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ABSTRACT Aiming at the effects of motor parameter ingress and load mutation on the speed control of
permanent magnet synchronous linear motor (PMSLM) motors, this paper designs a PMSLM improved
model-free sliding-mode speed control strategy based on the variable-gain model-assisted linear expansion
observer (TMLESO). First, time-varying gain-based model-assisted linear expansion observer (MLESO) is
designed to improve the accuracy of LESO generalized perturbation estimation. Next, the TMLESO is con-
structed by combining the MLESO and the time-varying function to solve the problem of large initial peaks.
Finally, a model-free sliding-mode velocity controller with adaptable boundary layer thickness is constructed
to reduce the effect of sliding-mode jitter on velocity tracking and improve the dynamic performance of the
system. The effectiveness of the proposed control strategy is analyzed through simulations and experiments.

INDEX TERMS Permanent magnet synchronous linear motor, time-varying gain-based model-assisted
linear expansion observer, model-free sliding mode control, boundary layer adaptive.

I. INTRODUCTION
Compared with rotary motors, linear motors directly utilize
electromagnetic thrust to achieve linear motion, which has
the advantages of high thrust density and fast response speed.
Therefore, they are widely used in modern high-precision
industrial fields such as semiconductor manufacturing,
aerospace and CNC machining. However, uncertainties such
as friction, system parameter variations and load perturba-
tions greatly affect the accuracy of the PMSLM due to the
elimination of the intermediate drive link. Therefore, sup-
pressing these uncertainties is of great value in improving the
speed control performance of the PMSLM.

With the development of control theory, more and more
advanced control strategies, such as smooth-mode control,
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self-resistant control, predictive control, model-free con-
trol [1], [2], [3], [4], etc., are gradually applied to the speed
control of PMSLM. Sliding mode control is a nonlinear
robust control method [5], [6], the key is the design of
the sliding mode surface and the sliding mode convergence
rate, and many scholars have carried out in-depth research
on these two aspects. In [7] designs a global complemen-
tary sliding mode surface, which combines the generalized
sliding mode surface and the complementary sliding mode
surface to design the controller, which weakens the jitter
and improves the system accuracy, but the constant thickness
of the boundary layer of the switching function reduces the
system robustness. In [8] proposes a fast terminal sliding
mode control strategy that ensures that the system converges
to the sliding mode surface in a finite time, but the sin-
gularity problem arises due to the presence of fractional
powers. Model-free control methods utilize only the inputs

20726

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-1374-3378
https://orcid.org/0009-0003-5082-1499
https://orcid.org/0000-0002-6932-4367


J. Lin et al.: Improved Model-Free Sliding Mode Control of Linear Motor

and outputs of the system, reducing the impact of system
parameter variations on control performance [9], [10]. In [11]
proposes to apply the combination of the model-free method
and the differential-free prediction method to linear motors,
which improves the robustness of the system control, but fails
to eliminate the current prediction error completely. In [12]
applies the model-free control method to the current loop
control and improves the current response performance of the
system, but it is computationally intensive.

In linear motor control, the estimation of unknown pertur-
bations is particularly important, and [13] proposes to use an
expansion observer (ESO) for this purpose, but the ESO it
uses suffers from a low accuracy of generalized perturbation
estimation as well as a too large peak at the initial moment.
For the suppression of the initial peak, [14], [15] proposes the
use of a time-varying function for the suppression. In [16]
designed a dual perturbation observer for the matched and
mismatched perturbations present in the system to improve
the immunity of the system.

To address the above problems, this paper firstly designs a
time-varying gain model-assisted linear expansion observer
(TMLESO) to improve the observation accuracy of the gen-
eralized perturbations while avoiding the phenomenon of
too large initial peaks. Next, an improved model-free sliding
mode control method is designed by combining the sliding
mode control with the model-free control method and com-
pensating the unknown perturbations observed by TMLESO
to the controller. Meanwhile, a sliding mode control method
with adaptive boundary layer thickness is proposed for the
problem of fixed thickness of boundary layer of traditional
saturation function in sliding mode control. Simulation and
experimental results show that the method proposed in this
paper is practical and feasible, and effectively improves the
speed control performance and robustness of the system.

II. MATHEMATICAL MODEL OF PMSLM
The mathematical model of the voltage equation of the
table-posted PMSLM in two isochronous rotating coordinate
system is given by (1):

ud = Rsid + Ld
did
dt

−
π

τ
νLqiq

uq = Rsiq + Lq
diq
dt

+
π

τ
νLd id + ψf

π

τ
ν

(1)

where ud and uq represent the dq-axis voltage of the primary
winding, respectively; Rs represents the armature resistance;
id and iq represent the dq-axis armature current; Ld and Lq
represent the dq-axis inductance, respectively; τ represents
the pole distance; ν represents the kinematic velocity; ψf
represents the secondary permanent magnet flux linkage.

For the surface-mounted PMSLM, there is Ld = Lq, then
the electromagnetic thrust equation and the motion balance
equation are written as follows, respectively:

Fe =
3pn
2
π

τ
ψf iq (2)

Mv̇(t) = Fe − FL − Bmν(t) (3)

where Fe represents the electromagnetic thrust; pn represents
the number of pole pairs;M represents themass of themoving
part; FL represents the load thrust; Bm represents the viscous
friction coefficient.

Substituting (2) into (3) and simplifying it into a
mathematical model about speed, thus it can obtain that

v̇(t) = −
Bm
M
ν(t) −

1
M
FL +

3pnπψf
2Mτ

iq (4)

Considering that the internal parameters of the motor will
be perturbed with the operation of the motor, at this time, (4)
can be further expressed as follows (5):

v̇(t) = −
Bm0 +1Bm

m
v(t) −

1
m
FL +

3Pnπ(ψf 0 +1ψf )
2

iq

(5)

where Bm0 andψf0 represent the nominal values on the motor
nameplate; 1Bm and 1ψf represent the perturbation of the
internal parameters of the motor.

III. DESIGN OF A TIME-VARYING GAIN
MODEL-ASSISTED LINEAR EXPANSION OBSERVER
A. DESIGN OF MLESO
According to Eq. (5)

dv
dt

= −m0v(t) + f ′
+ n0iq (6)

where m0 =
Bm0+1Bm

m , no =
3Pnπ(ϕf 0+1ϕf )

2 , f ′
= −

1
mFL.

Define the state variables XM1 = v,XM2 = F , u = iq, and
the state equation of the system is obtained from equation (5)

dv
dt

= −m0v(t) + f ′
+ n0iq (7)

where: ẊM2 is the first order derivative of the total
perturbation and y is the system output.

From equation (7), the state space equation of the motor
speed control system is given by{

ẊM= AMxM + BMu+ EḞ
′

y= CxM
(8)

where: E =

[
0
1

]
,C =

[
1
0

]T
, XM =

[
XM1
XM2

]
, AM =[

0 1
0 −m0

]
, BM =

[
n0

−m0n0

]
, where XM , AM , BM , are the

state change quantity matrix, state matrix and input matrix
of the motor speed control system considering parameter
perturbation, respectively.
From equation (8), the state space equation of MLESO is

obtained as follows{
żM= [AM −MC] zM +

[
BMM

]
uc

yc= CzM
(9)

where: z M =[z1 zM2]T is the state vector of the MLESO,
which represents the tracking signals of the XM1, which is
z1 → xM1, zM2 → xM2; M =

[
M1 M2

]T is the MLESO
gain matrix to be designed.
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As shown in Eq. (9), compared with the LSEO, MLESO
not only considers the two components of unmodeled and
external disturbances, but also takes the internal parameter
perturbation of the motor into account. When the external
environment changes, its influence on the motor opera-
tion can be better reduced, thus improving the observation
accuracy of the system.

In order to simplify the design process of MLESO, the
poles of the observer characteristic equations are configured
to the same position ( -w0,w0 ) as the observer bandwidth
after parametric calibration so that it satisfies equation (10)

λ(s) = |sI − (A− LC)| = (s+ ω0)2 (10)

The gain matrix of MLESO can be obtained from Eq. (10)

M =
[
M1 M2

]T (11)

where:
{

M1 = 2ω0 − m0
M2 = ω2

0 − 2m0ω0 + m2
0

In order for MLESO to run in MATLAB, the associated
algorithm needs to be discretized. In this section, Eq. (9) is
discretized using the forward difference method, which is
e1(k) = z1(k) − y(k)
z1(k + 1) − z1(k)

Ts
= zM2(k) −Mc1e1(k) + n0u

zM2(k + 1) − zM2(k)
Ts

= −m0 [zM2(k) + n0u] −Mc2e1(k)

(12)

where: Ts is the sampling period;Mc1, Mc2 is the error feed-
back gain coefficient of the discrete MLESO to be designed.

The characteristic equation of the discrete estimator is as
follows:

λ(z) = |zI − 8E | = (z− β)2 (13)

where: 8E =

[
1 − TsMc1 Ts
−TsMc2 1 − Tsm0

]
; β is the pole of the

discrete model auxiliary LESO.
The gain matrix of the discrete estimator can be obtained

Mc1 =
2 − 2β − Tsm0

Ts

Mc2 =
β2 + 2(Tsm0 − 1)β + (1 − Tsm0)2

T 2
s

(14)

where: β = e−ω0Ts .

B. DESIGN OF TIME-VARYING FUNCTIONS
The MLESO designed in Eq. (9) is a high gain observer,
which will cause the system to peak too large at the initial
moment and even generate oscillation phenomenon. Since the
gain of MLESO is a function of the time involved, in this
paper, the gain is designed as a time-varying gain. At the
initial moment of motor startup, a small gain is designed to
suppress the phenomenon of peak oversizing, which gradu-
ally increases and stabilizes to a constant value as the motor

speed increases. The time-varying function is designed as:

L(t) =


β0 + kit, 0 ≤ t<

β0 − µ0
ki

µ0, t ≥
β1 − β0

ki

(15)

where β0, µ0 is a constant, ki is the scale factor, t is the time.

IV. IMPROVED MODEL-FREE SLIDING MODE
CONTROLLER DESIGD
The traditional sliding mode control is highly dependent on
the motor parameters, and the speed tracking performance is
reduced when the motor parameters are regulated, for this
reason, a model-free sliding mode controller is used in this
paper.

A. HYPERLOCAL MODEL-FREE THEORY
The hyperlocal model-free theory relies only on the inputs
and outputs of the control system in modeling [17], [18].
Therefore, it can reduce the dependence of the system on
the motor parameters and thus improve the overall robust
performance.

For a single-input single-output system, the hyperlocal
model can be described as the following unknown linear
equation:

H (ty(t)y(t)′ . . . y(t)n u(t)u(t)′ . . . u(t)m) = 0 (16)

where y is the output of the system; u is the input of the sys-
tem; andH is a sufficiently smooth function of its parameters.

In general, equation (16) can be abbreviated as

y(n) = ρu+ F (17)

where n denotes the highest order of the input yto the system,
typically n = 1; ρis a non-physical constant parameter; yis
the output; u is the input; and F is the known part of the
system and all the parameter uncertainties.

B. MODEL-FREE SLIDING MODE CONTROL
In Eq.(17), F contains motor parameters such as motor resis-
tance, inductance, and permanent magnet magnetic chain,
however, these parameters are subject to change with the
external environment. Therefore, in order to improve the
robust performance of the system, the variation of these
parameters should be taken into account as well. For this
purpose the velocity loop extended hyperlocal null model of
PMSLM is designed as:{

v̇ = ηi∗q + F + F ′
= ηi∗q + Y

Y = F + F ′
(18)

where, ηis the current coefficient to be designed, F is all the
uncertain parameters of the system, F ′is the variation value
ofF,Y is the sum ofF andF ′. From Eq. (9) and Eq. (12), the
total disturbance of the system is obtained in real time byzM2.

From equation (18)

i∗q =
−Y + v̇∗ + us

η
(19)
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where: us is the output of the sliding mode controller to be
designed.

Defining the velocity error as a state variable yields

ė3 + us = 0 (20)

From Eq. (18) and Eq. (19), we get

v̇∗ − v̇ = −us (21)

The traditional sliding mode control usually adopts linear
sliding surface when designing the sliding mode surface,
which can achieve the asymptotic convergence of the system
state, but the convergence speed is slow. The terminal sliding
mode control introduces a nonlinear sliding surface [19], [20],
which can well solve the above problems and converge to the
equilibrium point in a limited time.

The terminal slide mold surface is designed to:

s = e3 + a1 |e4|r sign(e1) (22)

where e3 is the position error, e4 is the velocity error, and r is
a positive odd number.

Derivation of equation (22) yields

ṡ = e1 + ra1 |e1|r−1 ė1 (23)

The traditional convergence rate is away from the sliding
mold surface, there is the problem of convergence rate speed
is too small, this paper design convergence rate is shown
below:

ṡ = −k1s− k2 |s|b sign(s) (24)

where: k1, k2 both > 0, 0 < b < 1.
Combining Eq. (23) and Eq. (24) yields a control output of:

us =
e1 + k1s+ k2 |s|b sign(s)

ra1 |e1|r−1 (25)

Lyapunov functions are used to prove the stability of this
velocity controller:

V =
1
2
s2 (26)

Derivation of equation (26) gives:

V̇ = sṡ

= s(−k1s− k2 |s|b sign(s))

≤


s(−k1s− k2 |s|b) s > 0
0 s = 0
s(−k1s+ k2 |s|b) s < 0

(27)

In the case that k1, k2 are both greater than 0, it can be seen
that V̇ ≤ 0. Therefore, the convergence rate designed in this
paper satisfies the stability condition, the controller has good
stability.

C. SWITCHING FUNCTION DESIGN FOR ADAPTIVE
BOUNDARY LAYER THICKNESS
The switching function used in Eq. (25) is the sign func-
tion sgn(s), which constantly traverses near the sliding mold
surface, thus generating a serious vibration phenomenon and
affecting the accuracy of speed estimation. In [21] and [22]
proposes to use the saturation function sat(s) instead of sgn(s),
which can reduce the jitter problem caused by the discontinu-
ity of the sgn(s) function during the switching. However, its
boundary layer thickness is fixed. Although the steady-state
performance can be guaranteed at a fixed rotational speed,
the thickness of the boundary layer cannot be adjusted in real
time with the change of working conditions.

In order to reduce the impact of system jitter on the control
performance. In this paper, a switching function S − T (s) is
proposed in which the thickness of the boundary layer can be
changed adaptively with the change of the value of the error
in the velocity of the actuator. the expression of this function
is shown as follows:

S − T (s) =

 sgn(s) |s| > f (sv)

1 −
π

ef (sv)s + 1
|s| ≤ f (sv)

(28)

where: f (sv) = φ +
√
αs2v + 1 is the value of the change in

the velocity of the actuator, is the error coefficient, and is the
initial boundary layer thickness.

When sv =0.1, 0.2, 0.5, the image of S − T (s) function is
shown in Fig. 1.

As can be seen from Fig. 1 the thickness of the boundary
layer of the S − T (s) function changes with sv. When sv
is larger, the boundary layer of the continuous function is
thicker, and the smaller sv is, the thickness of the boundary
layer is smaller, which is closer to the symbolic function
sgn(s). It can be seen that the function S−T (s) can adaptively
change the thickness of the boundary layer according to the
changing value of the velocity of the actuator, which improves
the control performance of the system.

V. SYSTEM SIMULATION VERIFICATION
The overall structural block diagram of the improved
model-free sliding mode control system for linear motor
based on time-varying gain MLESO is shown in Fig. 2.
From the figure below, the variable gain MLESO observes
the generalized perturbation F through the velocity v and the
q-axis current, and the improved model-free sliding mode
controller uses F and the velocity error to obtain the current.

In order to verify the effectiveness of the observer and con-
trol strategy proposed in this paper. The PMSLM simulation
model is built in MATLAB/Simulink and the vector control
scheme with id = 0 is used. Firstly, TMLESO and MLESO
are compared to analyze the observation performance of the
two methods for generalized perturbations. Then MFSMC
and MFSMC with adaptive boundary layer thickness are
compared in simulation. Table 1 shows the parameter settings
of the permanent magnet synchronous linear motor.
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FIGURE 1. Comparison of S-T(s) function with sign(s) function.

FIGURE 2. Block diagram of improved MFSMC of PMSLM based on
TMALESO.

In this paper, the observer and controller parameters are
selected as follows: k1 = 4, k2 = 3, a1 = 0.5, b = 0.3, r =

3, β0 = 3, µ0 = 6, φ = 0.01, α = 0.05.
The motor is set up to start with no load, given that the

linear velocity of the actuator is 0.2 m/s. A load of 100 N
is applied abruptly at 0.2 s, and the load is abruptly reduced
to 50 N at 0.3 s.

Fig. 3 shows the observed waveforms of TMLESO and
conventional LESO for perturbations when parameter per-
turbation is considered. From Fig. 3, the peak value of
the traditional LESO perturbation reaches 47.6N at the ini-
tial moment of the motor startup, while the TMLESO is
only 1.6N, and the problem of the excessive peak value
is effectively solved. Moreover, the amount of perturbation
overshoot of TMLESO is smaller than that of conventional
LESO during both sudden load addition and subtraction.
Therefore, TMLESO is able to more accurately estimate the
amount of generalized perturbation and feed it back to the
controller compared to the traditional LESO, which effec-
tively improves the control accuracy.

In Fig.3, a represents LESO, b represents TMLESO.
Fig. 4 shows the linear velocity response curves of

MFSMC for the two strategies of fixed boundary layer and
adaptive boundary layer, respectively. From Fig. 4, it can be
seen that the response time of the adaptive boundary layer
is 0.01s during the motor startup phase, while the response
time of the fixed boundary layer is 0.03s. And the velocity

TABLE 1. Parameters of the PMSLM.

FIGURE 3. Generalized perturbation observation curve.

overshoot with adaptive boundary layer control is only
0.002 m/s, while the velocity overshoot under fixed boundary
layer control reaches 0.018 m/s. The time for the adaptive
boundary layer to return to the steady state is significantly
faster than that of the fixed boundary layer for both 0.2 s
sudden load increase and 0.3 s sudden load decrease. The
simulation shows that the adaptive boundary layer has better
velocity tracking ability and faster dynamic response.

In Fig. 4, a represents MFSMC with fixed boundary layer,
b represents MFSMC with adaptive boundary layer.

Fig. 5 shows the velocity error curves for the two control
methods considering parameter perturbation, respectively.
The velocity error at the initial stage of the motor is 0.002 m/s
for the fixed boundary layer and 0.0002 m/s for the adaptive
boundary layer. During the motor stabilization phase, the
velocity error range is 0m/s-0.014m/s for the fixed boundary
layer and 0m/s-0.0002m/s for the adaptive boundary layer.
As a result, the adaptive boundary layer control method has a
smaller speed error range and better steady state performance
of the system.

In Fig.5, a represents MFSMC with fixed boundary layer,
b represents MFSMC with adaptive boundary layer.

VI. ANALYSIS OF EXPERIMENTAL RESULTS
The experimental platform is shown in Fig. 6. It consists of
the host computer, emergency stop button, PMSLM, servo
driver, and scale.

Among them, the experimental platform motor parameters
and working conditions are shown in Table 2.

To verify the effectiveness of the designed control strategy,
the experimental conditions are made to match the simulation
settings.
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FIGURE 4. Linear speed response curve.

FIGURE 5. Speed error curve considering parameter perturbation.

FIGURE 6. Experimental platform.

In the experiment, the grating scale is used to obtain the
actual speed of the motor, and the data of the actual speed and
the waveform of the observed value are exported through the
upper computer. And with the help of MATLAB simulation
software to draw the corresponding waveform.

From the Fig. 7, it can be seen that the initial peak of
LESO is very high during the motor startup phase, reaching
about 108 N, but TMLESO is only 25 N. Second, the LESO
took longer than the TMLESO to return to a steady state
both when a 100N load was added suddenly and when a
load was subtracted suddenly. Therefore, TMLESO not only

TABLE 2. Experimental platform motor parameters and working
conditions.

FIGURE 7. Experimental observation curves for generalized perturbations
(a)LESO (b)TMLESO.

suppresses the peak at the initial moment well, but also
improves the dynamic response speed compared to LESO.

From the Fig.8, it can be seen that the velocity error of
the MFSMC with fixed boundary layer in the motor stabi-
lization stage is 0m/s-0.0025m/s,while the velocity error of
the MFSMC with adaptive boundary layer is 0m/s-0.05m/s.
The velocity error of theMFSMCwith the adaptive boundary
layer is smaller than that of the MFSMC with the fixed
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FIGURE 8. Experimental response curve for linear velocity (a) MFSMC
with fixed boundary layer (b)MFSMC with adaptive boundary layer.

boundary layer at both 0.2 s sudden load increase and 0.3 s
sudden load decrease. This shows that the adaptive MFSMC
reduces the velocity error and improves the steady state
performance of the system.

In summary, the control strategy proposed in this paper
can effectively improve the dynamic performance and control
accuracy of the system.

Given the existence of external factors such as air resis-
tance and friction in the actual working conditions. It can be
considered that the experimental results are basically consis-
tent with the simulation results, proving the effectiveness of
the proposed control strategy.

VII. CONCLUSION
In this paper, we propose a PMSLM speed control method
that combines TMLESO and an improved model-free sliding
mode controller. The key innovations are: (1) The internal
parameter perturbation of the motor is taken into account
in the design of the observer, which improves the obser-
vation accuracy of the generalized perturbation, while the
time-varying function is designed to solve the problem of
the initial perturbation peak being too large. (2) A switching
function with adaptable boundary layer thickness is used in

the velocity sliding mode controller to weaken the inherent
jitter of the sliding mode control and improve the veloc-
ity tracking performance. The effectiveness of the proposed
scheme is verified byMATLAB simulations and experiments
on the PMSLM drive system.

In the following work, the focus will be on the current loop
intelligent control of PLSLM to further enhance the speed
control performance.
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