feedback
control law (see Example 3 below).

Let y(t) = x(t) − x(t∗) for all t ≥ 0. This implies that
dy(t) = dx(t) on (tk−1, tk ) and y(tk ) = 0 for all k ∈ N. So we
obtain a CPS model of sampled-data control system (18)

dx(t) = [f̄ (x(t)) + B̄(x(t) − y(t))]dt + ḡ(x(t))dB(t),

t ∈ [0, ∞) (19a)

dy(t) = [f̄ (x(t)) + B̄(x(t) − y(t))]dt + ḡ(x(t))dB(t),

t ∈ [0, ∞) \ {tk}k∈N (19b)

y(tk ) − y(t−k ) = x(tk−1) − x(t−k ), k ∈ N (19c)

with x(0) = x0 ∈ Rn and y(0) = 0. Clearly, it is the
closed-loop interactions that synthesize the physical subsys-
tem x(t) and the cyber subsystem y(t) into a seamless, fully
synergistic integration, namely the CPS (19) of sampled-data
control system (18). The CPS (19) is definitely a particular
case of our canonical form (1) for sythesized CPS that
satisfies Assumption 1, in which ñ = n, f (x, y, t) =

f̃ (x, y, t) = f̄ (x) + B̄(x − y), g(x, y, t) = g̃(x, y, t) = ḡ(x),
h̃f (x(t

−

k ), x(tk−1), y(t
−

k ), y(tk−1), k) = x(tk−1) − x(t−k ) and
h̃g(x(t

−

k ), x(tk−1), y(t
−

k ), y(tk−1), k) = 0 for all t ∈ R+ and
k ∈ N. A particular version of Theorem 1 is given as follows.
Theorem 2: Suppose that the conditions (8)-(11) hold for

CPS (19). If the sampling sequence {tk}k∈N satisfies (12),
then the CPS (19) is pth moment exponentially stable, which
implies that the sampled-data control system (18) is pth
moment exponentially stable.
Remark 2: A sampled-data system has been expressed

by means of impulsive differential equations in the [18],
[48], [63], which is also a special case of our canonical
form (1) for CPS. For example, the hybrid system [48,
Eq.(13)] is a special case of our proposed SiDE (2) with
y(t) = x(t∗) and hence z(t) = [xT (t) xT (t∗)]T , which just
depicts its cyber subsystem as a pure jump process. Clearly,
our CPS (19) is distinct from those with a pure jump cyber
subsystem in the literature, see also Remark 3. It is worth
noting that the cyber subsystem of our CPS (19) regards
the intersample behaviour of the error y(t) = x(t) − x(t∗)
while that of [48, Eq.(13)] is set to be the sampled state
and is thus constant between the samples. The hybrid system
[48, Eq.(13)] may essentially be the union of its physical
and cyber subsystems, in which the subsystems never change
simultaneously but alternately. It is easy to observe that the
time interval (0,∞) is broken into a disjoint union Tp ∪ Tc,
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where Tp = ∪k∈N(tk−1, tk ) is the set of sampling intervals on
which the physical subsystem of [48, Eq.(13)] could vary as
the cyber subsystem is constant and Tc = {tk : k ∈ N} is the
set of sampling instants at which the cyber could jump as the
physical is continuous.

A. CONTROLLER EMULATION (PROCESS-ORIENTED
MODELS)
By approach of controller emulation that is from the view-
point of process-oriented models, a continuous-time state-
feedback controller is designed based on the continuous-time
plant model for stability of the closed-loop system

dx(t) = f̄u(x)dt + ḡ(x(t))dB(t) t ≥ 0 (20)

with f̄u(x) = f̄ (x) + ū(x) = f̄ (x) + B̄x (being the drift of the
closed-loop system) and then the state-feedback controller
is discretized and implemented using a sampler and ZOH
device. This leads to the sampled-data control system (18)
and its cyber-physical dynamics is described by (19). The
main question in the design method is [2], [48], and [49]

for what sampling sequence {tk}k∈N do the CPS (19)
and hence the sampled-data control system (18) preserve the
stability property of the continuous-time system (20)?
We apply our established CPS theory and address the

main question. Specifically, we apply Theorem 2 and find
the conditions on {tk}k∈N for exponential stability of the
CPS (19), which implies that of the sampled-data system (18),
when the feedback control ū(x) = B̄x is designed such that

L V (x) ≤ −αV (x) ∀ x ∈ Rn (21)

and thus the closed-loop system (20) is exponentially stable
[34], [44], where α is a positive constant, V ∈ C2(Rn

; R+) is
a Lyapunov function with property (8a) and the infinitesimal
generator L V : Rn

→ R associated with the controlled
system (20) is defined as

L V (x) = Vx(x)f̄u(x) +
1
2
tr

[
ḡT (x)Vxx(x)ḡ(x)

]
. (22)

Generally, for a function Ṽ ∈ C2(Rn
; R+), we introduce the

differential operator coL Ṽ : Rn
× Rn

→ R acting on Ṽ (y)
jointly associated with the controlled system (20)

coL Ṽ (y, x) = Ṽy(y)f̄u(x) +
1
2
tr

[
ḡT (x)Ṽyy(y)ḡ(x)

]
(23)

for all (x, y) ∈ Rn
× Rn. From (22) and (23), it is easy to see

that L V (x) = coL V (x, x) for all x ∈ Rn.
Remark 3: The input delay approach [13] basically uses

the differential operator (22) (see also [24, Eq. (2)]) to study
a sampled-data system. The approach [18], [48] employs
such a special case of SiDE (2) that it can just use the
operator (6) for stability analysis of the system as well. It is
observed that the operator (22) is a major part of (6) and the
sampled state is treated as a delayed state in [13]. Hence,
these approaches essentially focus on part of the system
behaviour that is representd by (6). But the CPS (19) involves
the closed-loop interactions which need to be described by

both the operators (6) and (7). Thus we introduce the general
differential operator (23) for the representation of intersample
dynamics of the CPS, which constitutes a major part of (7).

Let us now consider the CPS (19) of sample-data
system (18) with global Lipschitz condition (17). It is very
helpful for exposing not only the interactions between the
subsystems (see also [30]) but also the intrinsic relationship
between the two main approaches, see Theorem 4 and
Remark 5 below. Moreover, under the global Lipschitz
condition, the mean-square exponential stability of the
system implies that it is also almost surely exponentially
stable [22], [25], [30], [44].
Theorem 3: Let the Lyapunov function V (x) in (21) for the

controlled system (20) be a quadratic function

V (x) = xTPx (24)

with some positive definite matrix P ∈ Rn×n. Under the
condition (17), the CPS (19) and thus the sampled-data
control system (18) are mean-square exponentially stable
provided that the sampling sequence {tk}k∈N satisfies

0 < 1t ≤ 1t <
lnα − lnα2

ᾱ2
, (25)

where α2 ∈ (0, α) and ᾱ2 > 0 are constants such that[
0 −PB̄

−B̄TP 0

]
≤ α2P̄, P̄ :=

[
P 0
0 P̃

]
> 0, (26a)[

−αP+ η̃1P̃ −PB̄
−B̄TP η̃2P̃− B̄T P̃− P̃B̄

]
≤ ᾱ2P̄ (26b)

for some positive definite matrix P̃ ∈ Rn×n and some
constants η̃1, η̃2 ∈ R being such that, for the quadratic
function Ṽ (y) = yT P̃y,

coL Ṽ (y, x) ≤ η̃1Ṽ (x) + η̃2Ṽ (y) ∀ x, y ∈ Rn. (27)

Proof: Given P > 0 and α > 0 by (21)-(24), one
can choose any positive number α2 on (0, α) and then
find a positive definite matrix P̃ ∈ Rn×n with λm(P̃) >

0 sufficiently large for |PB̄|
2/λm(P) ≤ α2

2λm(P̃), which
implies (26a). Since functions f̄ , ḡ both satisfy the global
Lipschitz condition (17), so does f̄u(x) = f̄ (x) + ū(x) =

f̄ (x) + B̄x, that is, |f̄u(x) − f̄u(x̄)|2 ≤ 2(L̄ + |B̄|
2)|x − x̄|2

for all (x, x̄) ∈ Rn
× Rn. Therefore, f̄u(x) = f̄ (x) + B̄x and

ḡ(x) satisfy the linear growth conditions |f̄u(x)|2 = |f̄ (x) +

B̄x|2 ≤ 2(L̄ + |B̄|
2)|x|2 and |ḡ(x)|2 ≤ L̄|x|2 for all x ∈ Rn,

respectively. By [25, Lemma 3.1 and Lemma 5.1],

coL Ṽ (y, x) = 2yT P̃f̄u(x) + tr
[
ḡT (x)P̃ḡ(x)

]
≤ Ṽ (y) + Ṽ (f̄u(x)) + λM (P̃)|ḡ(x)|2

≤ λM (P̃)
(
|f̄u(x)|2 + |ḡ(x)|2

)
+ Ṽ (y)

≤
(3L̄ + 2|B̄|

2)λM (P̃)

λm(P̃)
Ṽ (x) + Ṽ (y)

for all x, y ∈ Rn. This implies that there is a pair of real
numbers η̃1 ≤ (3L̄ + 2|B̄|

2)λM (P̃)/λm(P̃) and η̃2 ≤ 1
for (27). Given the real constants α, η̃1, η̃2 and the positive
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definite matrices P, P̃ as above, it is easy to find a positive
number ᾱ2 sufficiently large for (26b). Thus the control
design method (21) with quadratic Lyapunov function (24)
ensures that there exists a positive definite matrix P̃ ∈ Rn×n

and some positive numbers α2, ᾱ2, η̃1, η̃2 with α2 ∈ (0, α)
such that the conditions (25), (26) and (27) hold.
It will follow from Theorem 2 that the CPS (19) is

mean-square exponentially stable if the conditions (8)-(12)
hold with p = 2 for (19), which yields that the sampled-data
control system (18) is mean-square exponentially stable.
Let V̄ (z) = zT P̄z = V (x) + Ṽ (y) for all z = [xT yT ]T ∈

R2n. Hence, λm(P)|x|2 ≤ V (x) ≤ λM (P)|x|2 for all x ∈ Rn,(
λm(P) ∧ λm(P̃)

)
|z|2 ≤ V̄ (z) ≤

(
λM (P) ∨ λM (P̃)

)
|z|2 and

V (Cz) ≤ V̄ (z) for all z ∈ R2n. Thus the conditions (8) hold
with positive numbers p = 2, c1 = λm(P), c̄1 = λm(P) ∧

λm(P̃), c̄ = 1 and functions c2(|x|2) = λM (P)|x|2, c̄2(|z|2) =[
λM (P) ∨ λM (P̃)

]
|z|2 of K∞ class. Applying (6), (21) and

(26a) produces

L V (z) = 2 xTP[f̄ (x) + B̄x − B̄y] + tr
[
ḡT (x)Pḡ(x)

]
= 2 xTPf̄u(x) + tr

[
ḡT (x)Pḡ(x)

]
− 2xTPB̄y

≤ −αV (Cz) − 2zTCTPB̄Dz

≤ −αV (Cz) + α2V̄ (z) ∀ z = [xT yT ]T ∈ R2n.

Hence, (9a) holds with α1 = α. Similarly,

L V̄ (z) = L V (z) + L Ṽ (z)

≤ −αV (Cz) − 2zTCTPB̄Dz

+ 2 yT P̃[f̄ (x) + B̄x − B̄y] + tr
[
ḡT (x)P̃ḡ(x)

]
= −αV (Cz) − 2zTCTPB̄Dz− 2 yT P̃B̄y

+ 2yT P̃f̄u(x) + tr
[
ḡT (x)P̃ḡ(x)

]
(28)

Using (27) and then (26b), one can deduce from (28) that

L V̄ (z) ≤ −αV (Cz) − 2zTCTPB̄Dz

+ coL Ṽ (Dz,Cz) − 2zTDT P̃B̄Dz

≤ −αV (Cz) + η̃1Ṽ (Cz) − 2zTCTPB̄Dz

+ η̃2Ṽ (Dz) − 2zTDT P̃B̄Dz

≤ ᾱ2zT P̄z = ᾱ2V̄ (z) ∀ z ∈ R2n

which is the condition (9b) with ᾱ1 = 0.
Observe that (19c) and y(t) = x(t)−x(t∗) for all t ≥ 0 give

y(tk ) = y(t−k ) + x(tk−1) − x(t−k ) = 0 for all k ∈ N. This
immediately produces V̄ (z(tk )) = V (Cz(tk )) and thus the
condition (10) with β0 = 1 and β1 = β̃0 = β̃1 = 0. So the
conditions (10)-(11) hold due to 0 < α2β0/α = α2/α < 1.
Moreover, the inequality (25) means that the condition (12)
holds with α1 = α > α2 > 0, ᾱ2 > ᾱ1 = 0, β0 = 1 and
β1 = β̃0 = β̃1 = 0. By Theorem 2, the CPS (19) and
hence the sampled-data control system (18) are mean-square
exponentially stable. 2

B. DISCRETE-TIME APPROXIMATION
(COMPUTER-ORIENTED MODELS)
As periodic sampling ({tk}k∈N with sampling period 1t =

1t = 1t) is normally used [2], [49], [51], a sampling

interval tk − tk−1 could vary in the design method
based on computer-oriented models which are discrete-time
approximation of the underlying continuous-time plants [50],
[54]. By approach of discrete-time approximation, one
employs some approximate discrete-time model, say, the
Euler-Maruyama approximation of the continuous-time plant
(due to the usual unavailability of the exact discrete-time
model), and designs a discrete-time state-feedback controller
ū(X ) = B̄X for stability of the closed-loop system, which
is the Euler-Maruyama approximation [22], [44], [51] of the
closed-loop system (20),

Xk = Xk−1 + f̄u(Xk−1)h+ ḡ(Xk−1)1Bk (29)

with stepsize h > 0 and initial value X0 = x0 ∈ Rn,
where both the functions f̄u, ḡ satisfy the global Lipschitz
condition (17) and 1Bk = B(kh)−B((k − 1)h) for all
k ∈ N. Specifically, a state-feedback controller ū(X ) = B̄X
is designed such that

E[V (Xk )|Xk−1] ≤ (1−c)V (Xk−1) ∀Xk−1 ∈ Rn (30)

and, therefore, the closed-loop system (29) is exponentially
stable [8], [30], [34], where c ∈ (0, 1) is a constant and V :

Rn
→ R+ is a Lyapunov function with property (8a), say, the

quadratic Lyapunov function (24). The obtained controller
ū(x) = B̄x is then implemented in the continuous-time plant
using ZOH sampling, that is, ū(t) = ū(x(t∗)) = B̄x(t∗) for all
t ≥ 0. This leads to the sampled-data control system (18) and
its CPS model (19) as well. The central question in the design
method (30) is, see [2], [49], [50], and [51],

for what sampling sequence {tk}k∈N do the CPS (19) and
hence the sampled-data control system (18) share the stability
property of approximate discrete-time system (29)?

We address this question with Theorem 3 and reveal
the intrinsic relationship between the control design
methods (21) and (30).
Theorem 4: Let the Lyapunov function V (X ) in (30) for

the discrete-time system (29) be of the quadratic form (24)
with some positive definite matrix P ∈ Rn×n. Under the
condition (17), the CPS (19) and thus the sampled-data
control system (18) are mean-square exponentially stable
provided that the sampling sequence {tk}k∈N satisfies

0 < 1t ≤ 1t <
ln(ch−1

+ αuh) − lnα2

ᾱ2
, (31)

where α2 ∈ (0, c h−1
+ αuh) and ᾱ2 > 0 are the constants

given by (26) with α = ch−1
+αuh as well as (27), and αu > 0

is a constant such that

V (f̄u(X )) ≤ αuV (X ) ∀X ∈ Rn. (32)

Proof: By control design method (30) with quadratic
Lyapunov function (24) and condition (32),

E[V (Xk )|Xk−1]

= E
[
XTk PXk |Xk−1

]
= E

[(
Xk−1 + f̄u(Xk−1)h+ ḡ(Xk−1)1Bk

)TP
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·
(
Xk−1 + f̄u(Xk−1)h+ ḡ(Xk−1)1Bk

)∣∣Xk−1

]
= V (Xk−1) + h

[
XTk−1Pf̄u(Xk−1) + f̄ Tu (Xk−1)PXk−1

+ tr
[
ḡT (Xk−1)Pḡ(Xk−1)

]
+ hV (f̄u(Xk−1))

]
≤ V (Xk−1) + h

[
2XTk−1Pf̄u(Xk−1)

+ tr
[
ḡT (Xk−1)Pḡ(Xk−1)

]
+ αuhV (Xk−1)

]
≤ (1−c)V (Xk−1) ∀Xk−1 ∈ Rn (33)

and, therefore,

2XTk−1Pf̄u(Xk−1) + tr
[
ḡT (Xk−1)Pḡ(Xk−1)

]
+ αuhV (Xk−1)

≤ −
c
h
V (Xk−1) (34)

for all Xk−1 ∈ Rn, where the global Lipschitz condition
implies the linear growth condition and hence that there is
a positive number αu ∈ (0, 2(L̄ + |B|

2)λM (P)/λm(P)] such
that (32) holds due to the fact that, for all X ∈ Rn,

V (f̄u(X )) ≤ λM (P)|f̄u(X )|2 ≤ 2(L̄ + |B̄|
2)

λM (P)
λm(P)

V (X ).

Let V (x) = xTPx also be the candidate Lyapunov function
for the continuous-time system (20). From (22) and (34), one
can deduce that

L V (x) = 2 xTPf̄u(x) + tr
[
ḡT (x)Pḡ(x)

]
≤ −

( c
h

+ αuh
)
V (x) ∀ x ∈ Rn.

This is exactly the control design method (21) with Lyapunov
exponent, or say, decay rate −α as

α =
c
h

+ αuh. (35)

On the other hand, if a controller is designed by the method
(21) for stability of the controlled system (20), one can choose
some constant stepsize h ∈

(
0, (α/αu) ∧ (1/α)

)
for the

discrete-time approximation (29). Then, by (33)-(35), one
obtains the condition (30) with c = (α − αuh)h ∈ (0, 1)
for the design method based on discrete-time approximation.
Clearly, the intrinsic relationship (35) shows the equivalence
between the design methods (21) and (30).
Let α = ch−1

+ αuh > 0 in the conditions of Theorem 3.
It immediately follows from Theorem 3 that the assertion of
Theorem 4 holds. 2

Remark 4: In the literature, periodic sampling is normally
used and it is usually assumed that the sampling period
1t is also the stepsize h of the discrete-time model
(i.e., h = 1t) [2], [49], [50], [51]. When the both are set to
be the same h = 1t , the controlled system may be globally
stable if the exact discrete-time model can be utilized, e.g.,
in linear deterministic systems [2], [62]; otherwise, some
discrete-time approximation is employed and the control
design may achieve semiglobal practical stabilization [50],
[51]. We stress that the stepsize h and the sampling period
1t are essentially two different parameters of the controller.

The former is one of the design parameters and the latter
a parameter for the implementation of ZOH sampling. For
stability of the resulting control system (18), we clearly show
by (31) how the design parameters impose the maximum
alllowable sampling interval on the implementation.
Remark 5: Under the global Lipschitz condition (17),

we have shown the equivalence between the design methods
(21) and (30) for sampled-data control system (18). More
specifically, we not only provide the link [62] but also
reveal the intrinsic relationship (35) between the two main
approaches. This is a unique fundamental contribution to
sampled-data control systems. It is also observed that,
in addtion to P, P̃, α2, ᾱ2 shared by both (21) and (30), a few
parameters h, c, αu are involved in the design method (30) as
only α in the other.

C. HIGHLY NONLINEAR SYSTEMS WITH LOCAL LIPSCHITZ
CONDITION
Under the global Lipschitz condition (17), we construct
the quadratic Lyapunov function V̄ (z) = zT P̄z with P̄ =

diag{P, P̃} > 0 for the CPS (19) of sampled-data control
system (18) based on the one (24) for the controlled
system (20) so that we can exploit the control design (21) with
Lyapunov function (24) as well as the linear growth condition
in the proof of Theorem 3. But such functions of quadratic
form may not be the suitable Lyapunov candidates for a
highly nonlinear sampled-data system (18) and its CPS (19),
where sampled-data system (18) satisfies the local Lipschitz
condition (16) instead of the global one (17). In these cases,
we may have to construct an appropriate candidate Lyapunov
function for the CPS (19) based on the one used in the
control design (21) for the highly nonlinear system (20).
Let us proceed to make use of the Lyapunov-based control
design (21) and study the CPS (19) of sampled-data control
system (18) with local Lipschitz condition (16).
Theorem 5: Suppose that there is a Lyapunov function

V (x) designed as (21) for stability of the controlled system
(20) with local Lipschitz condition (16) and there is also a
candidate Lyapunov function Ṽ ∈ C2(Rn

; R+) with

c̃1|y|p ≤ Ṽ (y) ≤ c̃2(|y|p) ∀ y ∈ Rn (36)

such that

L V (x) − Vx(x)B̄y ≤ −αV (x) + α2V̄ (z), (37a)

L V (x) −
[
Vx(x) + Ṽy(y)

]
B̄y+ coL Ṽ (y, x) ≤ ᾱ2V̄ (z)

(37b)

for all z = [xT yT ]T ∈ R2n, where V̄ (z) = V (x) +

Ṽ (y), c̃1, α, α2, ᾱ2 are positive constants with α2 ∈ (0, α)
and function c̃2 is of K∞ class. The CPS (19) and thus
the sampled-data control system (18) are pth moment
exponentially stable provided that the sampling sequence
{tk}k∈N satisfies

0 < 1t ≤ 1t <
lnα − lnα2

ᾱ2
. (38)
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Proof: The assertion follows from Theorem 2 if we verify
that the conditions (8)-(12) are satsified. Let Ṽ (y) and V̄ (z) =

V (x) + Ṽ (y) be the candidate Lyapunov functions for the
cyber subsystem (19b,19c) and the CPS (19), respectively.
Obviously, condition (8c) holds with c̄ = 1. Note that
|z|2 = |x|2 + |y|2 and, therefore,

|x|p ∨ |y|p ≤ |z|p = (|x|2 + |y|2)p/2 ≤ kp(|x|p + |y|p)

for all z = [xT yT ]T ∈ R2n, where kp = 1 when 0 < p < 2
and kp = 2(p−2)/2 if p ≥ 2. It is easy to observe from the
properties (8a) and (36) of V (x) and Ṽ (y) that

(c1 ∧ c̃1)k−1
p |z|p ≤ (c1 ∧ c̃1)(|x|p + |y|p) ≤ c1|x|p + c̃1|y|p

≤ V̄ (z) = V (x) + Ṽ (y)

≤ c2(|x|p) + c̃2(|y|p) ≤ c2(|z|p) + c̃2(|z|p)

and thus the condition (8b) with c̄1 = (c1 ∧ c̃1)/kp > 0 and
c̄2(·) = c2(·) + c̃2(·) of K∞ class.
As above, by (6), (21) and (37a),

L V (z) = Vx(x)[f̄u(x) − B̄y] +
1
2
tr

[
ḡT (x)Vxx(x)ḡ(x)

]
= L V (x) − Vx(x)B̄y

≤ −αV (Cz) + α2V̄ (z) ∀ z = [xT yT ]T ∈ R2n

which is the condition (9a) with α1 = α.
As (28), by (6), (7) and (37b),

L V̄ (z) = L V (z) + L Ṽ (z)

= L V (x) − Vx(x)B̄y+ coL Ṽ (y, x) − Ṽy(y)B̄y

≤ ᾱ2V̄ (z)

on [0, ∞) \ {tk}k∈N, which gives (9b) with ᾱ1 = 0.
Due to y(tk ) = 0 for all k ∈ N, V̄ (z(tk )) = V (x(tk )) =

V (Cz(tk )) and thus the condition (10) holds with β0 = 1 and
β1 = β̃0 = β̃1 = 0. This with α > α2 > 0 gives the
condition (11), namely, 0 < α2β0/α < 1. Also observe
that (38) implies the condition (12) with α1 = α > α2 > 0,
ᾱ2 > ᾱ1 = 0, β0 = 1 and β1 = β̃0 = β̃1 = 0. This completes
the proof. 2

For a highly nonlinear system (20) with local Lipschitz
condition (16), assume that the candidate Lyapunov functions
V (x), Ṽ (y) in Theorem 5 are of the forms

V (x) = xTPx + ĉ|x|p̂, ∀ x ∈ Rn (39a)

Ṽ (y) = yT P̃y, ∀ y ∈ Rn (39b)

respectively, where P, P̃ ∈ Rn×n are both positive definite
matrices and p̂ > 2, ĉ > 0 are positive constants. A particular
version of Theorem 5 is specified as follows.
Corollary 1: Suppose that (39) is a pair of candidate

Lyapunov functions such that

L V (x) −
(
2xTP+ ĉp̂|x|p̂−2xT

)
B̄y

≤ −(α − α2)V (x) + α2Ṽ (y), (40a)

L V (x) −
(
2xTP+ ĉp̂|x|p̂−2xT + 2 yT P̃

)
B̄y

+ coL Ṽ (y, x) ≤ ᾱ2[V (x) + Ṽ (y)] (40b)

for all (x, y) ∈ Rn
×Rn, where α, α2, ᾱ2 are positive constants

with α > α2. The CPS (19) and thus the sampled-data control
system (18) are mean-square exponentially stable provided
that the sampling sequence {tk}k∈N satisfies

0 < 1t ≤ 1t <
lnα − lnα2

ᾱ2
. (41)

Proof: The candidate Lyapunov functions (39a) and (39b)
give λm(P)|x|2 ≤ V (x) ≤ c2(|x|2) = λM (P)|x|2 + ĉ(|x|2)p̂/2

and λm(P̃)|y|2 ≤ Ṽ (y) ≤ c̃2(|y|2) = λM (P̃)|y|2, respectively.
Hence, conditions (8a) and (36) hold. Let V̄ (z) = V (x) +

Ṽ (y) for all z = [xT yT ]T ∈ R2n. Then (40a) and (40b)
are the very specifications of conditions (37a) and (37b),
respectively. It immediately follows from Theorem 5 that
the sampled-data control system (18) and its CPS (19)
are mean-square exponentially stable if condition (41) is
satisfied. 2

IV. STATE-FEEDBACK STABILIZATION OF CPS OF LINEAR
SAMPLED-DATA SYSTEMS
As applications of our established theory, we study stability
and stabilization of CPS of linear sampled-data stochastic
systems in this section. Let us consider the CPS

dx(t) = [Ax(t) + B̄(x(t) − y(t))]dt

+

m∑
j=1

Gjx(t)dBj(t),

t ∈ [0, ∞) (42a)

dy(t) = [Ax(t) + B̄(x(t) − y(t))]dt

+

m∑
j=1

Gjx(t)dBj(t),

t ∈ [0, ∞) \ {tk}k∈N (42b)

y(tk ) − y(t−k ) = x(tk−1) − x(t−k ), k ∈ N (42c)

of a linear sampled-data control system

dx(t) = [Ax(t) + B̄x(t∗)]dt +

m∑
j=1

Gjx(t)dBj(t) (43)

for t ≥ 0 with initial values x(0) ∈ Rn and y(0) = 0, where
A ∈ Rn×n and Gj ∈ Rn×n, j = 1, · · · ,m, are constant
matrices. Obviously, the linear CPS (42) is a particular case
of (19) with f̄ (x) = Ax and ḡ(x) =

[
G1 · · · Gm

]
x, which

sastify the global Lipschitz condition (17). As is well known,
the continuous-time plant

dx(t) = Fx(t)dt +

m∑
j=1

Gjx(t)dBj(t) t ≥ 0 (44)

with F = A + B̄ is mean-square exponentially stable if and
only if there is a positive definite matrix P ∈ Rn×n such that

FTP+ PF +

m∑
j=1

GTj PGj ≤ −αP (45)
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for some constant α > 0. This is the Lyapunov-Itô
inequality [8], the LMI equivalent to the classical Lyapunov-
Itô equation [40]. The Lyapunov-Itô LMI (45) can be
reformulated into a generalized eigenvalue minimization
problem (GEP) (see also [30])

min λ s.t. P > 0,

P < λ
(
− FTP− PF −

m∑
j=1

GTj PGj
)
. (46)

The minimum Lyapunov exponent −1/λ can be obtained
by solving the GEP (46) with some toolboxes such as [16].
By [34, Theorem 5.15, p175] (see also [44, Theorem
4.2, p128]), the mean-square exponential stability of linear
SDE (44) implies that it is also almost surely exponentially
stable. Unlike the linear deterministic systems, the design
methods based on exact discrete-time models [2], [54], [62]
are inapplicable to stochastic system (43). Some discrete-
time approximation of the continuous-time plant has to be
employed instead. As a particular case of (29), the Euler-
Maruyama approximation of linear system (44) is

Xk = Xk−1 + FXk−1h+

m∑
j=1

GjXk−11Bj,k (47)

with constant stepsize h > 0 and initial value X0 = x(0) ∈

Rn, where 1Bj,k = Bj(kh) − Bj((k − 1)h) for all k ∈ N.
It is also well-known that the discrete-time system (47) is
mean-square exponentially stable if and only if there exists
a positive definite matrix P ∈ Rn×n such that, see, e.g., [8],

(In + hF)TP(In + hF) + h
m∑
j=1

GTj PGj ≤ (1 − c)P (48)

for some c ∈ (0, 1). Note that (45) and (48) are the linear
cases of design methods (21) and (30), respectively. The
equivalence between (45) and (48) has been shown by the
relationship (35) for any stepsize h ∈

(
0, (α−1

u α) ∧ α−1
)
,

where αu is a positive constant such that FTPF ≤ αuP for
the linear system.

Since we have shown the equivalence between the two
main approaches (21) and (30), in the sequel, we focus on
sampled-data control systems, say, by approach of controller
emulation (process-oriented models). A special version of
Theorem 3 is slightly modified for the CPS (42) of linear
sampled-data control system (43).
Theorem 6: Suppose that there is a positive definite matrix

P ∈ Rn×n such that LMI (45) holds for some α > 0. The
CPS (42) and thus the sampled-data control system (43) are
mean-square exponentially stable provided that the sampling
sequence {tk}k∈N satisfies

0 < 1t ≤ 1t <
lnα − lnα2

ᾱ2
, (49)

where α2 ∈ (0, α) and ᾱ2 > 0 are constants such that[
0 −PB̄

−B̄TP 0

]
≤ α2P̄, P̄ :=

[
P 0
0 P̃

]
> 0, (50a)

[
R11 −PB̄+ FT P̃

−B̄TP+ P̃F −B̄T P̃− P̃B̄

]
≤ ᾱ2P̄ (50b)

with R11 = FTP+PF+
∑m

j=1 G
T
j (P+P̃)Gj for some positive

definite matrix P̃ ∈ Rn×n.
Proof: As in the proof of Theorem 3, it can be shown that

the control design method (45) ensures that there is a positive
definite matrix P̃ ∈ Rn×n and a pair of real numbers α2 ∈

(0, α), ᾱ2 > 0 such that the conditions (49) and (50) hold.
We choose, ∀ z = [xT yT ]T ∈ R2n,

V̄ (z) = zT P̄z = V (x) + Ṽ (y) = xTPx + yT P̃y

as the candidate Lyapunov function for the CPS (42). All the
conditions (8)-(12) but (9b) in Theorem 2 can be verified in
the same way as the proof of Theorem 3. By (6), (21), (23),
(45) and (50b),

L V̄ (z)

= L V (z) + L Ṽ (z)

= L V (x) − Vx(x)B̄y+ coL Ṽ (y, x) − Ṽy(y)B̄y

= xT (FTP+ PF +

m∑
j=1

GTj PGj)x − 2 xTPB̄y

+ 2 yT P̃Fx + xT (
m∑
j=1

GTj P̃Gj)x − 2 yT P̃B̄y

= zTCT [
FTP+ PF +

m∑
j=1

GTj (P+ P̃)Gj
]
Cz

+ 2 zTCT (−PB̄+ FT P̃)Dz− 2 zTDT P̃B̄Dz

≤ ᾱ2zT P̄z = ᾱ2V̄ (z), ∀z ∈ R2n

which gives the condition (9b) with ᾱ1 = 0. Thus the
assertion follows from Theorem 2. 2

Given α ∈ (0, 1/λ) by the control design (45) as well
as (46), we can choose α2 = κ̃α with some κ̃ ∈ (0, 1) and
reformulate the set of LMI (45) and (50) into the GEP

min ᾱ2 s.t. P > 0, P̃ > 0, LMI (45), (50a), (50b). (51)

A solution with ᾱ2 > 0 to problem (51) gives the allowable
sampling intervals 0 < 1t ≤ 1t < − ln κ̃/ᾱ2.
Remark 6: Alternatively, the LMI (45) and (50) can be

reformulated into the GEP

min α2 s.t. P > 0, P̃ > 0, LMI (45), (50b), (50a), (52)

where α ∈ (0, 1/λ) and ᾱ2 > 0 are a pair of prescribed
parameters. A solution with 0 < α2 < α to the problem
yields the allowable sampling intervals (49). Similarly, the set
of LMI (54)-(55) for control design can be reformulated into
a GEP that minimizes α2 instead of ᾱ2. It may be taken as an
exercise to derive such a GEP for control design and apply
it to feedback stabilization of the CPS (42) of systems (71)
and (72) in Example 2, respectively.

Letting B̄ = B̂K̂ with some given matrix B̂ ∈ Rn×m̂ in the
CPS (42) of linear sampled-data control system (43) leads
to the state-feedback stabilization problem of the CPS of the
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sampled-data system, which requires to find a state-feedback
gain matrix K̂ ∈ Rm̂×n and some conditions on the sampling
intervals for stability of the CPS (42) of the closed-loop
system

dx(t) = [Ax(t) + B̂K̂ x(t∗)]dt +

m∑
j=1

Gjx(t)dBj(t) (53)

for all t ≥ 0. It is reasonable in some sense to set P̃ = c̃P
for some c̃ > 0 due to the interrelation of the physical and
the cyber subsystems [30]. Applying Theorem 6, we obtain a
useful result on state-feedback stabilization of the CPS (42)
of linear sampled-data stochastic system (53), which is
formulated as a set of LMI with the prescribed number c̃ > 0
(see also [13], [25], [48]).
Theorem 7: Suppose that there is a pair of matrices Q ∈

Rn×n and Y ∈ Rm̂×n such that Q > 0 and
Q11 + αQ ∗ · · · ∗

G1Q −Q · · · 0
...

...
. . .

...

GmQ 0 · · · −Q

 ≤ 0 (54)

for some α > 0, where Q11 = QAT + Y T B̂T +AQ+ B̂Y and
entries denoted by ∗ can be readily inferred from symmetry
of a matrix. Let sampling sequence {tk}k∈N satisfy (49) with
positive numbers α2 ∈ (0, α) and ᾱ2 being such that[

0 ∗

−Y T B̂T 0

]
≤ α2

[
Q 0
0 c̃ Q

]
, (55a)

Q11 − ᾱ2Q ∗ ∗ · · · ∗

R̃21 R̃22 − ᾱ2c̃Q 0 · · · 0
γ̃ G1Q 0 −Q · · · 0

...
...

...
. . .

...

γ̃ GmQ 0 0 · · · −Q

 ≤ 0, (55b)

where R̃21 = −Y T B̂T+c̃ (AQ+B̂Y ), R̃22 = −c̃ (Y T B̂T+B̂Y ),
γ̃ =

√
1 + c̃ and c̃ > 0 is a prescribed number. Then the

CPS (42) of sampled-data control system (53) with feedback
gain matrix K̂ = YQ−1 is mean-square exponentially stable,
which implies that the closed-loop system (53) with K̂ =

YQ−1 is mean-square exponentially stable.
Proof: Let P = Q−1 and P̃ = c̃P. Hence, P > 0 and P̃ > 0.

By the Schur complement lemma, LMI (54) produces

Q11 +

m∑
j=1

QGTj PGjQ+ αQ ≤ 0

⇔ Q(A+ B̂K̂ )T + (A+ B̂K̂ )Q+

m∑
j=1

QGTj PGjQ ≤ −αQ.

Premultiplying by P and postmultiplying by P the LMI above
gives the LMI (45) with F = A + B̂K̂ . By the Schur
complement lemma, the LMI (55b) implies[

R̃11 + (1 + c̃ )Q
∑m

j=1G
T
j PGjQ ∗

R̃21 −c̃R̃22

]
≤ 0 (56)

with R̃11 = Q11 − ᾱ2Q = QAT + Y T B̂T + AQ + B̂Y −

ᾱ2Q. Premultiplying by diag{P,P} and postmultiplying by
diag{P,P} the LMI (55a) and (56) yield (50a) and (50b) with
P̃ = c̃ P, respectively. It follows from Theorem 6 that the
CPS (42) and thus the sampled-data control system (53) with
K̂ = YQ−1 are mean-square exponentially stable, 2

Given α > 0, Q > 0, Y by LMI (54) and α2 = κ̃ α with
some κ̃ ∈ (0, 1), one can find a number c̃ > 0 sufficiently
large for (55a) and then a ᾱ2 > 0 sufficiently large for (55b).
Thus the control design method (54), which is equivalent
to (45), ensures that there is a set of postive constants α2 =

κ̃ α, κ̃ ∈ (0, 1), c̃ and ᾱ2 such that the conditions (49)
and (55) hold (see also the proofs of Theorems 3 and 6). As an
implementation of Theorem 7, we propose an algorithm in the
form of generic LMI [8], [16] to find a feasible solution to
the set of LMI (54)-(55), which thus yields a feedback gain
matrix and its allowable sampling intervals for stabilization
of the CPS (42) of system (53). In the interest of simplicity
of the formulas, assume here m = 1 and G1 = G.
Algorithm 1: Design a state-feedback controller and com-

pute its maximum allowable sampling interval for stabiliza-
tion of the CPS (42) of sampled-data control system (53).
1) Compute the minimum Lyapunov exponent −1/λ by

solving the GEP

min λ s.t. Q̄ > 0,
[
Q̄ 0
0 0

]
< λ

[
−Q̄11 ∗

−GQ̄ Q̄

]
with Q̄11 = Q̄AT + Ȳ T B̂T + AQ̄+ B̂Ȳ .

2) Choose a Lyapunov exponent −α ∈ (−1/λ, 0) and
obtain matrices Q > 0 and Y by solving the LMI (54).

3) Find α2 and αc̃ by solving the LMI derived from (55a)

α2 < α,

[
0 ∗

−Y T B̂T 0

]
<

[
α2Q 0
0 αc̃ Q

]
with α ∈ (0, 1/λ),Q > 0 and Y obtained in the previous
step and then set the prescribed positive numbers c̃ =

αc̃/α2 and κ̃ = α2/α < 1.
4) Compute ᾱ2 > 0 by solving the linear objective

minimization problem

min ᾱ2 s.t. ᾱ2 > 0, LMI (55b)

with Q > 0, Y and c̃ > 0 obtained in the previous steps.
5) Compute the feedback gain K̂ = YQ−1 and its allowable

sampling intervals 0 < 1t ≤ 1t < (− ln κ̃)/ᾱ2 with
Q > 0, Y , κ̃ = α2/α, ᾱ2 > 0 obtained above.

Each step of Algorithm 1 finds its solution if and only if
LMI (54) is feasible, or say, linear SDE (44) with B̄ = B̂K̂
is mean-square stabilizable. The matrices Q > 0, Y and
[λ, α, α2, ᾱ2, c̃, κ̃] obtained above not only produce
a feasible solution to stabilization problem of the CPS (42)
of sampled-data system (53) but also provide a starting point
to find some other feasible solutions with larger allowlable
sampling intervals using some toolboxes such as [16] and
[17]. Specifically, the maximum allowable sampling interval
may be improved by feedback gain matrix K̂ = YQ−1 if
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the matrices Q > 0 and Y are obtained by solving the GEP
derived from the set of LMI (54)-(55) (see, e.g., [16, p.8-41])

min ᾱ2 s.t. Q > 0,
[
Q11 + αQ ∗

GQ −Q

]
< 0,[

0 ∗

−Y T B̂T 0

]
< κ̃ α

[
Q 0
0 c̃ Q

]
,Q11 − Q̃ ∗ ∗

R̃21 − G̃ R̃22 − R̃ 0
γ̃GQ 0 −Q

 < 0,

[
Q̃ ∗

G̃ R̃

]
> 0,

[
Q̃ ∗

G̃ R̃

]
< ᾱ2

[
Q 0
0 c̃Q

]
, (57)

where matrices Q̃, R̃, G̃ ∈ Rn×n are part of the decision
variables and positive numbers α ∈ (0, 1/λ), κ̃ ∈ (0, 1),
c̃ > 0 are the prescribed paramters. One can search for
paramters α ∈ (0, 1/λ), κ̃ ∈ (0, 1), c̃ > 0 that produce
a larger maximum allowable sampling interval 1t with the
starting point from a feasible solution given by Algorithm 1.
The solution with Q > 0,Y , ᾱ2 > 0 to GEP (57) yields
a feedback gain K̂ = YQ−1 and its allowable sampling
intervals 0 < 1t ≤ 1t < (− ln κ̃)/ᾱ2. It is also
worth noting that 1t could be enhanced by solving the
GEP (51) for the CPS (42) of sampled-data system (43)
with B̄ = B̂K̂ = B̂YQ−1. Our control design method can
be applied with Theorem 3 to nonlinear systems such as
[68, Example 2.2] (see also [55]).

V. ILLUSTRATIVE EXAMPLES
In this section, we illustrate the applications of our CPS
theory with numerical examples. More specifically, we shall
apply our established results to stabilization problems of
the CPS of sampled-data stochastic systems and verify the
advantages as well as effectiveness of our proposed methods
with some numerical examples from the literature.
Example 1: Consider the scalar sampled-data control

system (18) and its CPS (19) (i.e., n = 1 and x ∈ R)
with m = 1 as well. Two numerical cases are given as
[12, Example 6.1]

f̄u(x) = −2x − 3 x3, B̄ = −3, ḡ(x) = |x|3/2; (58)

f̄u(x) = −x − 2 x3, B̄ = −2, ḡ(x) =
1
2
|x|3/2 (59)

both which satisfy the local Lipschitz condition (16).
We shall apply Corollary 1 to the CPS (19) of sampled-data

systems (58) and (59), respectively. In either case, let

V (x) = x2 + ĉ|x|4 and Ṽ (y) = α̂y2 ∀ x, y ∈ R (60)

be the candidate Lyapunov functions for the physical and
the cyber subsystems, respectively, where ĉ and α̂ are both
positive numbers to be determined. Obviously, (60) is the
sclar case of (39) with p̂ = 4. For either case, set α̂ = 2ĉ
in this example.

For system (58), using [25, Lemma 3.1], we have

L V (x) − Vx(x)B̄y ≤ −

(
4 −

1
24

−
3

√
α̂

)
x2

−

[
8 −

3
2(2 − r)

]
ĉx4 +

( 3
√

α̂
+

3
r

)
α̂y2, (61a)

L V (x) − [Vx(x) + Ṽy(y)]B̄y+ coL Ṽ (y, x) ≤

[ (1 + α̂)2

24

+
|2α̂ − 3|

√
α̂

− 4
]
x2 +

(
|2α̂ − 3|

√
α̂

+ 6
)
α̂y2 (61b)

for all x, y ∈ R, where r is some postive number on (0, 2).
Choose the postive numbers α̂ and r such that

4 −
1
24

−
3

√
α̂

= 8 −
3

2(2 − r)
> 0,

(1 + α̂)2

24
+

|2α̂ − 3|
√

α̂
− 4 =

|2α̂ − 3|
√

α̂
+ 6 > 0,

which immediately produces{
α̂ = 4

√
15 − 1 = 14.4919,

r = 2 − 36
√

α̂/
(
97

√
α̂ + 72

)
= 1.6894.

(62)

Substituting the positive numbers chosen as (62) into the
inequalities (61), we obtain the conditions (40) with α =

4 + 3/r − 1/24 = 5.7341, α2 = 3/
√

α̂ + 3/r = 2.5638 and
ᾱ2 = 6+(2α̂−3)/

√
α̂ = 12.8256. According to Corollary 1,

the CPS (19) of sampled-data system (58) is mean-square
exponentially stable if

0 < 1t ≤ 1t <
ln(α/α2)

ᾱ2
= 0.0628. (63)

Similarly, for system (59), the inequalities

L V (x) − Vx(x)B̄y ≤ −

(
2 −

1
162

−
2

√
α̂

)
x2

−

[
4 −

9
64(2 − r)

]
ĉx4 +

( 2
√

α̂
+

2
r

)
α̂y2,

L V (x) − [Vx(x) + Ṽy(y)]B̄y+ coL Ṽ (y, x)

≤

[ (1 + α̂)2

162
+

|α̂ − 2|
√

α̂
− 2

]
x2 +

(
|α̂ − 2|

√
α̂

+ 4
)
α̂y2

with postive numbers α̂ and r ∈ (0, 2) chosen as{
α̂ = 16

√
6 − 1 = 38.1918,

r = 2 − 36
√

α̂/
(
513

√
α̂ + 512

)
= 1.9396

immediately imply that the conditions (40) hold with α = 2+

2/r−1/162 = 3.0272, α2 = 2/
√

α̂+2/r = 1.3548 and ᾱ2 =

4+(α̂−2)/
√

α̂ = 9.8563. Thus the CPS (19) of sampled-data
system (59) is mean-square exponentially stable if

0 < 1t ≤ 1t <
ln(α/α2)

ᾱ2
= 0.0816. (64)

Note that both the allowable sampling intervals (63)
and (64) are much better than the result τ < 0.0262 given
in [12, Example 6.1] for stability of the Markov jump system
[12, Eq. (75)] that switches between (58) and (59).
Example 2: Here we consider two specific cases of the

CPS (42) of linear sampled-data stochastic system (43) with
n = 2 and m = 1. In one case,

A =

[
1 −1
1 −5

]
, G =

[
1 1
1 −1

]
, B̄ =

[
−10 0
0 0

]
, (65)
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Figure 1. The trajectory samples of sampled-data control systems (65)
(the higher) and (66) (the lower), 1t = 0.0282 and x(0) = [−2 1]T .

and in the other,

A =

[
−5 −1
1 1

]
,G =

[
−1 −1
−1 1

]
, B̄ =

[
0 0
0 −10

]
. (66)

Sampled-data stochastic systems (65) and (66) with
sampling period τ > 0 have been studied in quite a few
works [12], [45], [46]. It is observed from [12, Example 6.1]
that, by [12, Corollary 5.4] with N = 1, Q = I2, K1 = 5.236,
K2 =

√
2, K3 = 10, c1 = c2 = λ1 = 1, λ2 = 4 and λ3 = 8,

both the sampled-data systems (65) and (66) are mean-square
exponentially stable if the sampling period τ < τ ∗

= 0.0074,
which gives a better bound than those in [45] and [46].
Let us apply Theorem 6 to the CPS (42) of sampled-data

systems (65) and (66), respectively. For system (65), solving
the GEP (46) (with some toolboxes such as [16]) produces
the minimum Lyapunov exponent −1/λ = −8.8769. One
may use the toolbox [17] to search for a pair of prescribed
parameters α ∈ (0, 8.8769) and κ̃ ∈ (0, 1) of the GEP (51).
Here we choose α = 8.3236, κ̃ = 0.4706 and solve the
GEP (51), which produces ᾱ2 = 29.4326 and hence

0 < 1t ≤ 1t <
− ln κ̃

ᾱ2
=

− ln(0.4706)
29.4326

= 0.0256 (67)

for mean-square exponential stability of the CPS (42)
of sampled-data system (65). Alternatively, solving the
GEP (52) with α = 8.7257, ᾱ2 = 34.1381 produces α2 =

3.3178 and the maximum allowable sampling interval

1t <
ln(α/α2)

ᾱ2
=

ln(8.7257/3.3178)
34.1381

= 0.0283. (68)

Similarly, for system (66), the minimum Lyapunov exponent
is −1/λ = −8.8769 as well. Solving the GEP (51) with
prescribed parameters α = 8.2984 and κ̃ = 0.4632 yields
ᾱ2 = 29.8869 and hence

0 < 1t ≤ 1t <
− ln κ̃

ᾱ2
=

− ln(0.4632)
29.8869

= 0.0258 (69)

Figure 2. The trajectory samples of closed-loop systems (71) with (73)
(the higher) and (72) with (75) (the lower), 1t = 0.0726 and
x(0) = [−2 1]T .

for mean-square exponential stability of the CPS (42) of
sampled-data system (66). Themaximum allowable sampling
interval can also be obtained by solving the GEP (52) wtih
α = 8.7851, ᾱ2 = 36.4380, which yields α2 = 3.1016 and
the maximum allowable sampling interval

1t <
ln(α/α2)

ᾱ2
=

ln(8.7851/3.1016)
36.4380

= 0.0286. (70)

Our results (67)-(70) have significantly improved the
existing ones [12], [45], [46], which require the sampling
period τ < τ ∗

= 0.0074. Figure 1 shows the trajectory
samples of the sampled systems (65) and (66) in the higher
and the lower, respectively, where the sampling period 1t =

0.0282 < 0.0283 < 0.0286 satifies the conditions (68)
and (70), and the initial value x(0) = [−2 1]T is the same
as the one used in the [12], [45], [46].

Furthermore, as application of Algorithm 1 for our
proposed control design method, we study state-feedback
stabilization problems of the CPS (42) of sampled-data
stochastic system (53) with

A =

[
1 −1
1 −5

]
, G =

[
1 1
1 −1

]
, B̂ =

[
1
0

]
, (71)

and A =

[
−5 −1
1 1

]
, G =

[
−1 −1
−1 1

]
, B̂ =

[
0
1

]
, (72)

respectively, see [12], [45], and [46] and also [25].
Applying Algorithm 1 to linear sampled-data stochastic

system (71) and solving the GEP (57) with prescirbed
parameters α = 4.4154, κ̃ = 0.4175, c̃ = 4.9913, we obtain
a state-feedback gain matrix

K̂ =
[
−4.0851 0.3231

]
(73)

and its allowable sampling intervals

0 < 1t ≤ 1t < − ln κ̃/ᾱ2 = 0.0699

as well as ᾱ2 = 12.5038 for mean-square exponential
stability of the CPS (42) of sampled-data system (71) with
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the feedback gain (73). As is noted above, the maximum
allowable sampling interval may be enhanced by solving
the GEP (51) with prescribed numbers α = 4.5854, κ̃ =

0.4113 for the CPS (42) of the closed-loop system (71)
with (73), which gives ᾱ2 = 12.2193 and hence

0 < 1t ≤ 1t <
− ln κ̃

ᾱ2
=

− ln(0.4113)
12.2193

= 0.0727. (74)

Similarly, for stabilization of the CPS (42) of sampled-data
system (43) with (72), solving the GEP (57) with prescirbed
parameters α = 4.7233, κ̃ = 0.4121, c̃ = 5.1404, which are
obtained by using the toolbox [17] with a starting point from
Algorithm 1, yields a feedback gain matrix

K̂ =
[
−0.6929 −4.3621

]
(75)

and its allowable sampling intervals

0 < 1t ≤ 1t < − ln κ̃/ᾱ2 = 0.0680

as well as ᾱ2 = 13.0343. The improved allowable sampling
intervals can be obtained by solving the GEP (51) with
prescribed numbers α = 4.8118, κ̃ = 0.4425, which produes
ᾱ2 = 10.7483 and thus

0 < 1t ≤ 1t <
− ln κ̃

ᾱ2
=

− ln(0.4425)
10.7483

= 0.0759 (76)

for stability of the CPS (42) of the closed-loop system.
It is clear that our proposed results provide the

state-feedback controllers (73) and (75) that not only have
smaller gains |K̂ | < 10 but also offer much larger maximum
allowable sampling intervals (74) and (76) than those in
the literature [12], [45], [46]. This demonstrates that our
CPS theory has substantially improved the control design
method for sampled-data stochastic systems. The trajectory
samples of the closed-loop systems (71) with (73) and (72)
with (75) are shown as the higher and lower ones in Figure 2,
respectively, where the sampling period 1t = 0.0726 <

0.0727 < 0.0759 is required by the conditions (74) and (76),
and the initial value x(0) = [−2 1]T is the same as above.
Example 3: The pendulum equation

θ̈ = −a sin θ−bθ̇ + cT̂

is a classical model in the science, technology, engineering
and mathematics literature (see [30], [33], [61], [69], [71] and
the references therein), where a = g/l > 0, b = k/m ≥ 0,
c = 1/(ml2) > 0, θ is the angle subtended by the rod and the
vertical axis, and T̂ is the torque applied to the pendulum. For
the pendulum to maintain equilibrium at the angle θ = δ, the
torque must have a steady component T̂ss that satisfies 0 =

−a sin δ + cT̂ss. Choose the state variables as x = [x1 x2]T =

[θ − δ θ̇ ]T and the control input as u = T̂ − T̂ss. The state
equation [33, Example 12.2]

ẋ(t) =

[
x2(t)

−a[sin(x1(t) + δ) − sin δ] − bx2(t)

]
+ Ĉu(t) (77)

has equilibrium at the origin [0 0]T , where Ĉ = [0 c]T .
Several unrelated physical systems such as [33, Exercises
1.8-1.11] are modelled by equations similar to the pendulum
equation. Consequently, system (77) is of great practical
importance [30], [33], [61], [69], [71]. The nonlinear control
system (77) is also a typical example of feedback linearization
[33, Chapter 13]. That is, the state feedback control law
u(t) = u(x(t)) is given by

u(t) =
a
c
[sin(x1(t) + δ) − sin δ] +

1
c
K̂x(t) (78)

such that the closed-loop system

ẋ(t) = (A+ B̂K̂ )x(t) (79)

is linear as well as (exponentially) stable, where

A =

[
0 1
0 −b

]
, B̂ =

[
0
1

]
, K̂ =

[
k̂1 k̂2

]
.

Interestingly, the state feedback control law (78) has trans-
formed the control problem of the nonlinear system into the
classical one of linear systems [8], [16], [32], [39], [40],
which requires to find a feedback gain matrix K̂ such that
the closed-loop system (79) is (exponentially) stable. For
instance, the feedback gain K̂ can conveniently be designed
by the classical pole placement approach for stabilization of
linear control system (79).

Introducing the sampling and ZOH mechanism into the
controlled system (77)-(78) leads to a specific case of
sampled-data system (15), in which n = 2, m = 1,

f̄ (x(t)) =

[
x2(t)

−a[sin(x1(t) + δ) − sin δ] − bx2(t)

]
,

ḡ(x(t)) = [0 0]T , ū(t∗) = Ĉu(t∗) = B̂cu(t∗) (80)

with nonlinear feedback control u(t∗) being given by (78).
The closed-loop system (80) resumes a nonlinear control
problem due to the sampled-data mechanism.

It is worth noting that one may obtain some CPS of
sampled-data system (80) in the canonical form (1) with
ñ = n by letting y(t) = ū(t) ∈ Rn (particularly when the
elements of ū(t) are linearly independent) and develop some
result on stabilization of the CPS from Theorem 1 and the
techniques with respect to the jointly differential operator
coL Ṽ (y, x). But, in this case, we have ū(t∗) = B̂cu(t∗) for
all t ≥ 0. So we can alternatively set y(t) = cu(t)−cu(t∗)
for all t ≥ 0, which implies that ẏ(t) = cu̇(t) on (tk−1, tk ) and
y(tk ) = 0 for all k ∈ N. From (78) and (80), we deduce a CPS
of sampled-data control system (80) in the standard form (1),
where n = 2, m = 1, ñ = 1,

f (x, y, t) = (A+ B̂K̂ )x − B̂y, g(x, y, t) = [0 0]T ,

f̃ (x, y, t) = [a cos(x1 + δ) + k̂1 + k̂2(k̂2 − b)]x2

+ k̂1k̂2x1 − k̂2y, g̃(x, y, t) = 0,

h̃f (x(t
−

k ), x(tk−1), y(t
−

k ), y(tk−1), k)

= cu(x(tk−1))−cu(x(t
−

k ))

= a[sin(x1(tk−1) + δ) − sin(x1(t
−

k ) + δ)]
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+ K̂
[
x(tk−1)−x(t

−

k )
]
,

h̃g(x(t
−

k ), x(tk−1), y(t
−

k ), y(tk−1), k) = 0 (81)

for all t ∈ R+ and k ∈ N.
As application of Theorem 1, we study the stabilization

problem of CPS (81) with feedback gain K̂ =
[
k̂1 k̂2

]
being

typically designed by the pole placement in linear control
system (79) and find the allowable sampling intervals of state-
feedback controller (78). Let V (x, t) = V (x) = xTPx and
V̄ (z, t) = V̄ (z) = V (x) + Ṽ (y) with Ṽ (y) = y2 for all
x ∈ R2 and z = [xT y]T ∈ R3, where P ∈ R2×2 is a positive
definite matrix. This immediately gives the conditions (8)
with p = 2, c1 = λm(P), c2(|x|2) = λM (P)|x|2, c̄1 =

1 ∧ λm(P), c̄2(|z|2) = [1 ∨ λM (P)]|z|2 and c̄ = 1. As in
the proofs of Theorem 3 and Theorem 6, it can be verified
that conditions (9a), (10) and (11) of Theorem 1 hold with
α1 > α2 = κ̃α1 > 0, β0 = 1, β1 = β̃0 = β̃1 = 0 if

(A+ B̂K̂ )TP+ P(A+ B̂K̂ ) ≤ −α1 P, (82a)[
0 −PB̂

−B̂TP 0

]
≤ κ̃α1

[
P 0
0 1

]
(82b)

for some positive numbers κ̃ ∈ (0, 1) and α1 ∈ (0, 1/λ) with
λ > 0 being the solution to the GEP

minλ s.t. P̄ > 0,

P̄ < −λ[(A+ B̂K̂ )T P̄+ P̄(A+ B̂K̂ )]. (83)

According to (6) and (7), we calculate

L V̄ (z) = L V (z) + L Ṽ (z)

= zT
[
(A+ B̂K̂ )TP+ P(A+ B̂K̂ ) −PB̂

−B̂TP 0

]
z

+ 2y
[
k̂1k̂2x1 + (k̂1 + k̂22 − bk̂2)x2

+ ax2 cos(x1 + δ) − k̂2y
]

≤ zT
[
(A+ B̂K̂ )TP+ P(A+ B̂K̂ ) −PB̂

−B̂TP 0

]
z

+ 2y
[
k̂1k̂2x1 + (k̂1 + k̂22 − bk̂2)x2 − k̂2y

]
+ a(x22 + y2)

and have condition (9b) with ᾱ1 = 0 and ᾱ2 > 0 being
sufficiently large for[

P11 −PB̂+ K̂12

−B̂TP+ K̂T
12 a− 2k̂2

]
≤ ᾱ2

[
P 0
0 1

]
, (84)

where P11 = (A + B̂K̂ )TP + P(A + B̂K̂ ) + diag{0, a} and
K̂12 =

[
k̂1k̂2 k̂1 + k̂2(k̂2 − b)

]T
. The condition (12) can now

be specified as

0 < 1t ≤ 1t < − ln κ̃/ᾱ2. (85)

It follows from Theorem 1 that the CPS (81) and hence the
sampled-data control system (80) are exponentially stable
provided that inequalities (82)-(85) are satisfied.
Note that, given α1 ∈ (0, 1/λ), there is a matrix P̄ > 0 that

satisfies the LMI (82a) and so does the matrix P = āP̄ > 0

Figure 3. The state trajectories (the higher) and control input (the lower)
of sampled-data control system (80) of pendulum with δ = 0,
a = 9.8,b = 0, c = 1, 1t = 0.0188 and x(0) = [−3 − 2]T .

for any ā > 0. It is also observed that, given κ̃ ∈ (0, 1), the
matrix P = āP̄ > 0 with sufficiently small ā > 0 satisfies
the LMI (82b) as well. This means that, given any pair
of parameters α1 ∈ (0, 1/λ) and κ̃ ∈ (0, 1), there is a
solution P > 0 to LMI (82). Moreover, ᾱ2 > 0 can be
chosen sufficiently large for condition (84). Now that the
vectors K̂ , K̂12 and [λ, α1, κ̃] are known, onemay improve the
maximum allowable sampling interval (85) as in Section IV
by reformulating the inequalities (82) and (84) into a GEP

min ᾱ2 s.t. P > 0, LMI (82), (84) (86)

where matrix P is a decision variable and positive numbers
κ̃ ∈ (0, 1), α1 ∈ (0, 1/λ) are the prescribed parameters for
which one can use some toolboxes such as [16] and [17] to
search with some starting point.

To put it into practice, let us consider system (77) with
parameters δ = 0, a = 9.8, c = 1 and b ≥ 0, of which
a special case b = 0 is studied as an example of energy
control (with sampling period 1t = 0.0002 and 1t =

0.0003) in [61]. Here the state feedback control law (78) is
employed and the feedback gain K̂ is typically designed by
the pole placement, say, [−0.6+1i , −0.6−1i] in closed-loop
system (79). For the case b = 0,

K̂ =
[
k̂1 k̂2

]
=

[
−1.36 −1.20

]
,

K̂12 =
[
k̂1k̂2 k̂1 + k̂2(k̂2 − b)

]T
=

[
1.6320 0.0800

]T
and the solution to GEP (83) gives 1/λ = 1.20. Solving the
GEP (86) with prescribed parameters α1 = 1.1480 and κ̃ =

0.5440 yields

ᾱ2 = 32.1870 and P =

[
0.5311 0.2253
0.2253 0.3899

]
> 0.

If the sampling sequence satisfies

0 < 1t ≤ 1t <
− ln κ̃

ᾱ2
=

− ln(0.5440)
32.1870

= 0.0189,
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TABLE 1. Feedback gain K̂ and allowable 1t for CPS (81) with various b.

the CPS (81) and hence the sampled-data control system (80)
of pendulum (77) with δ = 0, a = 9.8, c = 1, b = 0 are
exponentially stable. The state trajectory and control input of
sampled-data system (80) are shown in Figure 3, from which
one can infer the state trajectories z(t) = [xT (t) y(t)]T of
CPS (81), where the sampling period 1t = 1t = 0.0188,
see Table 1.

We list in Table 1 the feedback gain K̂ and the maximum
allowable sampling interval 1t for stabilization of CPS (81)
of pendulum with δ = 0, a = 9.8, c = 1 and various b ≥ 0.

VI. CONCLUSION
In light of the CPS theory of numerical methods for SDE,
we have presented a CPS model of sampled-data control
systems that regards the intersection of the physical and
cyber, the key feature of CPS. As a theoretic foundation,
we have developed the Lyapunov stability theory for the
general class (1) of SiDE that is formulated to serve
as a canonical form for synthesized CPS that may work
in feedback loop such as those of sampled-data systems.
Applying the established Lyapunov stability theory, we have
proposed the stability criteria for the CPS of sampled-data
control systems, have revealed the equivalence and intrinsic
relationship between the two main approaches and have
presented the control design method for feedback stabiliza-
tion of the CPS of linear sampled-data systems. In practice,
feedback control is usually based on an observer that is
designed to reconstruct the state using measurements of
the input and the output of the system [19], [53]. Our
canonical form (1) for synthetic CPS is able to include the
dynamics of observers as well as impluse effects such as
those in a robot model [19], [30]. This is important for
nonlinear control systems in which the so-called separation
principle may not hold [33], [55]. As illustated in the classical
example of pendulum, our theory applies to sampled-
data systems with nonlinear feedback control satisfying the
global Lipschitz condition/linear growth condition. For those
with highly nonlinear control, one may improve/extend our
results so that they (e.g., LaSalle-type theorems) apply to
practical nonlinear control systems such as tunnel-diode
circuit, inverted pendulum and the robotic manipulator with
flexible joints [33], [43], [73]. Our CPS theory can be further
developed by various techniques including those of Lyapunov
functions/functionals [15], [33], [39], [40], [44], [48].
We have constructed a foundational theory for CPS of

sampled-data control. This provokes many interesting and
challenging problems. For example, one can naturally gen-
eralize the time-triggered mechanism to an event-triggered

mechanism [31] and the SiDE to stochastic impulsive
differential-algebraic equations (SiDAE) [9], [26] so that
the canonical form for synthesized CPS can encompass
event-triggered sampling/control [20], [31], [61] and equality
constraints [53] on both the physical and the cyber sides. For
instance, a generalization of SiDE (1) may be of the form

Exdx(t) = f (x(t), y(t), t)dt + g(x(t), y(t), t)dB(t)

t ∈ [0, ∞) \ {tk}k∈N (87a)

Eydy(t) = f̃ (x(t), y(t), t)dt + g̃(x(t), y(t), t)dB(t)

t ∈ [0, ∞) \ {tk}k∈N (87b)

1(xt−k , yt−k , k) := x(tk ) − x(t−k )

=

{
h(xt−k , yt−k , ξ̄ (k), k), κx(xt−k , yt−k , k) > 0

0, κx(xt−k , yt−k , k) ≤ 0
(87c)

1̃(xt−k , yt−k , k) := y(tk ) − y(t−k )

=

{
h̃(xt−k , yt−k , ξ̄ (k), k), κy(xt−k , yt−k , k) > 0

0, κy(xt−k , yt−k , k) ≤ 0
(87d)

for all k ∈ N, where Ex ∈ Rn×n and Ey ∈ Rñ×ñ are constant
matrices with 0 < rank(Ex) ≤ n and 0 < rank(Ey) ≤ ñ,
respectively; h : C([tk−1, tk ); Rn)×C([tk−1, tk ); Rñ)×Rn

×

N → Rn, h̃ : C([tk−1, tk ); Rn) × C([tk−1, tk ); Rñ) × Rn
×

N → Rñ, κx : C([tk−1, tk ); Rn) × C([tk−1, tk ); Rñ) × N →

R and κy : C([tk−1, tk ); Rn) × C([tk−1, tk ); Rñ) × N →

R are measurable functions. The functions κx , κy could
involve some optimization problems such as those for
model predictive control. Clearly, the generalized canonical
form (87) has a much wider range of applications, which,
for example, can be a dynamic model at the core of
smart manufacturing/digital twins when the functions κx , κy
perform simulation/prediction and real-time optimization.
The proposed CPS theory may be adapted for various control
strategies such as saturated control [13], adaptive control [5]
and model predictive control [18]. Particularly, over past a
few decades, many investigations have been conducted into
fault-tolerant control systems, fault detection and diagnosis,
and reconfigurable control [23], [56], [59], [64], [67], [70].
Safety-critical systems such as power networks, aircrafts,
nuclear power plants and chemical plants must be resilient
to faults and cyberattacks [1], [11], [35], [67]. The physical
aspects of CPSwill create new and difficult privacy problems.
Thus the design of fault-tolerant CPS in canonical form (87)
is of major importance. As an example of this research topic,
a fault-tolerant control strategy could be developed for some
CPS in canonical form (1) like the study [67] conducted on
a plant described by linear SDE. Moreover, CPS are often
implemented and operated over large-scale complex net-
worked infrastructures such as building automation systems,
power plants and transportation systems [11], [35], [38], [60],
[67]. It is intereting/challenging to develop the CPS theory for
complex systems including stochastic hybrid systems [66],
infinite-dimensional systems [24], [37], large-scale sys-
tems [39], [40] and multi-scale dynamic systems [29].
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We also recognize that the joint dynamics of a classical
stochastic approximation algorithm [57]

Xk = Xk−1 + γk [f (Xk−1) + ξ̄ (k)] (88)

and the limiting ODE (ordinary differential equation)
[41], [42]

ẋ(t) = f (x(t)) (89)

can be represented by the associated CPS with X (t) =∑
∞

k=0 Xk1[tk ,tk+1)(t) and y(t) = x(t) − X (t) as (see also
[30, Section IV] for more details)

ẋ(t) = f (x(t)), t ∈ [0, ∞) (90a)

ẏ(t) = f (x(t)), t ∈ [tk−1, tk ) (90b)

1̃(x(t−k ), y(t
−

k ), k) := y(tk ) − y(t−k )

= (tk − tk−1)
[
f (x(t−k ) − y(t−k )) + ξ̄ (k)

]
,

k ∈ N (90c)

in the canonical form [30, SiDE (1)] which is a particular
class of SiDE (1), where {tk}k∈N with t1 > t0 = 0 is a strictly
increasing sequence such that tk−tk−1 = γk > 0 for all k ∈ N
and tk =

∑k
j=1 γj → ∞ as k → ∞. It is among future work

to develop the CPS theory of computational methods invented
in [30] for algorithms such as stochastic approximation.
As an example, to develop LaSalle-type theorems for
[30, SiDE (1)] with tk =

∑k
j=1 γj may offer a theoretic foun-

dation for the CPS approach (90) to stochastic approximation
algorithm (88) with limiting ODE (89). It is well known
that the use of stochastic approximation is very widespread
across varied applications such as systems identification,
adaptive control, neural networks, adaptive signal processing
and pattern recognition [4], [6], [7], [27], [36], [41], [42].
For example, stochastic approximation is a family of adaptive
algorithms underlying reinforcement learning/Q learning [6],
[7], [36]. The CPS theory of stochastic approximation
may be helpful to describe/understand the dynamics of
neural networks. It would also privide a solid base for
the development of CPS theory for sampled-data (fault-
tolerant) control combined with learning algorithms in the
future. It is of great theoretic and practical importance to
develop CPS theory for computer control systems by data-
driven approaches [59], [73] and also for those by combined
model-based and data-driven approaches [5]. Just name a few
among future work to develop the systems science of design
for CPS.

APPENDIX A
THE PROOF OF PROPOSITION 1
Proof: For every integer n̂ ≥ 1, define the stopping time

τn̂ = inf{t > 0 : |z(t)| ≥ n̂}, where we set inf∅ = ∞

as usual. By virtue of the local Lipschitz condition (3), it is
easy to see that τn̂ > 0 a.s. for a sufficiently large integer
n̂ > |z(0)|. It is also observed that there is a unique (right-
continuous) adapted process such that

z(t ∧ τn̂)

= z(0) +

∫ t∧τn̂

0
F(z(s), s)ds

+

∫ t∧τn̂

0
G(z(s), s)dB(s)

+

∫ t∧τn̂

0

∑
k≥1

δ(s− tk )
[
HF (z(t

−

k ), z(tk−1), k)

+ HG(z(t
−

k ), z(tk−1), k)ξ̄ (k)
]
ds

= z(0) +

∫ t∧τn̂

0
F(z(s), s)ds

+

∫ t∧τn̂

0
G(z(s), s)dB(s)

+

∫ t

0

∑
k≥1

δ(s− tk )1{tk≤τn̂}

[
HF (z(t

−

k ), z(tk−1), k)

+ HG(z(t
−

k ), z(tk−1), k)ξ̄ (k)
]
ds a.s. (91)

for all t ≥ 0, where δ(·) is the Dirac delta function and 1T
is the indicator of set T . Therefore, SiDE (2) has a unique
local (right-continuous) solution z(t) on [0, τe), where τe is
the explosion time defined by τe = limn̂→∞ τn̂ = inf{t >

0 : |z(t)| /∈ [0, ∞)} and thus τe > 0 a.s. So we only need to
prove that the explosion time obeys τe = ∞ a.s.

Let us consider a pair of auxiliary systems{
U̇1(t) = a+ 2cU1(t) t ̸= tk
U1(tk ) − U1(t

−

k ) = c1t
(
U1(t

−

k ) + U1(tk−1)
)
/2 k ∈ N

and U̇2(t) = a+ 4cU2(t) t ≥ 0 (92)

with U2(0) ≥ U1(0) ≥ 0, where a ≥ 0 and c > 0 are
both constants. The well-known comparison principle gives
U2(t) ≥ U1(t) on [t0, t1). Since a ≥ 0 and c > 0, U1(t

−

1 ) ≥

U1(t0) and thus

U1(t1) = U1(t
−

1 ) + c1t
(
U1(t

−

1 ) + U1(t0)
)
/2

≤ (1 + c1t)U1(t
−

1 )

= (1 + c1t)
[
U1(0)e2ct1 +

a
2c

(e2ct1 − 1)
]

≤ U1(0)e3ct1 +
a
2c
ect1 (e2ct1 − 1)

≤ U2(0)e4ct1 +
a
2c
e2ct1 + 1

2
(e2ct1 − 1)

= U2(0)e4ct1 +
a
4c

(e4ct1 − 1) = U2(t1).

By induction, it follows that U1(t) ≤ U2(t) on [tk−1, tk ] for
all k ≥ 1 and thus U1(t) ≤ U2(t) for all t ≥ 0. The pair (92)
of auxiliary systems implies that

U1(t) = U1(0) + at +

∫ t

0
2 cU1(s)ds

+

∫ t

0

∑
k≥1

δ(s− tk )c1t
[(
U1(t

−

k ) + U1(tk−1)
)
/2

]
ds

≤ U2(t) = U2(0) + at +

∫ t

0
4 cU2(s)ds (93)

21902 VOLUME 12, 2024



L. Huang: Feedback Stabilization of Cyber-Physical Systems for Sampled-Data Control

for all t ≥ 0. Using the Itô formula and also (91), one has

EV̄ (z(t ∧ τn̂), t ∧ τn̂)

= V̄ (z(0), 0))ds

+ E
∫ t∧τn̂

0
L V̄ (z(s), s+

∫ t

0

∑
k≥1

δ(s− tk )

· E
[
1{tk≤τn̂}

(
V̄ (z(t−k ) + 1̄(z(t−k ), z(tk−1), k), tk )

− V̄ (z(t−k ), tk )
)]
ds (94)

for any n̂ ≥ 1 and all t ≥ 0. At each t = tk , by the tower
property and condition (5c),

E
[
1{tk≤τn̂}

(
V̄ (z(t−k ) + 1̄(z(t−k ), k), tk ) − V̄ (z(t−k ), tk )

)]
= E

[
E

[
1{tk≤τn̂}

(
V̄ (z(t−k ) + 1̄(z(t−k ), z(tk−1), k), tk )

− V̄ (z(t−k ), tk )
)∣∣Ft−k ]]

= E
[
1{tk≤τn̂}E

[(
V̄ (z(t−k ) + 1̄(z(t−k ), z(tk−1), tk ))

− V̄ (z(t−k ), tk )
)∣∣Ft−k ]]

= E
[
1{tk≤τn̂}

(
E

[
V̄ (z(t−k )

+ 1̄(z(t−k ), z(tk−1), tk ))
∣∣z(t−k )] − V̄ (z(t−k ), tk )

)]
≤ E

[
1{tk≤τn̂}K̄1t

·
[
2 +

(
V̄ (z(t−k ), tk ) + V̄ (z(tk−1, tk−1)

)
/2

]]
(95)

for any n̂ ≥ 1. Substituting (5b) and (95) into (94) produces

EV̄ (z(t ∧ τn̂), t ∧ τn̂)

≤ V̄ (z(0), 0) + E
∫ t∧τn̂

0
2K̄

[
1 + V̄ (z(s), s)

]
ds

+

∫ t

0

∑
k≥1

δ(s− tk )E
[
1{tk≤τn̂}K̄1t

·
[
2 +

(
V̄ (z(t−k ), tk ) + V̄ (z(tk−1, tk−1)

)
/2

]]
ds

≤ V̄ (z(0), 0) + E
∫ t∧τn̂

0
2K̄

[
2 + V̄ (z(s), s)

]
ds

+

∫ t

0

∑
k≥1

δ(s− tk )E
[
1{tk≤τn̂}K̄1t

·
(
V̄ (z(t−k ), tk ) + V̄ (z(tk−1, tk−1)

)
/2

]
ds

≤ V̄ (z(0), 0) + 4K̄ t + E
∫ t∧τn̂

0
2K̄ V̄ (z(s), s)ds

+

∫ t

0

∑
k≥1

δ(s− tk )E
[
1{tk≤τn̂}K̄1t

·
(
V̄ (z(t−k ), tk ) + V̄ (z(tk−1, tk−1)

)
/2

]
ds

= V̄ (z(0), 0) + 4K̄ t + E
∫ t∧τn̂

0
2K̄ V̄ (z(s), s)ds

+ E
∫ t∧τn̂

0

∑
k≥1

δ(s− tk )K̄1t

·
[(
V̄ (z(t−k ), tk ) + V̄ (z(tk−1, tk−1)

)
/2

]
ds (96)

for any n̂ ≥ 1 and all t ≥ 0. By the comparison principle (93),
it follows from (96) that

EV̄ (z(t ∧ τn̂), t ∧ τn̂)

≤ V̄ (z(0), 0) + 4K̄ t + E
∫ t∧τn̂

0
4K̄ V̄ (z(s), s)ds

≤ V̄ (z(0), 0) + 4K̄ t

+ E
∫ t

0
4K̄ V̄ (z(s ∧ τn̂), s ∧ τn̂)ds

≤ V̄ (z(0), 0) + 4K̄ t

+ 4K̄
∫ t

0

[
sup

0≤r≤s
EV̄ (z(r ∧ τn̂), r ∧ τn̂)

]
ds (97)

for all t ≥ 0. Since the right-hand side of (97) is increasing
in t , this implies that

sup
0≤s≤t

EV̄ (z(s ∧ τn̂), s ∧ τn̂) ≤ V̄ (z(0), 0) + 4K̄ t

+ 4K̄
∫ t

0

[
sup

0≤r≤s
EV̄ (z(r ∧ τn̂), r ∧ τn̂)

]
ds

for all t ≥ 0. The Gronwall inequality produces

sup
0≤s≤t

EV̄ (z(s ∧ τn̂), s ∧ τn̂)

≤

[
V̄ (z(0), 0) + 4K̄ t

]
e4K̄ t =: CV̄ (t) (98)

for all t ≥ 0. Note that CV̄ (t) is independent of n̂ and
V̄ (z(τn̂), τn̂) ≥ c̄1n̂p for all n̂ ≥ 1. But (5a) and (98) imply
that, given any t > 0,

c̄1n̂pP{τn̂ < t} ≤ c̄1E|z(t ∧ τn̂)|
p

≤ EV̄ (z(t ∧ τn̂), t ∧ τn̂) ≤ CV̄ (t). (99)

Letting n̂ → ∞ and then t → ∞ in (99) yields P{τe <

∞} = 0. That is, τe = ∞ a.s., which completes the proof. 2

APPENDIX B
THE PROOF OF THEOREM 1
Proof: Let K̄ = 1+(ᾱ2/2)∨

[
2
(
(β0+β1)c̄+β̄0+β̄1

)
/1t

]
.

It follows from (8b), (8c), (9b) and (10) that the conditions (5)
hold and thus, by Proposition 1, the SiDE (2) has a unique
(right-continuous) solution on [0,∞).

Note that if condition (9a) holds with α2 = 0 (cf. the
inequality (7a) in [30, Theorem 3.1]), so does it for any
α2 > 0. Without loss of generality, we consider only the
case α2 > 0 in the proof, in which the cyber and the physical
subsystems interact with each other (cf. [30, SiDE (1)]). Some
ideas and techniques in this proof are derived from our results
[24, Theorem 3.1 and Remark 3.1] on pth moment input-
to-state stability (ISS) of stochastic systems as well as [30]
and [31]. The proof is so technical that we devide it into
four steps, in which we shall: 1) show the ISS of x(t) with
z(t) as input; 2) construct a candidate Lyapunov function
for the exponential stability of SiDE (2) by combining the
ones V (t) and V̄ (t); 3) define a function that breaks the time
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interval [0,∞) into a disjoint union of subsets on which the
system has some different properties; 4) prove the exponential
stability of SiDE (2). Recall that x(t) = Cz(t) and y(t) =

Dz(t) for all t ≥ 0. For simplicity of the notation, we write
U (t) = EV (x(t), t) and W (t) = EV̄ (z(t), t) for all t ≥ 0.
SoU (t) is continous on [0,∞) whileW (t) is right-continuous
on [0, ∞) and could only jump at {tk}k∈N.
Step 1: By the Itô formula and condition (9a),

U (t) = U (t̄) +

∫ t

t̄
EL V (x(s),Dz(s), s)ds

≤ U (t̄) +

∫ t

t̄

[
− α1U (s) + α2W (s)

]
ds ∀ t ≥ t̄ ≥ 0

and hence the upper right Dini derivative

D+U (t) = EL V (x(t), y(t), t)

≤ −α1U (t) + α2W (t) (100)

for all t ≥ 0, which implies

D+(t) ≤ −(1 − θ )α1U (t)

if U (t) ≥
α2

θα1
sup
0≤s≤t

W (s) (101)

where θ can be any positive on (0, 1). By [14, Lemma 1] and
[33, Theorem 4.18, p172], inequalities (8a) and (101) imply

U (t) ≤

(
U (0)e−(1−θ )α1t

)
∨

( α2

θα1
sup
0≤s≤t

W (s)
)

(102)

for all t ≥ 0. So U (t) is exponentially stable if α2 = 0;
otherwise (i.e., α2 > 0),U (t) is ISSwithW (t) as input, which
means that x(t) is pth moment ISS with z(t) as input [24].
Specifically, there is a tU ≥ 0 (dependent on U (0) and
(θα1c̄)−1α2 sup0≤s≤t W (s), see also [14], [33]) such that

U (t) ≤ U (0)e−(1−θ)α1t , ∀ 0 ≤ t ≤ tU

U (t) ≤ (θα1)−1α2 sup
0≤s≤tU

W (s), ∀ t ≥ tU .

Moreover, U (t) is (expoentially) stable if W (t) (exponen-
tially) converges to zero as t → ∞. If z(t) is pth
moment exponentially stable, so is x(t) [24, Theorem 3.1 and
Remark 3.1], which is also implied by |x(t)| = |Cz(t)| ≤

|z(t)| for all t ≥ 0.
Step 2: By conditions (11) and (12), there exists a number

q ∈
(
α−1
1 α2(β0 + β1) + β̄1 + β̄2, 1

)
for(α2ᾱ1

α1q
+ ᾱ2

)
1t < − ln q

< − ln
[α2

α1
(β0 + β1) + β̄0 + β̄1

]
.

Therefore, one can find a pair of positive numbers θ ∈ (0, 1)
sufficiently close to 1 for( α2ᾱ1

θα1 q
+ ᾱ2

)
1t < − ln q

< − ln
[ α2

θα1
(β0 + β1) + β̄0 + β̄1

]
(103)

and then µ ∈ (0, (1 − θ )α11t/1t) sufficiently small for( α2ᾱ1

θα1 q
+ ᾱ2 + µ

)
1t < − ln q

< − ln
[ α2

θα1
β0 + β̄0 +

( α2

θα1
β1 + β̄1

)
eµ1t

]
. (104)

Given µ ∈ (0, (1 − θ )α11t/1t) by (104), let

Ũ (t) = eµtU (t) and W̃µ(t) = eµtW (t) (105)

for all t ≥ 0. By the Itô formula, (100) and (9b),

Ũ (t) = Ũ (t̄) +

∫ t

t̄
eµs

[
µU (s) + D+U (s)

]
ds

≤ Ũ (t̄) +

∫ t

t̄
eµs

[
(µ − α1)U (s) + α2W (s)

]
ds

= Ũ (t̄) +

∫ t

t̄

[
− (α1 − µ)Ũ (s) + α2W̃µ(s)

]
ds

(106)

for all t ≥ t̄ ≥ 0 and

W̃µ(t) = W̃µ(t̃) +

∫ t

t̃
eµs

[
µW (s) + EL V̄ (z(s), s)

]
ds

≤ W̃µ(t̃) +

∫ t

t̃
eµs

[
ᾱ1U (s) + (ᾱ2 + µ)W (s)

]
ds

= W̃µ(t̃) +

∫ t

t̃

[
ᾱ1Ũ (s) + (ᾱ2 + µ)W̃µ(s)

]
ds

(107)

for all tk−1 ≤ t̃ ≤ t < tk and k ∈ N. For convenience, let

W̃ (t) =
α2

θα1
W̃µ(t) =

α2

θα1
eµtW (t) (108)

for all t ≥ 0, where θ ∈ (0, 1) is given by (103). Define

W (t) = Ũ (t) ∨ W̃ (t) ∀ t ∈ [0, ∞). (109)

Due to the continuity of U (t) and the right-continuity of
W (t),W (t) is right-continuous on [0, ∞) and could only jump
at the impulse instants {tk}k∈N. Clearly, W (t) ≥ Ũ (t) and
W (t) ≥

α2
θα1

W̃µ(t) for all t ≥ 0. So both U (t) and W (t) will
be exponentially stable if there is a positive constant K such
that

W (t) < K (110)

for all t ≥ t0 = 0. For instance, let

K = 1 +
α1 + α2

θα1 q

[
U (t0) +W (t0)

]
> 0 (111)

and henceW (t0) ≤ U (t0) +
α2
θα1

W (t0) < qK .
Step 3: Define a function v̄ : R+ → R by

v̄(t) = W̃ (t) − Ũ (t) ∀ t ∈ [0, ∞) (112)

with initial value v̄(0) =
α2
θα1

W (0)−U (0), where the functions
Ũ (t) and W̃ (t) are defined by (105) and (108), respectively,
as θ ∈ (0, 1) given by (103). Since Ũ (t) is continuous on
[0, ∞) while W̃ (t) is right-continuous on [0, ∞) and could
only jump at {tk}k∈N, function v̄(t) is right-continuous on
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[0, ∞) and could only jump at the impulse instants {tk}k∈N.
Given any t ≥ 0, either v̄(t) > 0 or v̄(t) ≤ 0. So the
time interval [0,∞) is broken into a disjoint union of subsets
T+ ∪ T−, where

T+ = {t ≥ 0 : v̄(t) > 0},T− = {t ≥ 0 : v̄(t) ≤ 0}. (113)

From (109), (112) and (113),

W (t) =

{
W̃ (t), t ∈ T+

Ũ (t), t ∈ T−

(114)

and, by (106) and (113),

D+Ũ (t) ≤ −ε Ũ (t) ∀ t ∈ T− (115)

where ε ∈ (0, (1−θ )α1−µ) is some postive number, e.g., ε =

[(1− θ )α1 −µ]/2. That is, D+Ũ (t) is negative definite (with
respect to x) and is strictly decreasing on the set T− if T− ̸=

∅. In the case T+ = ∅, namely, T− = [0, ∞), D+Ũ (t) ≤

−c Ũ (t) for all t ≥ 0 and hence U (t) is exponentially stable.
In this case, due to W̃ (t) ≤ Ũ (t) on T− = [0, ∞), both U (t)
and W̃ (t) are exponentially stable.

Let us consider the other case T+ ̸= ∅. Given any t ∈ T+,
due to the right-continuity of v̄(t) on [0,∞), there exists
an interval [τ+

1 (t), τ+

2 (t)) with τ+

1 (t) < τ+

2 (t) such that
(τ+

1 (t), τ+

2 (t)) ⊂ T+, where

cτ+

1 (t) = inf{ τ̄ ≤ t : v̄(τ ) > 0, ∀τ ∈ [ τ̄ , t ]},

τ+

2 (t) = sup{ τ̄ > t : v̄(τ ) > 0, ∀τ ∈ [ t, τ̄ )}. (116)

Similarly, given any t̄ ∈ T−, there is an ordered pair τ−

1 (t̄) ≤

τ−

2 (t̄) such that [τ−

1 (t̄), τ−

2 (t̄)) ⊂ T−, where

cτ−

1 (t̄) = inf{ τ̃ ≤ t : v̄(τ ) ≤ 0, ∀τ ∈ [ τ̃ , t ]},

τ−

2 (t̄) = sup{ τ̄ ≥ t : v̄(τ ) ≤ 0, ∀τ ∈ [ t, τ̄ )}, (117)

and [τ−

1 (t̄), τ−

2 (t̄)) = ∅ if τ−

1 (t̄) = τ−

2 (t̄) = t̄ .
For convenience, we also write τ+

1 = τ+

1 (t), τ+

2 = τ+

2 (t),
τ−

1 = τ−

1 (t̄) and τ−

2 = τ−

2 (t̄) when there is no confusion.
Step 4: Let us show (110) for all t ≥ t0 = 0. Define

τK = inf{t ≥ t0 : W (t) ≥ K }, (118)

By the choice (111), τK > t0 = 0. If τK > tk for all k ∈ N,
then (110) holds for all t ≥ 0 because 1t = infk∈N{tk −

tk−1} > 0 and tk → ∞ as k → ∞. Otherwise, there is some
k ∈ N such that tk = inf{tj : tj ≥ τK , j ∈ N}. This means that
either τK = tk or tk−1 < τK < tk . If τK = tk , then (110)
holds for all t ∈ [0, tk ). Particularly,

W (tk−1) ∨W (t−k ) ≤ sup
tk−1≤t<tk

W (t) < K . (119)

Moreover, either τK = tk ∈ T+ or τK = tk ∈ T− when
τK = tk . If τK = tk ∈ T+, then W (tk ) = W̃ (tk ) ≥ K .
By condition (iii) with (104) and (119), at each tk ≤ τK ,

W̃ (tk ) =
α2

θα1
eµtkW (tk )

≤
α2

θα1
eµtk

·
[
β0U (t−k ) + β1U (tk−1) + β̄0W (t−k ) + β̄1W (tk−1)

]

≤
α2

θα1
β0Ũ (t−k ) + β̄0W̃ (t−k )

+
[ α2

θα1
β1Ũ (tk−1) + β̄1W̃ (tk−1)

]
eµ1t

≤

[ α2

θα1
β0 + β̄0 +

( α2

θα1
β1 + β̄1

)
eµ1t

]
K

< qK < K , (120)

which is a contradiction. So tk /∈ T+ if τK = tk .
If τK = tk ∈ T−, then there are two cases: t−k ∈ T− with

τK = tk ∈ T− and t−k ∈ T+ with τK = tk ∈ T−.
Recall thatU (t) and hence Ũ (t) are continuous on [t0, ∞).

If t−k ∈ T− with τK = tk ∈ T−, then there is a τ−

1 =

τ−

1 (tk ) < tk in (117) such that [τ−

1 , tk ] ⊂ T−. By (115),
Ũ (τ−

1 ) ≥ Ũ (tk )eε(tk−τ−

1 ). This with τK = tk produces

Ũ (τ−

1 ) ≥ Ũ (tk )eε(tk−τ−

1 )
≥ Keε(tk−τ−

1 ) > K .

But τK = tk > τ−

1 means that Ũ (τ−

1 ) < K , which leads to a
contradiction. Therefore, t−k /∈ T− if τK = tk ∈ T−.

If t−k ∈ T+ with τK = tk ∈ T−, then, due to the fact that
Ũ (t) is continuous [t0, ∞),

W (t−k ) = W̃ (t−k ) > Ũ (t−k ) = Ũ (tk ) ≥ K . (121)

That t−k ∈ T+ implies that there is a τ < tk so close to tk that
τ ∈ T+ and, hence, τ+

1 = τ+

1 (τ ) < τ+

2 = τ+

2 (τ ) = tk
in (116) with τ ∈ (τ+

1 , tk ) ⊂ T+. Recall that W̃ (t) and
W (t) are continuous on (tk−1, tk ). By (121), one can find
some τ ∈ (τ+

1 , tk ) ⊂ T+ sufficiently close to tk such that
W (τ ) = W̃ (τ ) > U (tk ) ≥ K . But this is in contradiction
with τK = tk > τ . Hence t−k /∈ T+ if τK = tk ∈ T−.
So τK = tk cannot be true. Let us proceed to checkwhether

tk−1 < τK < tk could be true or not. Recall that both Ũ (t) and
W̃ (t) are continuous on (tk−1, tk ), whichmeans that bothW (t)
and v̄(t) are continuous on (tk−1, tk ). If tk−1 < τK < tk , then
there are two cases: c1) v̄(τK ) < 0, viz.,W (τK ) = Ũ (τK ) ≥

K and c2) v̄(τK ) ≥ 0, viz.,W (τK ) = W̃ (τK ) ≥ K including
the special case v̄(τK ) = 0, namely, W (τK ) = W̃ (τK ) =

Ũ (τK ) ≥ K .
c1) Due to the continuity of v̄(t) on (tk−1, tk ) as well

as (117), that v̄(τK ) < 0 implies that τK ∈ T− with
τ−

1 (τK ) < τK < τ−

2 (τK ) and hence, by tk−1 < τK < tk ,
there is a τ ∈ (tk−1 ∨ τ−

1 (τK ), τK ) such that [τ, τK ] ⊂

T− and therefore (115) holds on [τ, τK ]. But this yields

Ũ (τ ) ≥ Ũ (τK )eε(τK−τ ) > Ũ (τK ) ≥ K ,

while τK > τ gives Ũ (τ ) < K . The contradictionmeans
that v̄(τK ) < 0, or say,W (τK ) = Ũ (τK ) ≥ K > W̃ (τK )
cannot be true if tk−1 < τK < tk .

c2) Note that W̃ (tk−1) < qK due to (120). Define

ṽ(t) = W̃ (t)−qŨ (t) ∀ t ∈ [0, ∞) (122)

with q ∈ (0, 1) given by (12). Similarly, ṽ(t) is
continuous on (tk−1, tk ) for all k ∈ N and the interval
[0, ∞) is broken into a disjoint union of subsets T̃+∪T̃−,
where

T̃+ = {t ≥ 0 : ṽ(t) > 0}, T̃− = {t ≥ 0 : ṽ(t) ≤ 0}.
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From (112), (113) and (122), it is observed that T+ ⊂

T̃+, T̃− ⊂ T− and, therefore, (115) holds on T̃− ⊂

T−. Notice that tk−1 < τK < tk and v̄(τK ) ≥ 0
(namely, W (τK ) = W̃ (τK ) ≥ K ) imply that ṽ(τK ) =

W̃ (τK )−qŨ (τK ) ≥ v̄(τK ) = W̃ (τK )− Ũ (τK ) ≥ 0 and,
hence, τK ∈ T+ ⊂ T̃+. As in (116), there is an
ordered pair τ̃+

1 = τ̃+

1 (τK ) < τ̃+

2 = τ̃+

2 (τK ) such
that τK ∈ (̃τ+

1 , τ̃+

2 ) ⊂ T̃+. There are also two cases:
i) τ̃+

1 ≤ tk−1 and ii) τ̃+

1 > tk−1.
i) That τ̃+

1 ≤ tk−1 means [tk−1, tk∧ τ̃+

2 ) ⊂ T̃+. Recall
that, by (120), W̃ (tk−1) < qK .

ii) That τ̃+

1 > tk−1 implies ṽ(̃τ+

1 ) = 0 due to the
continuity of ṽ(t) on (tk−1, tk ). Therefore, W̃ (̃τ+

1 ) =

qŨ (̃τ+

1 ) < qK since Ũ (t) < K for all t < τK .

Let τ̃ = tk−1∨τ̃+

1 , then W̃ (̃τ ) < qK and Ũ (t) ≤ W̃ (t)/q
on [̃τ , tk ∧ τ̃+

2 ) ⊂ T̃+ It immediately follows from (107),
(104) and the Gronwall inequality that

W̃ (t) ≤ W̃ (̃τ ) +

∫ t

τ̃

[α2ᾱ1

θα1
Ũ (s) + (ᾱ2 + µ)W̃ (s)

]
ds

≤ W̃ (̃τ ) +

∫ t

τ̃

( α2ᾱ1

θα1 q
+ α̃2 + µ

)
W̃ (s)ds

≤ W̃ (̃τ )e[(θα1q)−1α2ᾱ1+ᾱ2+µ](t−τ̃ )

< qKe[(θα1q)−1α2ᾱ1+ᾱ2+µ](tk−tk−1)

≤ qKe[(θα1q)−1α2ᾱ1+ᾱ2+µ]1t < K

for all t ∈ (̃τ , tk ∧ τ̃+

2 ), which is in contradiction with
v̄(τK ) ≥ 0 for tk−1 < τK < tk .

Therefore, neither τK = tk nor tk−1 < τK < tk could be
true for any k ∈ N. So τK > tk for all k ∈ N and, hence,
(110) holds for all t ≥ 0. By condition (8b), this implies that

E|z(t)|p ≤
θα1

α2c̄1
Ke−µt

for all t ≥ 0, where µ > 0 and K > 0 are given by (104)
and (111), respectively. This means that SiDE (2) is pth
moment exponentially stable (with Lyapunov exponent no
larger than −µ and µ > 0 given by (104)). The proof is
complete. 2
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