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ABSTRACT Steering angle controller is a core module of autonomous vehicles, where a slight
miscalculation can cause severe accidents. Following safety precautions, development of robust and precise
steering angle predictor is an active area of research. However, existing simulator based steering angle
predictors lack in predictive performance and have not been evaluated on same benchmark datasets.
Furthermore, most of them are evaluated on simulated datasets and their potential on real-world data as well
as in cross-domain evaluation of both types data (real-world, simulated) remain unexplored. To accelerate
and expedite research related to steering angle prediction contributions of this paper are manifold:
1) It presents two benchmark datasets that are developed using Udacity and CARLA simulators. 2) Following
the need for comparative study, over both simulated datasets, it benchmarks the performance of existing
predictors under 2 different evaluation settings namely: same-track and cross-track evaluation. 3) In cross-
domain evaluation, it explores generalization potential of predictors by training predictors on simulated data
and evaluating them on 2 real-world datasets and vice versa. 4) It presents a robust and precise steering
angle predictor that utilizes skip connections for proper gradient flow among different convolutional layers.
In same-track evaluation where predictors are trained and evaluated on same-track data, proposed predictor
outperforms existing predictors by achieving least Mean Absolute Error (MAE) of 0.13, 0.19 and 0.065 over
lake track, jungle track and CARLA based datasets, respectively. Similarly, in cross-track evaluation where
predictors are trained on one track and are evaluated on other track data, once again proposed predictor
outperforms existing predictors by producing average least MAE errors of 0.33 and 0.06 over Udacity
and CARLA datasets, respectively. Over two real-world datasets, Sully Chen and Comma.ai, the proposed
predictor demonstrates superior performance compared to existing simulator-based predictors, achieving the
lowest MAE of 2.41 and 0.50, respectively.

INDEX TERMS Autonomous vehicles, deep learning, prediction, residual block, steering angle, udacity
simulator, CARLA simulator, virtual environment.

I. INTRODUCTION
Artificial Intelligence (AI) based automated systems are
boosting the efficiency and completion speed of mundane
and repetitive tasks which require extensive human labor
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work [67]. The prime motivation behind AI-supported
automation is the development of smart tools that require
minimal or no human intervention for completion of diverse
types of tasks related to several domains i.e. transporta-
tion [6], banking [4], education, surveillance [65], energy
management [51], oil and gas production [15]. Exponential
growth and success of AI approaches bring breakthroughs
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by facilitating development of robots [17] and autonomous
vehicles (AVs) [73]. AVs have manifold benefits such as
higher traffic efficiency, a lower collision rate due to active
network communication between different vehicles on the
road [76] and facility to self-commute for visually and
physically impaired people [49].

The working paradigm of autonomous vehicles completely
relies on complex intelligent systems where a minor malfunc-
tion might endanger several lives on road [20], [60]. Major
brands of automotive industry such as Tesla,1 Waymo,2

BMW,3 Mercedes-Benz4 and Ford5 are keenly interested in
utilizing the power of artificial intelligence approaches for
making complex intelligent systems competent in driving
vehicles even better than humans [77]. Furthermore, to make
sure reliable driving capabilities of intelligent systems,
autonomous vehicles require robust and precise deep learning
methods and their extensive testing. However, considering a
wide range of unexpected situations in real-world scenarios,
(such as response in emergencies, climate factors, traffic jams
and complex routes) thorough testing of AVs is expensive
and time-consuming [8], [28]. This drives the necessity of
computer-aided programs competent in performing extensive
testing of AVs for all possible unsafe scenarios that AVs can
encounter during their movements on different tracks [41].
To empower intelligent systems and their computer-

aided testing, development of simulators and deep learning
predictors are active areas of research [21], [58]. Motivation
behind the development of simulators (Udacity [54] and
CARLA [18]) is to drive vehicles in virtual environment that
reflects real-world graphical environment such as wide as
well as narrow tracks with several types of hurdles like trees,
humans, other vehicles and different weather effects [9].
While driving vehicles in virtual environments, the simulators
record data related to different modules of intelligent
systems such as track lane detection [56], [63], traffic
signal detection [71], pedestrian behavior analysis [27], [37]
and steering angle prediction [61]. The prime objective of
researchers is to utilize simulated data for the development of
deep learning predictors competent in accurately predicting
different parameters of autonomous vehicles. The simulators
also provide an option to integrate trained predictors into
complex intelligent systems for evaluating their capabilities
by driving vehicles on different tracks.

The focus of paper in hand revolves around development
of a robust and precise deep learning predictor capable
of controlling steering angle of autonomous vehicles.
In autonomous vehicles steering angle module of complex
intelligent systems controls directions of AVs. In the
marathon of developing more accurate predictors, the goal
of researchers has been to utilize diverse types of neural

1https://www.tesla.com
2https://www.waymo.com
3https://www.bmw.de
4https://group.mercedes-benz.com/
5https://www.ford.com

strategies for development of deeper architectures that could
learn informative patterns and improve the efficiency and
robustness of steering angle predictor. However, during
learning phase in deeper networks gradient cannot flow prop-
erly which leads towards exploding and vanishing gradient
problems and predictor only extracts limited informative
features. Most of existing simulator based steering angle
predictors are primarily evaluated on the Udacity simulator.
However, it’s worth noting that the CARLA simulator
provides a more comprehensive platform for developing
simulated datasets with diverse types of graphics that closely
resemble real-world scenarios. Udacity simulator provides a
platform for developing two distinct track datasets: jungle
track and lake track. Interestingly, existing predictors are
typically evaluated in a cross-track setting, where they are
trained on one track and then evaluated on the other track.
Surprisingly, none of the existing predictor is evaluated on
same-track dataset.

Furthermore, it’s worth noting that only three predic-
tors [1], [34], [52] are evaluated in a cross-domain setting
involving both simulated and real-world datasets. Hence, the
potential of predictors remains unexplored in cross-domain
evaluation setting where predictors are trained on real-world
data and are evaluated using simulated data and vice versa.
Considering room for evaluating existing steering angle
predictors [1], [3], [5], [13], [24], [50], [66], [70] from
different perspectives, manifold contributions of this paper
are summarized below:

• To accelerate and expedite research by developing more
robust and precise predictors for steering angle control-
ling, it facilitates 2 public benchmark datasets that are
developed using Udacity and CARLA simulators. With
an aim to facilitate in-depth evaluation of predictors
across same and cross-track settings, we created three
distinct versions of the Udacity dataset: one based on the
lake track, one based on the jungle track, and a combined
version that includes data from both the jungle and lake
tracks. Likewise, for the CARLA dataset, we developed
six distinct versions: five versions corresponding to
each of the five different towns and one comprehensive
version that encompasses data from all five towns.

• Considering the need of existing predictor’s perfor-
mance comparison on same benchmark datasets, fol-
lowing working paradigm of existing predictors in
their research articles, we implement 8 most recent
simulator-based steering angle predictors and bench-
mark their performance in cross-track and same-track
settings on newly developed datasets.

• To explore generalization and real potential of steering
angle predictors, we evaluate predictors in cross-domain
setting which allows to train predictors on 2 real-world
datasets and evaluate them on two simulated datasets and
vice versa.

• Following the success of dense architectures which
provide alternative paths for proper gradient flow that
facilitate extracting comprehensive features by avoiding
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vanishing and exploding gradient problems, We propose
a unique predictor based on ResNet modules. Perfor-
mance comparison of proposed predictor with existing
predictors reveals proposed predictor produces better
performance on both simulated and real-world datasets.

II. RELATED WORK
This section provides a brief overview of three distinct
categories of predictors: those assessed solely on simulated
data, those assessed solely on real-world data, and those
evaluated on both simulated and real data.

A. SIMULATED DATA BASED PREDICTORS
According to the best of our knowledge in last 4 years,
8 different deep learning predictors [1], [3], [5], [13],
[24], [50], [66], [70] have been proposed for empowering
steering angle controllers by utilizing virtual environment
of simulators. However, among 8 existing simulator based
predictors [1], [3], [5], [13], [24], [50], [66], [70] work of
4 predictors [3], [5], [24], [66] is limited as authors did
not perform comprehensive experimentation and evaluation.
Despite these limitations, these predictors are included in this
study to provide a detailed overview of existing steering angle
predictors.

Among 8 existing predictors 6 studies [1], [5], [13],
[24], [30], [50] have developed convolutional neural
network (CNN) based predictors that predict steering
angle by capturing features related to track and hurdles.
Mohammadi et al. [50] developed steering angle predictor
by utilizing traditional descriptors (Harris [29], SIFT [46],
SURF [7], FAST [59] and BRIEF [11] to find important
regions of images that contain more comprehensive informa-
tion. Authors fed these extracted regions of interest to CNN
architecture [10] for the extraction of more useful features.
Furthermore, 4 predictors (Kalim et al. [13], Garg et al. [24],
Hassan et al. [30] and Bayarov Ahmedov et al. [1])
use 5 convolutional layers for the extraction of deeper
features while Anchalia and Srividhya [1], [5], [13], [30]
predictor makes use of 3 convolutional layers. Ali [3]
developed steering angle predictor by utilizing 4 CNN layers.
In 4 different predictors [1], [13], [24], [30] although number
of convolutional layers are similar, they slightly differ in
other neural strategies such as Garg et al. [24] predictor
uses dropout layer for avoiding model over-fitting and
Bayarov et al. [1] predictor performs data normalization that
facilitates convolutional layers for the extraction of more
comprehensive features. Kalim et al. [13] predictor extract
non-linear patterns of features by making use of additional
rectified linear unit (relu) after each convolution layer.
Hassan et al. [30] predictor utilizes max pooling layers to
retain the most relevant features.

To reap the benefits of both convolutional neural network
and recurrent neural network architectures Valiente et al. [70]
proposed hybrid predictors. Convolution architecture extracts
informative patterns and LSTM architecture [79] aids to
incorporate temporal features of environment. Following the

success of transformers [26] in diverse types of Natural Lan-
guage Processing (NLP) tasks such as text classification [68],
text summarization [42], machine translation [69] and
question answering systems [55] Shvejan et al. [66] utilized
8 stacks of transformer architecture to develop steering angle
predictor. Khan et al. [40] proposed steering angle predictor
comprising two different modules. The first module generates
low-dimensional latent semantic representation of the image.
The second module is trained using reinforcement learning
and utilized the latent vector as input to predict steering angle.

B. REAL-WORLD DATA BASED PREDICTORS
Mygapula et al. [53] utilized a normalization layer and
9 convolutional layers to design a a deep architecture for
steering angle prediction. Motivation behind development
of deeper architecture was to extract high-level semantic
features. Saleem et al. [62] also designed steering angle
predictive pipeline by utilizing convolution neural network
and two metaheuristic algorithms i.e. bat and particle swarm
optimizer. Metaheuristic algorithms takes a range of CNN
layers, filters and hyper parameters and automatically find
optimal values of hyper-parameters and number of layers.
Ijaz et al. [35] developed a hybrid predictor that made use
of U-Net and LSTM based architectures. U-Net architecture
extracts high-resolution as well as Hierarchical features and
spatial context features. LSTMs extracts Temporal dependen-
cies and Sequential patterns. Du et al. [19] utilized pre-trained
ResNet architecture along with 3DCNN and LSTM architec-
tures to design powerful steering angle predictor. Motivation
behind utilization of pre-trained ResNet architecture was to
apply transfer learning such as trained ResNet architecture
on large dataset and utilize model trained weights to further
fine-tune on steering angle data. Ye et al. [78] proposed
YOLOv5 based architecture for steering angle predictor.
Primarily, the authors trained YOLOv5 on self generated
dataset for lane detection. Afterwards, the output of the
YOLOv5 is fed as input to subsequent CNN based steering
angle predictor. A major drawback of this architecture is its
reliance on YOLOv5 for feature extraction which can hinder
performance of steering angle predictor. Oniar et al. [57]
predictor made use of CNN architecture and multi-head
attention for steering angle prediction. Wu et al. [74]
proposed CNN and LSTM based hybrid network for steering
angle prediction. CNN layers extract spatial features and
LSTM layers aid to capture temporal dependencies which
allows the model to effectively learn both sequential patterns
and spatial relationships. Table 1 summarizes all three types
of predictors in terms of year, approach and used datasets.

C. REAL-WORLD AND SIMULATED DATA BASED
PREDICTORS
Munir et al. [52] predictor made use of CNN architecture
and self attention layers. CNN layers extract discriminative
features and attention layers focused on more informative
features. Hou et al. [34] designed heterogeneous auxiliary
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TABLE 1. A comprehensive summary of existing steering angle predictors.

networks feature mimicking that not only considers the steer-
ing direction but also incorporates comprehensive contextual
information. However, each auxiliary network performs
different yet related tasks such as image segmentation
or optical flow estimation. Both predictors [34], [52] are
evaluated across both real world and simulated data.

III. MATERIAL AND METHODS
This section summarizes working paradigm of proposed
RPRP-SAP predictor and development process of benchmark
datasets. It also describes evaluation measures and criteria
used to verify the authenticity of proposed and existing
predictors.

A. PROPOSED PREDICTOR
The proposed RPRP-SAP predictor comprises deep architec-
ture having 1 convolutional layer and 4 ResNet blocks [31].
The prime motivation behind the design of deeper archi-
tecture is to extract more comprehensive and informative
patterns from different tracks images. Although deeper
architectures are well-known for extracting informative
features, however, they are more prone to vanishing and
exploding gradient problems. During back propagation, these
problems adversely affect the optimization of learnable
parameters of predictor. To avoid vanishing and exploding
gradient problems, we enriched predictor architecture with
shortcut connections known as skip connections [32] that
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FIGURE 1. Graphical illustration of proposed predictor. Here each ResNet block contains 4 CNN layers and in each block arrows represent to skip
connection which provides alternative path for gradient flow. 3 × 3 Conv (256,64,32,32)-BN-RELU represents convolutional layer: 3 × 3 kernel, input
channel (256) output Channels (64), image dimensions (32, 32), with batch normalization and RELU activation.

facilitate optimal gradient distribution across different layers
of network.

Figure 1 graphically illustrates the architecture details
and key parameters of proposed RPRP-SAP predictor. Input
image having 32 × 32 dimensions is passed to convolutional
layer for the extraction of low-level representations of
objects. Extracted representations after normalization are
passed through relu that enrich low-level representation with
non-linear patterns [25], [36]. The non-linear representation
of images is further fed to 4 successive ResNet blocks that
extract diverse types of patterns for accurate prediction of
steering angle. Each ResNet block contains 4 convolutional
layers in a sequential manner. Furthermore, features extracted
through each convolutional layer are normalized [36] and
enriched with non-linear patterns using relu activation
function [25]. For proper gradient flow in each module,
we utilize skip connections which utilize identity functions
to create alternative paths between different layers of ResNet
block.

It can be seen from Figure 1, the ResNet block allows
extracted features to flow from one layer to next immediate
layer and also to other next layers by skipping interme-
diate layers in between using identity function. To briefly
understand the concept of identity functions, let’s consider
a CNN architecture that comprises L layers. At each layer,
a composite functionHL()̇ performs three different operations
including convolution, normalization and relu activation.
Existing steering angle predictors pass L th layer output of
composite function to (L+1)th layer. Mathematically, output
of (L + 1)th layer can be computed as shown in Equation 1.

x(L+1) = HL(xL) (1)

In above Equation, xL and x(L+1) represents output of L th

and (L + 1)th layer, respectively. Contrarily, in our proposed

predictor identity function based output of (L+1)th layer can
be mathematically written as follows:

x(L+1) = HL(xL) + (xL) (2)

Equation 2 demonstrates that identity function concate-
nates output of xL layer with output of composite function
applied to xL .

Furthermore, consecutive ResNet blocks of proposed
predictor are designed in a manner to generate down-sampled
image representation in each successive ResNet block. The
process of up-sampling [80] involves increasing the spatial
resolution [16] to highlight smaller regions of an image while
maintaining its 2-dimensional representation [39]. Down-
sampling ensures that predictor can process images at dif-
ferent scales and resolutions, enhancing its ability to extract
meaningful features from various levels of detail in the input
data. The extracted features are fed to average pooling [45]
and dropout layers [22] to retain highly informative features
and drop irrelevant and redundant features. To introduce
regularization, proposed predictor randomly eliminates a
few neuron connections of extracted features among hidden
layers of network. Hence, neurons that are dropped neither
participate during forward pass nor their weights are updated
during backward pass. Output of ResNet blocks is passed to
3 fully connected layers [44] which extract global relations of
extracted features and predict steering angle direction.

B. BENCHMARK DATASETS
Considering the need for public benchmark datasets in virtual
environment, we utilize CARLA and Udacity simulators for
the generation of 2 datasets. Following subsections briefly
describe the process of datasets development, statistics of
datasets and different types of pre-processing strategies that
are utilized to enrich generated datasets with some graphical

21476 VOLUME 12, 2024



S. Saleem et al.: RPRP-SAP: A Robust and Precise ResNet Predictor for Steering Angle Prediction

FIGURE 2. Sample images of simulated and real-world datasets.

characteristics that real-world datasets contain and may not
exist in virtual environment of simulators.

1) UDACITY SIMULATOR
Udacity simulator [54] provides a virtual environment-based
platform for developing and testing complex intelligent
system modules of AVs in 2 distinct settings: training mode
and autonomous mode. Training mode facilitates training
data generation by manually running a vehicle on a particular

track. During training mode, simulator captures images using
3 cameras mounted on dashboard of a vehicle. Moreover,
it also provides information related to steering angle, throttle
neck and speed of vehicle corresponding to all images.
This training data is used to train and evaluate designed
deep-learning predictors. In autonomous mode, simulator
provides an option to integrate deep learning predictors
into relevant modules. Furthermore, rather than manually
controlling vehicles with keyboard, it utilizes deep learning
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predictors to drive vehicles. Specifically, it drives vehicles
in virtual environment and users can analyze the working
of a particular module that either developed deep learning
predictors are properly working or not.

Udacity simulator provides 2 distinct tracks namely; lake
and jungle tracks. The lake track is quite sunny and clear with
only a few turns. In contrast to this, the jungle track has tight
twisted turns and is surrounded by hills and treeswhichmakes
the track darker. The darker characteristic of jungle track
throws shadow over the road resulting in complex driving
track. Hence, considering the need for an efficient predictor
for autonomous driving to address challenges of real-world
environments, we generate 2 datasets from both environments
with a total driving time of 1 hour for each track and a few
sample images of the generated dataset for both tracks are
shown in Figure 2.

2) CARLA SIMULATOR
CARLA simulator [18] is an open-source platform designed
for development, validation and testing of autonomous
driving systems. It facilitates a highly realistic virtual
environment that enables researchers and developers to
experiment with a variety of driving scenarios, vehicle
behaviors and environmental conditions. It offers a wide
range of features including: detailed urban environments,
various vehicle models, traffic simulation and dynamic
weather variations. Specifically, it provides 5 different urban
towns with 14 different weather variations namely: clear
noon, cloudy noon, wet noon, wet cloudy noon, mid rainy
afternoon, wet sunset, soft rainy sunset, clear sunset, cloudy
sunset, hard rain noon, soft rain sunset, clear night, cloudy
night and default.

To benchmark performance of proposed and existing
predictors, we generated 6 different versions of CARLA
dataset including, town 1, town 2, town 3, town 4, town 5
and combined version. Table 2 demonstrates distribution of
sample images into train, test and validation sets across
all 6 versions of CARLA datasets. The generated data-set
consists of driving video of approximately 50 minutes across
each town. Furthermore, the generated dataset has dynamic
weather configurations, which aids to test autonomous
driving behaviour in various situations. The generated dataset
comprises of RGB frames along with corresponding steering
angle value. Figure 4 (B) graphically illustrates number of
sample images corresponding to unique value of steering
angle for CARLA dataset.

3) DATA PRE-PROCESSING
Considering the fact that data collected by driving vehicles on
real-world tracks differs from data generated by driving vehi-
cles in virtual environment. Although simulators are designed
to generate synthetic data that reflects trends of real-world
data while generating data the simulators lack in capturing
significant factors that exist in real-world data recording.
It can be seen from Figure 2 that real-world dataset differs
significantly from simulated dataset. Furthermore, real-world

data depicts a variety of objects including mountains, trees
and other vehicles in diverse scenes, such as roads and
parking lots with varying lightening conditions. To eliminate
limitations of virtual environment-based data, we enriched
generated data with essential factors of real-world data
using diverse types of data pre-processing strategies that
are briefly summarized below. The graphical illustration
of pre-processing strategies across both tracks is shown in
Figure 3.

• Zooming: Data generated through virtual environment
lacks minute information about different objects of
track. We included such information by zooming
existing images in the range of 10% to 30%. This
technique enables to focus on details of objects which
are not captured with a normal camera angle.

• Random flip: The cameras mounted on dashboard of
vehicle capture images at specific angles and offer little
variety in scene. To introduce diverse types of angle
rotations we randomly flipped images horizontally and
vertically. This technique flips different objects of track
upside down or sideways, to provide a diversity of
scenes.

• Brightness: Data generated through simulator fails
to reflect different lighting conditions on road tracks.
Figure 2 illustrates unlike simulated data which is
constrained to only one lighting scenario, real-world
data has multiple lighting scenarios. Hence, to enrich
data with images under varying illumination conditions,
we randomly change the brightness of images with in
the range of 10% to 30%. This generates data to depict
varying light conditions in order to replicate changing
weather conditions.

• Color space transformation: The colorization param-
eter of an image provides crucial information to intel-
ligent algorithms for extracting informative features.
Several image processing techniques aid to alter the
colorization factor of images such as contrast [23],
saturation [47], Hue [33] and YUV [72]. For this study,
we have used YUV technique, which facilitates to adjust
color space of images in order to highlight important
regions with different color spaces.

4) STATISTICS OF DATASETS
The dataset generated through simulator contains diverse
number of steering angles across both tracks. The number of
unique steering angles in generated dataset of lake and jungle
tracks is 39 and 41, respectively. Figure 4 (A) graphically
illustrates number of sample images corresponding to unique
value of steering angle for Udacity dataset. It is evident from
Figure 4 (A) that data is highly imbalanced and more than
60 percent of sample images of generated data belong to a
steering angle of ‘‘0’’ depicting straight steering direction.
Hence, imbalanced data can lead to baisness in predictors
towards a straight direction.

To overcome issue of imbalanced data, we first balance
both dataset by dividing values of steering angle into 25 bins.
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FIGURE 3. Data pre-processing techniques.

After converting values of steering angle into bins, we only
retain 400 sample images in each bin and remove rest of
sample images. Consequently, the pre-processed dataset is
uniform in terms of number of sample images across all
steering angles. Initially, a total number of 41,189 and 40,732
images are generated for lake and jungle tracks, respectively.
However, after balancing the data number of sample images
in lake and jungle tracks decreased to 14,691 and 26,727,
respectively. Hence, a balanced version of data eliminates
the tendency to predict biased value of steering angle. The
sample images of both tracks are divided into train, validation
and test sets with a split ratio of 70, 10 and 20, respectively.
Table 2 provides an overview of the sample images training,
validation and test sets for both the lake and jungle tracks
individually, as well as for the combined Udacity dataset.

5) REAL-WORLD DATASETS
A large number of real-world datasets with diverse environ-
ments are available for steering angle prediction including
Sully Chen [43], comma.ai [14] and Udacity. However,
to compare and evaluate performance of proposed and
existing predictors, we used a smaller dataset [43] comprising
of around 45,000 images and a bigger dataset [14] consisting
of approximately 400,000 images. In existing studies [1],

TABLE 2. Statistics of simulated and real-world benchmark datasets.

[34], [53] comprehensive detail about both datasets is
available, so here we only provided high level overview of
both datasets.

1) Sully Chen: Sully Chen dataset was recorded during
day time in 2017 using a Honda civic 2014 car around
the area of san pedro and rancho palos verda California.
The dataset comprises of approximately 45,500 images
of frontal roads along with steering angles with a
total size of 2.2 GB. Table 2 shows sample images of
Sully Chen dataset. The dataset is divided into train,
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FIGURE 4. Distribution of images across unique values of steering angles across Udacity and CARLA datasets.

validation and test set using a split ratio of 70%, 10%
and 20%, respectively.

2) Comma.ai: The comma.ai is a publicly available
dataset collected on a highway for 7.25 hours of
driving, which is divided into 11 videos captured during
both day and night time [14]. The dataset has several
sensors that were measured in different frequencies.
Following existing steering angle predictors [1], [34],
this study also used camera frames with corresponding
value of steering angle. Furthermore, to ensure a
balanced ratio between day and night images, we split
data into train, validation and test sets with a ratio of
70% (371588 samples), 10% (41288 samples) and 20%
(103220 samples), respectively.

C. EVALUATION MEASURES
To evaluate the integrity and generalizability of proposed
predictor, following evaluation criteria of existing studies,
we utilize 2 different evaluation measures namely Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE)
[12], [38]. MAE calculates the difference between actual and
predicted values followed by an absolute function in order to
evaluate the predictor’s performance, whereas mean square
error (MSE) approximates the average difference between

the square of ground truth and projected values. RMSE is
calculated by taking square root ofMSE value. The efficiency
of the predictor will be improved by lower values for MAE
and RMSE. Furthermore, if data fluctuates continuously the
MAE and RMSE provide different values at different points.
Equations 3 and 4 express mathematical formulations of
MAE and RMSE, respectively.

MAE =
1
N

N∑
i=1

∣∣∣yig − yip
∣∣∣ (3)

RMSE =

√√√√ 1
N

N∑
i=1

(
yig − yip

)2
(4)

In Equations 3 and 4, yig, represents actual value and yip
denotes predicted value for a sample i. N stands for the overall
sample count.

IV. EXPERIMENTAL SETUP
The proposed predictor is developed on top of 8 diff-
erent APIs namely; pytorch,6 numpy,7 opencv,8

6https://pytorch.org/
7https://numpy.org/
8https://opencv.org/
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scikit-image,9 plotly,10 pandas,11 matpoltlib12 and scikit-
learn.13 Furthermore, existing predictors are not evaluated
on same benchmark datasets. To evaluate the performance
of proposed predictors, authors of existing studies [3],
[5], [13], [24], [50], [66], [70] utilize simulators to
generate their datasets which are not publicly available.
The source codes of only 2 predictors (Shvejan et al. [66],
Bayarov et al. [1]) are publicly available. To implement other
6 predictors, we followmethodologies, hyper-parameters and
experimental settings details from their research articles [3],
[5], [13], [24], [50], [70]. In order to evaluate the effectiveness
of proposed RPRP-SAP predictor we take 8 most recent
existing predictors as baseline methods for comparative
performance analysis.

TABLE 3. Search space and optimal values of different hyper-parameters
for proposed predictor.

It is widely accepted that hyper-parameters influence
the performance of deep learning predictors [64]. We per-
form large-scale experimentation to find the best values
of hyper-parameters from a pool of predefined search
space corresponding to each hyper-parameter. Specifically,
we optimize 3 hyper-parameters: learning rate [2], weight
decay [75] and dropout [22]. Proposed RPRP-SAP predictor
architecture is made up of ResNet blocks, so it is important to
select an appropriate number ofmodules [31]. To find optimal
ResNet blocks, we perform experimentation by a varying
number of blocks from 1 to 5. The search space of ResNet
blocks and hyper-parameters along with a brief description
and selected optimal values are provided in Table 3.

V. RESULTS
This section provides a detailed performance comparison of
proposed and 8 existing predictors [1], [3], [5], [13], [24],
[50], [66], [70] on two real-world and two simulated datasets.

9https://scikit-image.org/
10https://plotly.com/
11https://pandas.pydata.org/
12https://matplotlib.org/
13https://scikit-learn.org/stable/

It first illustrates a comprehensive performance comparison
of proposed and existing predictors in same-track evaluation
setting. Then it compares their performance in cross-track
evaluation setting where predictors are trained on one track
data and are evaluated on other track data. It also illustrates
performance of predictors in cross-domain evaluation setting
where they are trained on simulated datasets and are evaluated
on real-world datasets and vice versa.

A. PERFORMANCE COMPARISON OF PROPOSED AND
EXISTING PREDICTORS UNDER SAME-TRACK
EVALUATION SETTING
Table 4 compares the performance of proposed and 8 existing
predictors [1], [3], [5], [13], [24], [50], [66], [70] under
same-track evaluation setting using 5 different datasets.
It is evident from Table 4 over lake track dataset, among
6 existing CNN-based predictors [1], [3], [5], [13], [24],
[50] Mohammadi et al. predictor [50] produces the highest
performancewhile Anchalia et al. predictor [5] produces least
performance. Primarily, Mohammadi et al. predictor [50]
produces better performance because it utilizes features
that are manually crafted through traditional computer
vision strategies to find regions of interest (ROI) from
input images and aid to eliminate irrelevant and redundant
regions. The extracted ROIs of images are fed to a deeper
CNN architecture which extracts informative features and
utilizes them for finding accurate prediction of steering
angle. Anchalia et al. [5] predictor makes use of shallow
CNN architecture hence, probably fails to extract significant
features and leads predictor toward worst performance.
Garg et al. [24] predictor manages to produce the 2nd

highest performance followed by Kalim et al. [13] predictor.
Furthermore, Ali et al. [3] and Bayarov et al. [1] predictors
get 4th and 5th ranks, respectively. These predictors fail to
produce better performance because these approaches are
using deep networks that hinder proper flow of gradients.

On the other hand, Valiente et al. [70] hybrid predic-
tor produces almost similar performance to CNN-based
top-performing predictor [50]. Although, unlike Moham-
madi et al. [50] predictor, Valiente et al. [70] predictor
does not make use of extra features extracted through
traditional computer vision strategies but it reaps the benefits
of both CNN and LSTM architectures to preserve temporal
information. Shvejan et al. [66] predictor that employed
advance transformer unit [26], only manages to produce
performance better than 3 least performing CNN-based
predictors [3], [5], [66]. Primarily, the designed architecture
is very deep and complex as it utilizes eight stacks
of transformer architecture [26]. Consequently, extracted
features are deprived of high-level representation and can
only access representations at previous layers, resulting in
poor performance. Proposed RPRP-SAP predictor produces
better performance than all existing predictors across both
evaluation measures. Although proposed RPRP-SAP predic-
tor also relies upon convolutional layers yet it is competent
in extracting more comprehensive features due to proper
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TABLE 4. Performance comparison of proposed and existing predictors over lake track, jungle track, CARLA, Sully Chen and comma.ai datasets under
same-track evaluation setting.

gradient flow while learning weights. In comparison to
existing predictors, a unique feature of proposed RPRP-SAP
predictor is residual unit [31] which provides alternative paths
for proper flow of gradient during back-propagation.

Jungle track data is relatively more complex and chal-
lenging than lake track in terms of feature extraction.
Among 6 CNN-based predictors [1], [3], [5], [13], [24], [50]
Mohammadi et al. [50] and Bayarov et al. [1] predictors
produce nearly similar and best performance over jungle
track data. The hand-crafted feature based predictor [50]
applies convolution operation to only important regions of
images while decision of other predictor [1] is based on the
combination of convolutional and dense layers. The higher
performance of these predictors is due to their remarkable
potential to extract comprehensive feature patterns from
complex occluded environments of jungle track.

Moreover, the remaining 4 CNN-based predictors includ-
ing; Ali et al. [3], Garg et al. [24], Anchalia et al. [5] and
Kalim et al. [13] predictors are ranked at positions 3, 4,
5 and 6 in terms of performance. Although the performance
of Valiente et al. [70] hybrid predictor is lower than 2 top-
performing CNN predictors [1], [50] but it manages to
beat performance of rest of the CNN-based predictors.
Shvejan et al. [66] predictor once again failed to perform
on this dataset and could only beat performance of 3 least
performing CNN-based predictors [5], [13], [24]. Table 4
shows that the proposed predictor once again outperforms
all existing predictors for both evaluation measures on jungle
track dataset.

Among existing predictors evaluated on CARLA dataset,
Shvejan et al. predictor [66] secures 1st rank and show-
cases the adaptability of vision transformers in capturing

complex visual patterns. Garg et al. predictor [24] secures
2nd ranks by extracting most informative features. The
Valiente et al. predictor [70] secures 3rd rank by fusing
both spatial and temporal features. Mohammadi et al.
predictor [50] illustrates the potential of blending traditional
hand-crafted features with modern neural networks. This
hybrid approach leverages domain-specific knowledge and
secures 4th position. Kalim et al. [13], Ali et al. [3] and
Bayarov et al. [1] predictors utilizes convolution features
to capture diverse information and secures 5th, 6th and 7th

positions, respectively. Anchalia et al. [5] shallow predictor
fails to extract meaningful information and remains worst
performer among all existing predictors. The proposed
predictor stands out as the top-performing, demonstrating the
lowest MAE.

A thorough analysis of Table 4 reveals consistent trend
across three simulated datasets (lake track, jungle track
and CARLA) regarding the performance of various existing
predictors. Specifically, Ali et al. [3] Bayarov et al. [1]
and Anchalia et al. [5] consistently exhibit lowest predictive
performance among all existing predictors across these
datasets. Conversely, the remaining 5 existing predictors [13],
[24], [50], [66], [70] demonstrate performance variability
across different datasets however, their MAE error values
generally fall within a similar range.. Additionally, all exist-
ing predictors demonstrate superior performance when tested
on the CARLA dataset, in contrast to their performance on
2 versions of Udacity dataset. Particularly, worst performing
predictor [5] over CARLA dataset produces MAE error
approximately equal to best performing predictors [13],
[24], [50], [70] over jungle and lake tracks. This significant
performance difference demonstrates that CARLA simulator
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offers a more informative features for accurate steering angle
prediction.

It is evident from Table 4 all existing predictors produce
higher MAE and RMSE error values on Sully Chen data
in comparison to their error values on simulated datasets.
Among existing predictors, Garg et al. [24] predictormanages
to produce best performance and Ali et al. [3] predictor
produces least performance over Sully Chen dataset [43].
Least performing predictor [5] of lake track dataset also
failed to perform well on Sully Chen dataset [43] and secures
2nd last rank in terms of MAE and RMSE errors among
existing predictors. In contrast to this, 2 best performing
predictors [50], [70] with same MAE error over lake
track data secure 3rd and 6th rank on Sully Chen dataset,
respectively.

Although top performing predictor [1] over jungle track
dataset secures 2nd rank over Sully Chen data yet it produces
highMAE and RMSE errors of 11.94 and 24.73, respectively.
Furthermore, worst performing predictor [13] over jungle
track data secures 3rd position on Sully Chen dataset
with 12.75 MAE and 25.75 RMSE. Hence, all existing
predictors failed to capture generalized feature patterns and
show highly fluctuating performance over all 3 datasets.
However, proposed predictor once again remarkably beats the
performance of all existing predictors with MAE and RMSE
errors of 2.41 and 8.80, respectively. A fair performance
analysis of proposed and existing predictors in terms of MAE
and RMSE over simulated and real-world dataset indicates
that proposed predictor is capable of effectively generalizing
over diverse types of dataset by learning comprehensive and
informative patterns of data.

Table 4 demonstrates a north-worthy performance con-
trast of existing predictors over two distinct real-world
datasets. All existing predictors show better performance over
comma.ai dataset with lower MAE errors in comparison to
their performance over Sully Chen dataset. Specifically, top-
performing predictor Garg et al. [24] over Sully Chen dataset,
secured 5th rank over comma.ai dataset. Conversely, the least
performing predictor [3] over Sully Chen dataset, secured 4th

rank over comma.ai dataset. A similar pattern can be observed
across remaining predictors. This significant MAE error
difference across two real-world datasets highlights diverse
data characteristics and challenges that impact predictors
performance.

1) PERFORMANCE COMPARISON OF PROPOSED AND
EXISTING PREDICTORS BASED ON AUROC
This section summarizes performance comparison of pro-
posed RPRP-SAP predictor with 8 existing predictors using
Area Under Receiver Operating Characteristics (AUROC)
under same track evaluation settings over 5 distinct datasets.
In order to generate AUROC scores of predictors, the actual
and predicted values of steering angle are divided into 3 bins
consisting of right, left and straight directions.

Critical analysis of AUROC graphs shown in Figure 5
for simulated and real datasets illustrates that proposed

predictor attains the highest performance in comparison to
all 8 existing predictors. It is evident from Figure 5 that
Mohammadi et al. [50] predictor performs nearly equal
to proposed predictor for jungle track and lake tracks but
achieves last, 2nd last and 3rd last rank on comma.ai,
Sully Chen and CARLA datasets, respectively. However,
Anchalia et al. [5], Shvejan et al. [66] and Valiente et al. [70]
predictors show poor performance across simulated datasets
but attain decent and nearly equal performance score over
real dataset. These 2 predictors [5], [66] exhibit a similar
performance trend across CARLA dataset, but Valiente et al.
predictor [70] lags behind in performance. Bayarov et al. [1]
predictor performs poorly on jungle track, CARLA and Sully
Chen data, even though it is the second best performing
method on lake track and Sully Chen datasets. In contrast
to this Ali et al. [3] and Kalim et al. [13] predictors
show remarkable performance on jungle track, CARLA and
comma.ai dataset and achieve relatively lower performance
on lake track and Sully Chen data.

Garg et al. [24] predictor performs well on jungle and
lake tracks and fails to manage good performance over
CARLA, Sully Chen and comma.ai datasets. By comparing
the performance values of the proposed RPRP-SAP predictor
with 8 existing predictors, we can conclude that the proposed
predictor is capable of comprehending the significant features
of diverse environments across all 5 datasets for steering
angle prediction of AVs.

2) COMPARISON OF PROPOSED AND EXISTING
PREDICTORS IN TERMS OF ACTUAL VS PREDICTED
STEERING ANGLE DIRECTION
In order to facilitate deep insight into predictor’s behavior for
estimating steering angle of AVs on road track, this section
provides a graphical analysis of actual and predicted steering
direction computed under same-track evaluation setting, over
5 datasets. For this analysis, actual and predicted steering
angles are divided into 3 bins based on numerical values of
steering angle corresponding to 3 directions namely; right,
left and straight direction.

It is evident from Figure 6 that over lake and jungle
track datasets Anchalia et al. [5] and Shvejan et al. [66]
predictors are worst performers as both predictors only
predict left steering direction within a range of -0.5 to -
0.1 and hamper the prediction of straight or right direction.
However, for jungle track dataset both predictors display
a higher biasness towards left most direction with a
steering angle of -1. Conversely, over CARLA dataset,
Anchalia et al. predictor [5] exhibits consistent behavior,
while Shvejan et al. predictor [66] effectively predicts
straight, right and left steering angles. Similar to these
predictors Mohammadi et al. [50] and Kalim et al. [13]
predictors are more biased toward left direction and do
not predict straight or right direction over jungle and
lake tracks datasets. However, over CARLA dataset, both
predictors [13], [50] exhibit a significant bias towards
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FIGURE 5. AUROC of simulated and real-world datasets under same-track evaluation setting.

FIGURE 6. Actual vs predicted steering angles of proposed and existing predictors over simulated and real-world datasets under same-track evaluation
setting.

predicting straight steering angles, with limited predictions
for right or left steering angles.

However, Garg et al. [24] Valiente et al. [70] predictors
show an equal balance of estimated straight, right and

left steering directions across all 3 simulated datasets.
Bayarov et al. [1] predictor shows least standard devia-
tion [48] and the highest peak at straight direction over all
3 simulated datasets. Ali et al. predictor [3] exhibits a highly

21484 VOLUME 12, 2024



S. Saleem et al.: RPRP-SAP: A Robust and Precise ResNet Predictor for Steering Angle Prediction

unusual behavior and consistently predicts either left or right
steering directions over jungle track while predominantly
predicts straight or right steering angles over CARLA dataset.
However, predicted angle varies between left, right and
straight directions over lake track but shows a lower standard
deviation to right direction in comparison to left direction.

Over, Sully Chen dataset, existing predictors exhibit very
poor performance in terms of predicted directions. Most
of the existing predictors [5], [13], [24], [50], [66], [70]
are highly biased and always predict left steering direction.
Moreover, few existing predictors [1], [3] show deviations
from the actual steering angles in all 3 directions. The
critical analysis of Figure 6 illustrates that proposed predictor
beats performance of existing predictor over all 3 datasets
and more precisely predicts the steering angle along all
directions with a greater standard deviation which is nearly
similar to standard deviation of actual values of steering
direction. Across comma.ai dataset, Valiente et al. [70],
Kalim et al. [13], Shvejan et al. [66] and Ali et al. [3]
demonstrate effective predictions of diverse steering angles,
while a few predictors (Anchalia et al. [5], Bayarov et al. [1]
and Mohammadi et al. [50] ) consistently predict straight
steering angles. In contrast, Garg et al. predictor [24] displays
an even distribution of all three steering angle categories
across all data samples. Furthermore, Figure 6 illustrates that
proposed RPRP-SAP predictor is competent to effectively
predict a wide range of steering angles across all five distinct
datasets and showcases its ability to generalize and adapt to
various environmental conditions for autonomous driving.

B. PERFORMANCE COMPARISON OF PROPOSED AND
EXISTING PREDICTORS IN CROSS-TRACK EVALUATION
SETTING
This section compares performance of proposed RPRP-SAP
and 8 existing predictors [1], [3], [5], [13], [24], [50],
[66], [70] under cross-track evaluation setting. Mainly, this
analysis explores robustness of predictors during real-world
deployment because usually AVs are tested on multiple road
tracks.

Figure 7 illustrates cross-track setting based performance
of proposed and 8 existing predictors [1], [3], [5], [13],
[24], [50], [66], [70] in terms of 2 different evaluation
measures across Udacity dataset. Among 6 existing CNN-
based predictors [1], [3], [5], [13], [24], [50] Garg et al. [24]
predictor manages to produce the highest and Kalim et al.
[13] predictor achieves 2nd the highest performance for
both tracks. Although under same-track evaluation setting,
transformer-based Shvejan et al. [66] predictor remained
2nd least performer due to its complex architecture, hence
because of similar drawback, it once again fails to produce
decent performance over both tracks under cross-track
evaluation setting.

Similar to transformer based predictor [66], hybrid pre-
dictor [70] also fails to retain its rank achieved under
same-track evaluation setting, for this setting it achieved 1st

rank over lake track data while under cross-track evaluation

setting over dataset of same-track data it achieves 5th rank.
Similarly, for jungle track dataset, under same-track evalu-
ation setting it manages to achieve 4th ranked performance
while in cross-track evaluation setting its performance further
decreased from 3 predictors including Garg et al. [24]
Kalim et al. [13] and Shvejan et al. [66] predictors which had
a lower performance than hybrid predictor under same-track
evaluation setting. It is considered that hand-crafted features
based predictor fails to produce a similar performance on
different data types of same task, because if a traditional
feature extraction approach extracts comprehensive features
from one particular data it may not extract similar types of
features from slightly different data for same task due to
background noise or difference of important feature patterns
between 2 datasets. Hand-crafted features based predic-
tor [50] manages to produce the best performance under
same-track evaluation setting for both tracks but it completely
fails to produce similar performance in cross-track evaluation
setting and became second last performer among 8 different
predictors.

A critical performance analysis of 8 existing predictors, in
2 different types of evaluation settings, demonstrates that sim-
plest and most complex architectures fails to produce better
performance, as the predictor developed by Anchalia et al. [5]
is very simple and it remains worst performer under both
experimental settings for both datasets.

Furthermore, we also evaluated performance of proposed
RPRP-SAP and 8 existing predictors under cross-track eval-
uation setting using CARLA dataset. Specifically, we used
5 distinct experimental settings, where one town is separated
for testing while the remaining towns are collectively used
for predictors training. For instance in first setting, town 1 is
used for evaluation, while town 2, 3, 4 and 5 are used for
training. This experimental setting is repeated for all 5 towns.
Table 5 illustrates performance comparison of existing and
proposed predictors under 5 different experimental settings
over CARLA dataset.

It is evident from Table 5, among 6 CNN based predic-
tors [1], [3], [5], [13], [24], [50] 3 predictors [1], [24], [50]
achieve relatively low MAE and RMSE values across all
5 experimental settings, indicating good predictive accuracy.
The better performance of these 3 CNN based predictors [1],
[24], [50] is due to incorporation of enhanced features
extraction [50], elimination of irrelevant features [24] and
improved features distribution [1]. The remaining 3 CNN
based predictors [3], [5], [13] failed to capture complex
features due to simple architectures and generally had higher
MAE and RMSE values across all 5 experimental settings.
Particularly, Anchalia et al. predictor [5] fails to make
accurate predictions on towns 3 and 4 while Kalim et al.
predictor [13] yields relatively higherMAE andRMSEvalues
on town 1. On the other hand, Ali et al. predictor [3]
demonstrates slightly higher MAE and RMSE values on
towns 4 and 5.

Valiente et al. hybrid predictor [70] combines strength of
CNN and LSTM to capture spatial and temporal features and
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FIGURE 7. Performance comparison of proposed and existing predictors in terms of MAE and RMSE over lake track and jungle track dataset under
cross-track evaluation setting.

TABLE 5. Performance comparison of proposed and existing predictors in terms of MAE and RMSE over CARLA dataset under cross-track evaluation
settings.

consistently performed well on all towns expect town 2where
it shows slightly higher errors. Moreover, transformer based
predictor [66] successfully extracts complex features and
achieves relatively consistent performance with minor fluc-
tuations in MAE and RMSE values across all 5 experimental
settings except town 2, where it shows slightly higher errors.

A thorough performance analysis of existing predictors [1],
[3], [5], [13], [24], [50], [66], [70] reveals that overall
5 predictors [1], [24], [50], [66], [70] demonstrates good
generalization potential across all 5 experimental settings.
However, it can be seen in Table 5 that proposed RPRP-SA
predictor consistently outperforms existing predictors under
all 5 experimental settings with lowest MAE and RMSE

errors. This consistent outstanding performance of proposed
RPRP-SA predictor across diverse environmental settings
highlights its robustness and effectiveness.

C. PERFORMANCE COMPARISON OF PROPOSED AND
EXISTING PREDICTORS UNDER CROSS-DOMAIN
EVALUATION SETTING
Table 6 illustrates performance comparison of proposed
and existing predictors across 2 real-world and 2 simulated
datasets under cross-domain evaluation setting. In this
experimental setup, each predictor undergoes training on
every real-world dataset and is subsequently evaluated using
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TABLE 6. Performance comparison of proposed and existing predictors in cross-domain evaluation setting over simulated and real-world datasets.

each simulation-based dataset. Likewise, each predictor is
trained on each simulation-based dataset and assessed with
each real-world dataset.

A critical analysis of Table 6 reveals that, when the
predictors are trained using data from the Udacity simulator
and then evaluated on the real data from comma.ai, they
exhibit improved performance compared to when they are
trained on the same dataset but evaluated on the Sully Chen
dataset. A similar trend in performance is observed when
the predictors are trained on the CARLA dataset and then
evaluated on both the Sully Chen and comma.ai datasets.

Conversely, when predictors are trained on the Sully Chen
dataset and then evaluated on both simulated datasets, most
of the predictors produce a higher error rate compared to their
produced error when they are trained on the comma.ai dataset
and evaluated on the same simulated datasets. Only two
predictors (proposed and Kalim et al. [13] ) produce higher
errors when trained on comma.ai dataset and evaluated on
Udacity dataset. Overall, performance analysis suggests that
the comma.ai dataset closely resembles the characteristics
of the simulated datasets (Udacity and CARLA), while the
graphical features of the Sully Chen dataset differs from those
of the simulation-based datasets.

Moreover, when the predictors are trained using the
Udacity dataset and evaluated on the comma.ai dataset, it is
observed that out of the 9 predictors, 6 [1], [3], [13], [24],
[66], [70] of them exhibit better performance compared to
when they are trained on the comma.ai dataset and evaluated
on the Udacity dataset. Similarly, when these predictors are
trained on the CARLA dataset and evaluated on the comma.ai
dataset, 4 [3], [13], [24], [66] out of the 9 predictors show
better performance compared to when they are trained on the
comma.ai dataset and evaluated on the CARLA dataset.

Conversely, for most of the predictors [1], [5], [13], [24],
[50], [70], their performance is better when trained on
real-world data from Sully Chen and evaluated on simulated
datasets, as opposed to when they are trained on simulated
datasets and evaluated on Sully Chen’s real-world data. In all

eight different scenarios, it is observed that in most of the
cases the proposed predictor outperforms existing predictors
in terms of performance. In summary, it can be concluded that
the predictors tend to perform better when they are trained on
simulator data from Udacity and CARLA and then evaluated
on real data from comma.ai.

VI. CONCLUSION
Autonomous vehicles are actively contributing to avoid
haphazard situations and alleviate the risk of accidents partic-
ularly caused by carelessness of drivers. However, designing
and testing complex intelligent systems of autonomous
vehicles is time-consuming and costly. To cope with this
limitation, several simulation environments are developed for
efficient designing of AI-supported intelligent systems and
to perform their testing. To empower the process of steering
angle prediction, this study presents different versions of two
benchmark datasets that are generated through Udacity and
CARLA simulators. It presents a ResNet based predictor
and benchmarks the performance of proposed and existing
predictors.

It explores the potential of proposed and existing predictors
under 3 different experimental settings i.e. same-track,
cross-track and cross-domain. Under same track evaluation
setting where predictors are trained and evaluated across
real world and simulators same track datasets, experimen-
tal results reveal under this evaluation setting predictors
produce better performance on simulated and real-world
datasets. Contrarily, under cross track evaluation setting,
where predictors are trained on simulated datasets of one
track and are evaluated on other track, experimental results
reveals difference between training and testing scenarios
pose obstacles in generalizing to complex driving conditions
resulting in poor performance. Furthermore, experimental
results under cross domain setting, where predictors are
trained on simulated dataset and are evaluated on real
world dataset and vice versa, experimental results reveal that
simulators generated data is closer to comma.ai real-world
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data but seems different from Sully Chen data. These findings
emphasize the need tometiculously consider the diversity and
complexity of training datasets to ensure robust performance
across wide range of real-world driving scenarios.

In this study, our primary focus is on investigating the
potential of various predictors that are based on simulators.
However, as wemove forward, there is a compelling direction
for further research. This direction entails selecting a subset
of the most effective simulator-based predictors, alongside a
selection of predictors that rely on real-world data. We aim
to assess their capabilities in handling diverse real-world
datasets and evaluate their performance in a cross-domain
setting.
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