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ABSTRACT Medical image segmentation is a challenging and popular task in the field ofmedical image pro-
cessing in recent decades. Most of the current mainstream segmentation networks are based on convolutional
neural networks (CNNs) methods. Among them, encoding and decoding structures based on U-Net archi-
tecture and skip connection mechanism have made great progress in medical segmentation. However, these
networks come with increased complexity and training difficulty as the accuracy of network segmentation
continues to increase, and their ability remains to be improved for extracting feature information in specific
information-intensive structure segmentation tasks, such as brain tumors. In addition, the high training cost
raises the application threshold of medical image segmentation. To address these issues, we introduce a fre-
quency representation approach that can effectively reduce the loss of feature during encoding and decoding
of segmentation networks. Then a tokenized multi-layer perceptron (MLP) method is introduced to learn
the space information. Frequency representation and tokenized MLP can greatly reduce the parameters and
computational effort while achieving more accurate and efficient medical image segmentation. Therefore,
amulti-level lightweight U-Net segmentation network namedMLU-Net is proposed to perform segmentation
tasks of medical images quickly. In brain tumor segmentation experiments under equivalent preprocessing
conditions, our network achieves substantial efficiency gains with parameter and computational workload
reductions to 1/39 and 1/61 of U-Net’s, while simultaneously demonstrating superior performance,
enhancing the Dice and Intersection over Union (IoU) metrics by 3.37% and 3.30%, respectively. In addition,
we perform experiments on dermatologic data and still achieve segmentation performance that outperforms
comparable networks. These experiments show that the proposed network is characterized by lightweight
and high accuracy, which is contributing to the exploration of clinical medicine scenarios.

INDEX TERMS Medical image segmentation, convolution neural networks, frequency representation,MLP-
based, brain tumor segmentation, computer-aided diagnosis.
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I. INTRODUCTION
Automatic segmentation of medical images holds paramount
significance within the realm of medical imaging. Medical
images encompass intricate structures and organizational
information derived from diverse scanning modalities such
as X-ray [1], CT scans [2], [3], and MRI [4], among others.
Nevertheless, reliance on medical experts for diagnosis
entails temporal and resource expenditures and is suscep-
tible to clinical experience bias. Automated segmentation
techniques precisely extract regions of interest (such as
organs, anomalies, vessels) from medical images, effectively
segregating them from backgrounds or other structures.
This augmentation facilitates clinicians in diagnosis, treat-
ment, and disease monitoring. Automated medical image
segmentation facilitates easier discernment and analysis of
characteristics such as shape, size, and spatial orientation
of anomalies and tumors than manual observation. The
meticulous extraction of regions of interest from intricate
backgrounds or other structures significantly contributes to
bolstering the accuracy and dependability of diagnostics and
treatments [5]. As a computer-aided diagnostic system, auto-
mated medical image segmentation serves as an exceptional
tool for aiding clinicians in gaining a deeper understanding
of a patient’s medical condition throughout the course of
treatment.

Advancements in human proficiency and evolving med-
ical exigencies impose heightened requisites upon medical
practitioners. Distinct medical images encompass varying
degrees of intricacy. As exemplified in Figure 1, Brain tumors
exhibit an array of intricate configurations. What’s clear is
that human progress in medicine needs to be supported by
improved computer-aided diagnostic systems.

Early methodologies for medical image segmentation
predominantly relied on threshold-based techniques [6].
These approaches entailed the division of images into
target and background through the selection of appropriate
pixel intensity thresholds. While straightforward to imple-
ment, these methods exhibited suboptimal performance for
images characterized by intricate backgrounds and noise.
Subsequently, techniques emerged encompassing region
growing, region splitting and merging, edge detection,
contour evolution, and graph-theory-based segmentation.
With the evolution of machine learning techniques, machine-
learning-based approaches for medical image segmentation
came to the fore, and emarkable advancements have been
witnessed in the domain of medical image segmentation
owing to deep learning techniques [7], [8]. Notably, the
advent of convolutional neural networks(CNNs) in recent
years has substantially augmented the semantic segmentation
capabilities of medical images. Deep learning methods have
harnessed data-driven training to apprehend the inherent
features and contextual information within medical images,
consequently yielding precise segmentation outcomes.

However, it is noteworthy that these computational proce-
dures are primarily operated within the spatial domain, with-
out due consideration of the disparities between computer

FIGURE 1. Some samples of brain tumors, where the irregular green parts
are regions of tumor lesions in the brain.

vision and human visual perception. With the objective of
extracting enhanced information from images, we introduce
image processing methodologies rooted in the frequency
domain representation, which can be processed by a
computer. The amalgamation of spectral maps and spatial
diagrams is employed to jointly extract characteristic infor-
mation, thereby effecting an amelioration in the performance
of medical image segmentation.

Mainstream methods in medical image segmentation
networks commonly adopt an encoder-decoder architecture.
Seg-Net [9], acknowledged as the pioneer in the encoder-
decoder segmentation network paradigm, remains widely
embraced. Meanwhile, the predominant landscape of med-
ical image segmentation networks predominantly revolves
around the U-Net architecture and its variants [10]. Skip
connections introduced innovatively in U-Net’s between the
encoder and decoder facilitates enhanced fusion of high-
level and low-level features, thereby significantly augmenting
the capacity for learning distinctive features pertinent to
segmentation targets [11]. This advancement has notably
propelled groundbreaking strides within the realm of medical
image segmentation. In contrast to alternative architectures,
U-Net manifests expedited processing and superior efficacy
in segmenting medical images, consequently spawning a
proliferation of U-Net-based enhancements in recent years,
including U-Net++ [12], [13] and related derivations. U-Net
has indeed emerged as the foundational bedrock underpin-
ning nearly all mainstream methodologies in medical image
segmentation [14]. However, as classic convolutional neural
network models, U-Net and its variant networks continue to
grapple with several inherent challenges:

1) The utilization of small convolution kernels throughout
the entire convolutional process imposes a local context
constraint on the network’s capacity for feature acquisition.
Furthermore, the extensive convolutional kernel operations
throughout the network engender substantial computational
complexity and parameter proliferation.

2) During the downsampling phase, the predominant
adoption of convolution and pooling techniques in U-Net
processes both critical and non-critical information uniformly
within the spatial domain, resulting in limited preservation of
valuable feature information.

3) The U-Net architecture exhibits a simplistic superpo-
sition of information during upsampling and the decoding
process with skip connections, failing to adequately amplify
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the information content of high-resolution but low-level
semantic feature maps and low-resolution but high-level
semantic feature maps.

In response to this array of challenges, we have introduced
frequency domain-based upsampling and downsampling
techniques into the foundational U-Net structure. Further-
more, we have enhanced the network architecture through
the integration of MLP methodologies. These strategic
enhancements optimize the network’s capacity for global
feature information acquisition while concurrently mitigating
network complexity and computational demands.

Finally, we construct an efficient and lightweight network
architecture. In summary, the principal contributions of our
study can be encapsulated as follows:

• A refined frequency representation approach is intro-
duced into CNNs and is specifically employed in
the context of downsampling and upsampling proce-
dures, demonstrating heightened efficiency in acquiring
enriched semantic information relevant to segmentation
objectives. Modules built upon this methodology can
seamlessly replace extant deep learning modules with-
out necessitating significant adjustments.

• In pursuit of network lightweighting and the acquisition
of more enriched feature information, the conventional
U-Net architecture is supplemented with a tokenized
MLP. Therefore, a lightweight network, MLU-Net,
is proposed, which integrates both frequency domain
information and tokenized MLPs.

• MLU-Net attains superior segmentation effect in con-
trast to existing state-of-the-art networks, while employ-
ing a mere 1/39 of the parameter count and a 1/61 of
computational load comparing that to U-Net, all within
identical preprocessing conditions. Furthermore, MLU-
Net demonstrates its adaptability across diverse medical
segmentation scenarios, wherein it exhibits powerful
performance and robustness.

II. RELATED WORK
In this section, relevant work of medical image processing
will be reviewed. Meanwhile, methods of frequency domain
representation, medical image segmentation networks and
MLP-based methods are elaborated and analyzed.

A. PROCESSING OF FREQUENCY DOMAIN IMAGES
Frequency domain images refer to images represented in the
frequency domain through Fourier transformation or other
frequency domain transformation methods, which transition
images from the spatial domain to the frequency domain.
In the frequency domain, high-frequency components signify
image details and variations, while low-frequency com-
ponents denote overall image structures and approximate
shapes. Frequency domain images provide an alternative
perspective for comprehending and processing images.
Analyzing an image’s frequency distribution facilitates the

acquisition of richer information, thereby yielding enhanced
outcomes in image processing and analysis.

In order to translate spatial domain images to frequency
domain images, two-dimensional discrete Fourier transform
finds extensive application in the realm of image processing.
Fourier transform furnishes a potent representation for
feature extraction [15], offering a convenient means to
acquire various types of feature information. Leveraging
this characteristic, the 2D discrete Fourier transform can
be more effectively integrated within convolutional neural
networks. Numerous scholars have embarked on innovative
explorations within convolutional neural networks. Pratt
et al. [16] introduced the Fourier Convolutional Neural
Network (FCNN), yielding satisfactory performance. Ayat
et al. [17] proposed the spectral rectified linear unit
(SReLU) as an activation function to address issues posed
by computationally intensive domain transformations. Pour
and Seker [18] advocated integrating transform domain
representation by injecting Laplacian pyramids into the
network architecture, its performance in image processing
substantiates its promising utility [15], [19].

In this paper, our intention is to segregate low-frequency
contour information from high-frequency detail informa-
tion within the frequency domain, due to information-rich
characteristics and information distribution attributes of
spectrogram. Subsequently, we plan to integrate this segre-
gated information into the upsampling and downsampling
processes of medical image segmentation networks.

B. NETWORK MODEL OF MEDICAL IMAGE
SEGMENTATION
In the field of medical image segmentation, U-Net is a widely
recognized CNN model proposed by Ronneberger et al. [11],
where this network contains encode-decode structure and
skip connections. The encoding part employs a contracted
path to capture contextual information, while the decoding
part uses a symmetric expanded path to achieve precise
localization of the segmentation targets. The network is
designed to process the entire image end-to-end, directly
generating the segmentation map. Owing to its efficacious
skip connection mechanism, which integrates high-level
low-resolution features with low-level yet high-resolution
features, the U-Net architecture has garnered extensive
adoption in recent scholarly endeavors [12], [20], [21], [22],
[23], [24], [25].

In an extended inquiry into the skip connection mecha-
nism, Zhou et al. [12] and Zhang et al. [22] innovatively
devised novel skip paths with the intent of diminishing
the semantic and resolution disparity that exists between
low-level and high-level features. Numerous complementary
approaches have been introduced in this realm, including
the R2U-Net method developed by Alom et al. [20], the
DENSE-INception U-Net framework pioneered by Zhang
et al. [26], the attention U-Net architecture advanced by
Oktay et al. [27], and the bi-directional ConvLSTM U-Net

20736 VOLUME 12, 2024



L. Feng et al.: MLU-Net: A Multi-Level Lightweight U-Net

model proposed by Azad et al. [21]. Notably, Milletari
et al. introduced V-Net [25], which represents a three-
dimensional extension of the U-Net architecture, enabling
the segmentation of volumetric data in a single pass. It is
imperative to acknowledge that as these networks contribute
to the refinement of segmentation accuracy, they also notably
engender escalated computational demands and intricacy
within the network architecture. Within the confines of this
study, we introduce techniques centered around frequency
representation andMLPmethodologies into the framework of
the U-Net architecture. This amalgamation culminates multi-
level convolutional neural network tailored for medical image
segmentation, denoted as the multi-level U-Net (MLU-Net).

C. MLP-BASED METHODS
The resurgence of interest in the realm of computer vision
is currently being catalyzed by the emergence of the MLP,
a multi-layered neural architecture shown in (a) of Figure 2.
This resurgence has been notably accentuated by the recent
proposition of the MLP-Mixer by the Google research
collective [28]. This architectural innovation, characterized
by its token-mixing and channel-mixing modules, represents
a departure from conventional convolutional neural networks
(CNNs), heralding a fresh avenue of exploration in feature
extractionmethodologies. As such, the discourse surrounding
the MLP-Mixer underscores its potential to augment the
prevailing paradigms of image classification and analysis,
inviting scholarly attention and conjecture regarding its
implications for advancing the frontier of computer vision.

MLP-Mixer was proposed by Tolstikhin et al. [28] in
2021. The architecture is based on the idea of using only
MLPs for all computation, without using any convolutional
layers. It consists of two types of layers, called the ‘‘channel-
mixing layer’’ and the ‘‘token-mixing layer’’. The channel-
mixing layer operates on each channel of the input tensor
independently, while the token-mixing layer operates on each
spatial location (or ‘‘token’’) of the tensor independently.
By using only MLPs, the MLP-Mixer architecture is more
flexible and scalable than traditional CNNs. It also achieves
state-of-the-art performance on several image classification
benchmarks while requiring fewer computational resources.
Overall, MLP-Mixer represents a promising direction for the
design of neural network architectures for computer vision.
The method achieves similar segmentation results as ViT [29]
on some mainstream datasets.

However, the MLP-Mixer framework has limited gen-
eralization capability and often misses low-level semantic
information. To address these limitations, the AS-MLP
proposed by Lian et al. [30] is designed to address the issue of
shift-variance in traditional methods. It consists of a stack of
axial shifted multi-layer perceptrons, which are MLPs with
shift operations applied in the axial direction. Specifically,
the input feature maps are divided into multiple groups, and
each group is shifted along a specific axis independently. The
architecture also includes a ‘‘coarse-to-fine’’ strategy, where

the lower layers of the network capture coarse features, while
the higher layers capture finer features. Its structure is shown
in (b) of Figure 2. This strategy is achieved using multiple
MLPs with different kernel sizes and feature map sizes.

AS-MLP achieves state-of-the-art performance on several
image classification benchmarks, and also outperforms other
shift-equivariant networks on small image datasets. It is
computationally efficient and can be easily implemented in
existing deep learning frameworks, making it a promising
direction for the design of neural network architectures for
computer vision.

Valanarasu and Patel [31] have developed a novel frame-
work called UNeXt by incorporating tokenized MLP blocks
into U-Net. This framework is designed to extract local-
to-global semantic information from input feature maps by
performing sequential feature transformations on the vertical
and horizontal dimensions, corresponding to different axial
shifts. Unlike AS-MLP, which simply sums features in two
dimensions, UNeXt employs a symmetric encoder-decoder
architecture and can effectively reduce model parameters and
time complexity. The structure of tokenized MLP is shown
in (c) of Figure 2. Here, tokenized MLP will be introduced
into the fourth and fifth level of our proposed MLU-Net
architecture to focus on high-level semantic information.

III. METHOD
In this section, an overview of our proposed network is first
given. Then, the details of each level of the proposed multi-
level network will be explained.

A. MLU-NET
The whole network architecture of MLU-Net is shown in
the Figure 3, which is a multi-level segmentation network
based on U-Net. Given an input image I ∈ RH×W×C ,
where H, W and C are the height, width, and channel
number of the input images in the network. The channel
number of feature map in each layer of U-Net is decreased,
in order to reduce the number of network parameters and the
computational complexity, and solve the overfitting problem
in training. Then we propose substituting the original channel
numbers (C1, C2, C3, C4, C5) in the U-Net architecture
with lower values. This modification significantly enhances
the network’s training efficiency while preserving excellent
metrics in medical image segmentation.

The MLU-Net architecture consists of five hierarchical
levels, exhibiting distinct processing strategies, in addition to
varying scales and channel numbers. The first three levels
employ a CNN approach with reduced channel numbers,
where each level of the encoding and decoding structure
has 2D convolutional(Conv2D) layers, Rectified Linear Unit
(ReLU) layers, and batch normalization(BatchNorm) layers.
The encoding structure in these three levels utilizes a multi-
downsampling module to reduce the dimensions of feature
maps, which is explained in detail in section III-C and
replaces traditional pooling methods while preserving more
comprehensive essential feature information. Similarly, in the
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FIGURE 2. MLP and its evolved MLP-based axial shift structures.

decoding structure, a frequency domain upsampling module
is incorporated before each CNN level. The spectrogram
upsampling block(SUB) replaces conventional interpolation
upsampling methods to restore finer feature information,
as elaborated in section III-D. Additionally, skip connections
between the same hierarchical levels are accomplished
through the collaborative efforts of the multi-downsampling
module and the spectrogram upsampling block. In the
fourth and fifth levels among the five hierarchical levels,
an MLP-based approach is employed. This results in a novel
multi-level network composed of various types of layers,
which we term as MLU-Net.

B. APPLICATION OF FOURIER TRANSFORM
Presently, the majority of research in the realm of med-
ical image processing tends to focus on spatial domain
methodologies. Spatial domain imagery aligns with the
visual data captured by the human visual system, thereby
rendering the information more readily perceptible and
comprehensible to human cognition. However, disparities
exist between the cognitive processes of computer vision
and the human visual system in the interpretation of images.
Humans frequently rely on contextual and situational infor-
mation to imbue images with deeper meanings during their
comprehension. In contrast, computer vision systems often
encounter limitations in handling context and situational
nuances due to the fixed nature of input data, thereby
hampering the comprehensive consideration of dynamic
factors in task design [32]. In the design of computer vision
tasks, it is crucial to acknowledge that humans tend to
dynamically adjust sensitivity to context when processing
images, a nuance that may be lost in static computer vision
tasks. Consequently, designing computer vision tasks based
on our own cognitive paradigms inevitably results in the
loss of cognitive information. Employing frequency domain
processing methods can mitigate this information loss to
some extent.

Considering the above, we further introduce the concept
of frequency domain representation of images. Transforming

spatial domain images into spectrums of the frequency
domain, and then the spectrum graph is more suitable for
distinguishing between structural and detailed information
in an image. As opposed to conventional spatial domain
methods, frequency domain entails a more abstract depiction
of image information. Each pixel within the frequency
domain spectrum corresponds to distinct frequency band
image details, and their collective fusion constitutes the
entirety of the spectrum’s information. In the spatial domain,
individual pixels merely convey localized details, and it is
the aggregation of these local details that forms a compre-
hensive spatial image. Given that medical image acquisition
predominantly occurs via signal-based instrumentation, the
advantages of processing medical images in the frequency
domain are evident. To sum up, the frequency domain
representation approach presents substantial opportunities for
advancement of medical image processing.

The process of converting spatial domain images into fre-
quency domain representations is notably achieved through
the utilization of the two-dimensional discrete Fourier
transform(2D-DFT). The versatility of the Discrete Fourier
Transform (DFT) extends to applications in both two-
dimensional and higher-dimensional contexts. Given a spatial
domain image denoted as f (x, y) ∈ RH×W , the two-
dimensional discrete Fourier transform yields the frequency
domain representation in the form of the spectrum F(u, v) ∈
RH×W . This transformation and inverse transformation can
be formally expressed as:

F (u, v) =
H−1∑
x=0

W−1∑
y=0

f (x, y) e−2π i(
xu
H +

yv
W ) (1)

f (x, y) =
1
HW

H−1∑
u=0

W−1∑
v=0

F (u, v) e2π i(
ux
H +

vy
W ) (2)

here, H and W symbolize the dimensions of height and
width, while u, x∈ {0, . . . , H-1} and v, y∈ {0, . . . , W-1}
respectively denote the spatial coordinates within the image
domain. Its inverse transformation format is expressed as
F−1(u, v) = F∗(u, v), representing the complex conjugate
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FIGURE 3. Overview of MLU-Net, a multi-layer lightweight U-Net structure network with frequency domain levels and MLP levels. It mainly contains
multi-downsampling module(MDB), spectral upsampling module(SUB), tokenized MLP module to improve the network.

of the original transformation. A comprehensive elucidation
of this concept is provided in article [15]. Leveraging
this property, a distinctive approach to image processing,
divergent from the conventional spatial domain, becomes
attainable. Furthermore, a technique known as fast Fourier
transform (FFT) exploits the distinguishing characteristics of
the discrete Fourier transform-oddness, evenness, imaginary,
and real-to refine the algorithmic aspects of the discrete
Fourier transform. Ultimately, we opt to employ the FFT
methodology to significantly reduce computational time
complexities. The characteristics of Fourier transform and
spectral imagemake image processing expandmore abundant
processing means, such as multiple images can be obtained
for processing according to high and low frequency sepa-
ration, and can be restored to the original image. Further,
we can isolate the key information we need by different
frequencies. The visualization of the Fourier transformation
effects is illustrated in Figure 4.

C. MULTI-DOWNSAMPLING BLOCK(MDB)
Downsampling assumes a pivotal role within the con-
volutional neural network. It involves the reduction of
spatial resolution in the input image while simultaneously
augmenting the channel dimensions of feature maps. This
synergy facilitates the assimilation of diverse-scale feature
information from the input image, enhancing the network’s
capacity to comprehend both structural intricacies and con-
textual nuances within the image. Moreover, downsampling
contributes to the mitigation of computational demands and
memory footprint in image processing tasks. The progressive
diminution of feature map dimensions engendered by this
iterative process empowers the network to holistically
perceive variations in the scale of input images. This attribute

FIGURE 4. (a): Schematic diagram of high frequency and low frequency
separation and reorganization effect. (b) The fast Fourier transform and
the inverse fast Fourier transform are applied directly to the image.
Through the fast Fourier transform of the image to obtain the spectral
map, according to the high frequency and llow frequency a spectral map
will be separated into two spectral maps by use of different mask, and
then through the inverse fast Fourier transform to restore the original
image. The effect is equivalent to the direct inverse fast Fourier transform.

becomes particularly advantageous in addressing tasks like
semantic segmentation, as it facilitates the more effective
capture of multi-scale information. Presently, mainstream
downsampling methods include techniques such as average
pooling, max pooling, and probabilistic pooling. These
downsampling methods selectively discard information from
adjacent pixels in the spatial domain, employing similar
strategies for both information-dense and sparse regions,
thereby resulting in substantial information loss. The capacity
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to retain valuable information during the downsampling
process warrants further investigation.

The U-Net segmentation network employs a contrac-
tion path in its encoding structure, incorporating multiple
downsampling operations to preserve pivotal feature infor-
mation. In addition to convolutions, downsampling methods
primarily entail the aggregation of local pixel values into
representative one specific pixel value. These methods aim to
concurrently diminish image resolution while retaining holis-
tic information, commonly encompassing strategies such as
max pooling and average pooling. However, these methods
are rigid in their information loss as the resolution decreases.
Addressing this limitation, we introduce a frequency domain
downsampling approach, culminating in the proposal of a
multi-downsampling block, which allows for selective preser-
vation of feature details during the downsampling process.
Notably, frequency domain spectrums exhibit distinct distri-
butions of high and low-frequency image information. High-
frequency components encompass intricate texture details,
while low-frequency regions encapsulate essential contour
information. The function of the multi-downsampling is to
capitalize on this inherent characteristic [15]. In the context
of medical image segmentation tasks, our focus centers on
extracting the pivotal central low-frequency domain from the
spectrum.

Subsequently, we delve into the comprehensive expo-
sition of the novel multi-downsampling block. Multi-
downsampling block comprises two distinct branches. The
initial facet is rooted in the introduction of a downsampling
approach grounded in the frequency domain representation,
emphasizing the retention of the central low-frequency
domain within the frequency spectrum to glean salient feature
information. Commencing with the original input image
of dimensions H × W , fast Fourier transform yields a
frequency spectrum of equivalent dimensions to those before
the transform. Notably, a copy of this spectrum will be
transmitted to the same layer in the decoding structure by way
of a skip connection. A subsequent operation involves crop-
ping the central low-frequency domain from the frequency
spectrum. Specifically, the central region corresponding to
one-fourth of the original image area is retained, resulting
in a new frequency spectrum of dimensions H

2 ×
W
2 .

The application of a inverse fast Fourier transform(IFFT)
facilitates the restoration of the new frequency spectrum to
its original spatial domain dimensions of H

2 ×
W
2 , yielding a

downsampled low-resolution feature map. The algorithm of
multi-downsamping is shown in Algorithm 1.
Within the Algorithm 1 workflow, the input is a feature

map X of size H × W . FFT denotes the fast Fourier
transform, employed to generate a spectrum image of the
same dimensions as the input image, as delineated in
Equation (1). Furthermore, a duplicated sample, denoted
as XCopy, originating from XSpec, is propagated as output
and input into the corresponding upsampling block within
the skip connection structure. The Crop operation entails
the central region cropping of the input image, specifically,

Algorithm 1Multi-Downsamping
Require: Feature map X of size H ×W
Ensure: Skip conection XCopy ∈ RH×W and sampled image

X̂ of size H
2 ×

W
2

1: XSpec ∈ RH×W
← FFT (X )

2: XCopy ∈ RH×W
← Copy(XSpec)

3: XCenter ∈ R
H
2 ×

W
2 ← Crop(XSpec)

4: XS1 ∈ R
H
2 ×

W
2 ← IFFT (XCenter )

5: XS2 ∈ R
H
2 ×

W
2 ← Pooling(X )

6: X̂ ∈ R
H
2 ×

W
2 ← Add(XS1,XS2)

7: return XCopy, X̂ .

a quarter of its size from the center, encompassing the
height range from 1

4H to 3
4H and the width range from 1

4W
to 3

4W . Correspondingly, IFFT represents the inverse fast
Fourier transform operation as delineated in Equation (2).
While Pooling signifies the utilization of the Max-Pooling
method in this context. Finally, the Add operation combines
the information from two image. Ultimately, the output is a
spectrogram backup XCopy of sizeH×W and a downsampled
feature map X̂ of size H

2 ×
W
2 .

In comparison with conventional pooling methods, this
frequency domain-integrated approach selectively discards
feature information with lower relevance to the task, such
as textural details. Furthermore, recognizing the contextual
limitations inherent in this characteristic across diverse image
types, we adopt a nuanced approach that amalgamates
both frequency domain and conventional methods within
a Multi-downsampling block. This amalgamation serves to
augment the block’s generalizability. Thus, emerges the
Multi-downsampling block, as visually demonstrated in
Figure 5.

D. SPECTRUM UPSAMPLING BLOCK(SUB)
In the context of medical image segmentation tasks, the
role of upsampling is equally of paramount significance.
The objective of medical image segmentation involves the
discrimination of distinct structures or entities within an
image, such as demarcating tumor regions in magnetic
resonance images. However, the meticulous delineation of
intricate details and contours within the image necessitates
high-resolution feature maps. The process of upsampling is
typically effectuated throughmethods such as interpolation or
transposed convolutional layers, aiming to restore the lower-
resolution feature maps to their original image dimensions,
concurrently striving to reintegrate lost fine-grained details.
This step constitutes a pivotal element within segmentation
networks, wherein feature maps are elevated to the resolution
of the original image.

In our approach, we contemplate a strategy for image
detail recovery, whereby we introduce the adoption of an
upsampling methodology rooted in the frequency domain
representation [33]. This strategy selectively reconstitutes
image details during the restoration of image details,
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FIGURE 5. Multi-downsampling block(MDB), it consists of two parts: frequency domain downsampling and traditional downsampling.

embodying a distinctive attribute within the upsampling
procedure.

The amalgamation of high-level semantic cues with
low-resolution features and low-level semantic cues with
high-resolution features constitutes an efficacious approach
for the restoration of intricate target object details. The
fusion of semantic information and high-resolution details
in the frequency domain yields more potent connections
than those achieved in the spatial domain. In this segment,
we embrace an alternative strategy for upsampling, which
involves the introduction of a method based on frequency
domain representation [33], thereby substituting conventional
techniques such as interpolation and transposed convolution.

To attain a high-resolution image encompassing fused
high-level semantic features, a sequential procedure involves
enhancing the dimensions of the spectral representation of
high-level semantic features and subsequently embedding
them within the high-resolution imagery of low-level seman-
tic information. The algorithm of spectrum downsamping is
shown in Algorithm 2.

The specific steps of Algorithm 2 are as follows: The
high-resolution frequency domain spectrum feature map
XCopy with dimensions 2H × 2W , obtained from the skip
connection, undergoes a Centre_Wipe operation by cropping
to retain only the edge high-frequency region. This high-
frequency portion of the spectrum map contains rich image
detail information. This component is shown in the upper
branch of Figure 6. Subsequently, the semantic high-level
feature map X with dimensions H × W is transformed
into a frequency spectrum feature map through fast Fourier
inverse transform for further processing. This part includes
abundant image contour information. The feature map’s size

Algorithm 2 Spectrum Upsamping
Require: High-level semantic information feature map X of

size H × W , and high resolution spectrum feature map
XCopy of size 2H × 2W

Ensure: Upsampled feature map X̂ of size 2H × 2W
1: XEdge← Center_Wipe(XCopy)
2: XS ← FFT (X )
3: XCenter ← Edge_Padding(XS )
4: XAdd ← Add(XEdge,XCenter )
5: X̂ ← IFFT (XAdd ).
6: return X̂ .

is increased to 2H × 2W by zero-padding along the edges,
where the zero-padding process does not introduce additional
information to the spectrum map. It corresponds to the lower
half of the merge branch in Figure 6. Finally, the high-level
semantic spectrum feature map is integrated with the high-
resolution spectrum feature map from the skip connection to
combine high and low frequency regions, resulting in a new
upsampled frequency spectrum feature map with dimensions
2H × 2W . The spatially upsampled feature map X̂ with
dimensions 2H×2W is obtained through fast Fourier inverse
transform. This completes the frequency domain upsampling
process, as illustrated in Figure 6.

E. TOKENIZED MLP MODULE
In order to comprehensively capture spatial relationships
among features while maintaining a lightweight network
model, we introduced the tokenized MLP method [31]
based on MLP in the fourth and fifth layers of MLU-Net.
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FIGURE 6. Spectrum upsampling block(SUB), fuses high-level semantic features and high-resolution features in spectral domain.

Traditional MLPs often demand a substantial number of
parameters for processing image data within fully connected
layers. However, the incorporation of axial shift mechanisms
allows for more efficient information processing, alleviating
the burden of excessive parameterization. The positional
information introduced by axial shift operations facilitates
a more profound understanding of the relative positions
and spatial relationships among features. Consequently, the
network is better at capturing features on different locations,
thereby expanding its receptive field and enabling a more
comprehensive comprehension of structural information
within images. We integrated this approach into MLU-
Net to enhance global information acquisition capabilities,
thereby improving segmentation accuracy while simulta-
neously reducing the parameter count and computational
complexity.

The tokenized MLP module takes the feature map X as
input, and within the module, we employ an axial shift
mechanism for spatial interaction on the input feature map
X. The axial shift mechanism, the same as AS-MLP [30] (as
shown in Figure 2(b)), is distinctive in tokenized MLP as it
sequentially utilizes the shift mechanism in both horizontal
and vertical directions. The feature X is partitioned into
multiple distinct segments, and after shift the partitions
horizontally and tokenize them, global feature information is
extracted throughMLP, utilizing depth-wise separable convo-
lution (DWConv) for feature extraction. Similar procedures
are applied in the vertical direction. This process effectively
preserves salient feature information in the feature map while
discarding features with low task relevance. Following the
axial shift mechanism, there is a residual connection and layer
normalization (LN) to enhance the model’s generalization
ability. The final output is reprojected to a dimensional
consistency with the input X (as shown in Figure 2(c)).
Reproject is employed to maintain dimensional consistency.

The module of tokenized MLP is described by the following
equations,

Xshift = ShiftW(X );TW = Tokenize (Xshift) , (3)

Y = f (DWConv ((MLP (TW )))) , (4)

Yshift = ShiftH(Y );TH = Tokenize (Yshift ) , (5)

Y = f (LN (T +MLP (GELU (TH )))) . (6)

In equations (3), (4), (5) and (6),X represents the input feature
map of the tokenized MLP module. ShiftW and ShiftH denote
horizontal and vertical shift operations, respectively [30].
The Xshift and Yshift are generated by ShiftW and ShiftH,
respectively. T denotes the feature tokens of feature map X ,
and TW and TH represent ofXshift andXshift, respectively. Cor-
respondingly, the Reproject block in Figure 2(c), represented
by f , is responsible for reprojecting the feature tokens to
restore the feature map. In addition to the blocks represented
in Figure 2(c), the Reproject block is also used before
the second tokenization. Additionally, we incorporate the
Gaussian error linear unit (GELU) for its smoothness, aiming
to enhance the convergence speed and overall performance
of the model [34]. Furthermore, layer normalization (LN)
and residual connection are employed to ensure network
stability. The final feature map Y is obtained by reprojection
of the output feature tokens. The entire process is illustrated
in Figure 2(c), emphasizing the transformation between
feature maps and feature tokens as described in the depicted
equations.

Considering that these computations occur in the embed-
ding dimension E , which is notably smaller than the
dimension of the feature map H

N ×
H
N , where N is a

factor determined by the module (typically 2), we adhere
to the methodology inherited from paper [31]. Unless
otherwise specified, E is set to 768. This tokenized MLP
module design is instrumental in encoding valuable fea-

20742 VOLUME 12, 2024



L. Feng et al.: MLU-Net: A Multi-Level Lightweight U-Net

ture information, with the added benefit of not incurring
additional burdens in terms of parameters and computational
complexity.

F. LOSS FUNCTION
The choice of the Binary Cross-Entropy Loss with Logits as
our loss function is rooted in its efficacy in estimating the
similarity between predicted and actual segmented images
during the training phase. This selection proves particularly
advantageous when confronted with imbalanced datasets,
a prevalent characteristic in medical imaging scenarios where
instances of pathology constitute a minority class. Diverging
from the conventional Binary Cross-Entropy Loss, this
variant operates on unprocessed values (logits) generated by
the model, as opposed to probability values, thereby offering
stability and efficiency in optimization. The incorporation
of logits mitigates the vanishing gradient problem, thereby
enhancing convergence during training. In the context of
medical image segmentation, this loss function exhibits
notable advantages in terms of numerical stability. Binary
Cross-Entropy Loss with Logits is represented by the
equations:

L = −
1
N

N∑
i=1

[
yi · log(σ (ŷi))+ (1− yi) · log(1− σ (ŷi))

]
(7)

σ (x) =
1

1+ e−x
(8)

where ŷ denotes the raw output predicted by the model, while
y represents the actual binary labels. The symbol σ signifies
the sigmoid activation function shown in Equation (8), and
N corresponds to the batch size, which signifies the number
of samples processed in a single training iteration. This
formula signifies the computation of the average loss across
all samples within the batch, where the ultimate loss value,
denoted as L represents the mean loss per sample. This metric
serves as a performance indicator for the model and guides
the backpropagation process to update model parameters.
A higher similarity between predicted results and ground
truth leads to lower loss function values, indicative of superior
predictive performance.

IV. EXPERIMENTS
In this section, the performance of the model MLU-Net is
evaluated in experiments. We compare the proposed model
with other excellent models that have been widely used
recently for medical image segmentation. Next, we perform
an ablation study to validate the effectiveness of each block of
the MLU-Net. Finally, it will be analyzed why our proposed
method outperforms other methods and discussed what are
the current shortcomings.

A. DATASETS
For our medical image segmentation experiments, we
employed two distinct medical image datasets:

1) BRAIN TUMOR DATASET (MRI)
We chose the MRI data provided by Kaggle low grade
glioma brain tumors. In contrast to high-grade gliomas, low-
grade gliomas (LGG) typically exhibit less distinct tumor
boundaries, presenting complex tissue structures on MRI
images. These structures may intermingle with normal brain
tissue, rendering precise tumor segmentation a challenging
task. The dataset comprises data from 110 patients within The
Cancer Genome Atlas (TCGA) [35], [36] collection, each
accompanied by binary segmentation ground truth labels.
Among these, 80 patient data were designated for training,
10 for validation, and the remaining 20 for testing. Prior to
inputting the data into network model, preprocessing was
conducted to standardize the images.

2) SKIN LESION DATASET (DERMATOSCOPE IMAGES)
We chose the publicly available ISIC2018 dataset, which
includes a challenge with three image analysis tasks [37],
[38]. Our focus in this study pertains to lesion segmenta-
tion. The Skin Lesion Segmentation Challenge comprises
2594 dermatoscope images and corresponding 2594 ground
truth (GT) segmentation masks from 115 contributors,
utilized for training. To assess model performance and
prevent overfitting, we divided the 2594 dermatoscope
images into training, validation, and test sets in a 7:1:2 ratio,
resulting in 1814 training images, 260 validation images,
and 520 test images. The validation set was employed for
model training to optimize model parameters, which were
then stored in model files. The test set served to evaluate
various performance metrics of the model, and these metrics
were used for model comparison against other state-of-the-art
models.

B. DATA PRE-PROCESSING
Upon acquiring the datasets, we initiated preprocessing of
the raw data prior to inputting it into the network. To ensure
consistency and impartial performance evaluation across
all experiments, we applied standardized preprocessing
operations that were not model-specific but tailored to the
inherent data characteristics.The inherent variability in color
distribution within the dataset, arising from factors such
as different patients, acquisition environments, and devices,
prompted the need for these preprocessing steps. The process
involved data partitioning, image resizing with cropping and
padding to achieve uniform image dimensions, and color
normalization.

As shown in the first row of histograms in Figure 7, the
brain tumor data exhibited distinct peaks and modes among
different images. For instance, histogram (a) illustrates a
primary peak around 50 and a smaller one near 125, while
histograms (b) and (c) exhibit peaks around 50. Furthermore,
histogram (a) displays a broader peak span. Given the
disparities in peak locations and spans, image normalization
was implemented to harmonize color distributions across
different data, rendering them more balanced, as presented
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FIGURE 7. Histograms of some brain MRI samples before and after
processing.

in the second row of histograms in figure B. Subsequently,
indexing was conducted for the entire set of data from
new patient samples. Following this series of operations,
the preprocessed images were fed into the proposed MLU-
Net and other network architectures for experimentation.
Comparative analysis was performed on the experimental
results obtained from different networks.

C. IMPLEMENTATION DETAILS
The experiments are performed using the Pytorch framework.
The image size of the input network is set to 256 × 256.
We set the batch size to 16 and the learning rate to 0.001
[39]. The Adam optimizer was chosen for training. We use
these hyper-parameters uniformly in all experiments. During
datasets training, we train the network for 300 epochs or until
convergence. All experiments in this paper were conducted
under identical computing specifications with an Intel i7
processor (3.6GHz), 32GB of RAM, and a 24GB graphics
memory Nvidia RTX 3090 GPU on a 64-bit Windows
10 system.

D. EVALUATION METRICS
For quantitative performance assessment, several metrics
were considered in the evaluation of comparative experi-
ments. The Intersection over Union (IoU), also known as
the Jaccard coefficient, serves as a metric to quantify the
similarity between the segmented output and the ground truth
in the context of image segmentation tasks [40]. Conversely,
the Dice coefficient, an alternative measure, is employed for
assessing the similarity between two sets [25]. The indicators
are defined as shown in Equation (9) and Equation (10).

IoU =

∣∣Yp ∩ Yt ∣∣∣∣Yp ∪ Yt ∣∣ = TP
TP+ FP+ FN

(9)

Dice =
2

∣∣Yp ∩ Yt ∣∣∣∣Yp∣∣+ |Yt | = 2TP
FP+ 2TP+ FN

(10)

where, Yp is predicted region and Yt is ground truth(GT).
true positive (TP) is defined as pixels that exist in both ground
truth and the predicted segmentation region, and true negative
(TN) represents pixels that are absent in both ground truth and
the predicted segmentation region. In contrast, false negative

(FN) corresponds to pixels that are present only in ground
truth and false positives (FP) corresponds to pixels that are
present only in predicted segmentation region.

E. ABLATION STUDIES
In this part, we delve into an extensive analysis of each
module’s effectiveness and its impact on the proposed
MLU-Net through ablation experiments. The aim of these
experiments is to elucidate the influence and efficacy of the
proposed enhancements on the network. Our approach entails
conducting thorough ablation experiments on each module
within the multi-level network, MLU-Net, with the objective
of validating the effects of the proposed improvements.
We commence by dissecting the results of the ablation
experiments conducted on various modules, subsequently
honing in on the specific examination of the frequency
domain layers, MLP layers, and varying network depths to
further scrutinize their impacts.

1) OVERALL ABLATION EXPERIMENTS FOR THE METHODS
INVOLVED
We selected U-Net as the baseline network and gradually
added methods on it. The effect of the module on the network
is verified by testing each method independently. This part
of the experiment involves the network hopping connection
method, the upsampling method, the downsampling method,
the network depth, the MLP, and the comparison with the
benchmark network, and the characteristics of each part
can be clearly seen according to the experimental results in
Table 1.
Within Table 1, the Base is baseline network defined by

us as the U-Net. ADD denotes the utilization of element-
wise addition during skip connections, whereas in its absence,
multiple features along the channel dimension concatenation
(Concat) are employed. MDB signifies the adoption of
a multi-downsampling process, with alternatives involving
the application of max-pooling methods. SUB designa-
tion pertains to the spectrum domain upsampling module,
encompassing both spectrum domain upsampling and skip
connections. Conversely, interpolation-based upsampling
methods are employed when SUB is not applied. LOW is
indicative of lower channel counts, specifically 16, 32, 128,
160, and 256, as opposed to the classical 64, 128, 256,
512, and 1024 network channel numbers. One of them,
160, is a number chosen from the middle of 128 and
256, which has been shown to provide good results [31].
MLP notation indicates the utilization of tokenized MLP-
based methods in the fourth and fifth layers, with convo-
lutional blocks employed for the preceding three layers.
The experimental data underscore the influential impact of
frequency representation methodologies on the overall model
accuracy, with channel count reduction offering significant
benefits for lightweight network enhancements. Each module
exhibits distinct degrees of improvement for the network,
making them versatile and applicable across various network
architectures.
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TABLE 1. Ablation Studies, where MLU-Net2 denotes the MLU without MDB and SUB. MLU-Net3 denotes the MLU with the MLP removed. The format of
the evaluation index for IoU and Dice is ‘‘mean±std.’’

2) THE ANALYSIS OF FREQUENCY DOMAIN LEVELS
In the multi-level U-Net network MLU-Net, a method for
introducing frequency domain representations in the fre-
quency domain hierarchy is employed. Within the frequency
domain layers, we have designed multiple downsampling
and upsampling modules dedicated to enhancing the learning
capability of high-level semantic information relevant to
segmentation targets. To elucidate their efficacy, we delib-
erately crafted an alternative version of MLU-Net, termed
MLU-Net2, that removed the multi-level downsampling
and frequency domain upsampling methods and compared
its performance with the complete module, MLU-Net1.
Experimental results in Table 1 unequivocally demonstrate
the module’s capacity to substantially enhance segmentation
precision.

Furthermore, the investigation proceeds by dissecting the
three-level network within the frequency domain hierarchy,
delineating an encoding part and a decoding part. By lever-
aging pretrained model data, a 1 × 1 convolution is applied
to all channel feature maps at each tier, culminating in
channel-aggregated feature maps. A comparative analysis
of feature maps during the encoding process in the first
and second rows of Figure 8 reveals that in the MLU-Net1,
where the frequency domainmethod is introduced, the overall
information content of the images is consistently more pro-
nounced, with a richer information reservoir throughout the
encoding process compared to the traditional approach. This
enhancement can be attributed to the effective preservation
of low-frequency spectral information within the encoding
structure’s multiple downsampling modules, encouraging the
network to capture more contours and structural information
during the learning process, thus facilitating more effec-
tive feature information capture and superior segmentation
outcomes.

Similarly, within the decoding segment of the network,
the employment of frequency domain up-sampling modules
distinctly emphasizes the retention of low-frequency high-
level semantic features and high-frequency fine-grained
details within the spectral domain. This strategy effectively
restores high-level semantic features and high resolution,
ultimately yielding high-precision predictions of pathological

FIGURE 8. The channel merged feature maps are obtained by
1 × 1 convolution of all the channel feature maps in the three-layer
network at the frequency domain level. It is specifically divided into
encoding part and decoding part. Compare MLU-Net1 with MLU-Net2
after removing the frequency domain representation.

segmentation images. The visual comparison of images in
the third and fourth rows of Figure 8 clearly underscores
the enrichment of information in the decoding process
while accurately capturing critical regions of brain tumor
pathology.

3) THE ANALYSIS OF MLP LEVELS
Subsequently, we conducted experimental analysis on the
multilayer perceptron (MLP) levels within the MLU-Net
architecture. The integration of MLP enriches the network’s
capabilities by extending its capacity to capture global
segmentation target information, beyond the realm of local
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FIGURE 9. Comparison of the overall structure of MLU-Net1 with
MLU-Net3 that removes the MLP method in the partial segmentation
prediction target of brain tumor images.

information. This enhancement augments the network’s
ability to glean latent information, thereby improving the
precision of the entire lesion segmentation process.

To further illustrate this, we conducted comparative
experiments between the completeMLU-Net1 and amodified
MLU-Net3, from which the MLP-based methods is removed.
Owing to its heightened emphasis on global information,
MLU-Net exhibits a more pronounced focus on the overall
structural information when segmenting lesion targets. This
effectively mitigates issues such as segmentation region
omissions and extraneous details in regions beyond the
segmentation boundary. As demonstrated in Figure 9, when
confronted with images of intricate or ambiguous structures,
networks employing the MLP-based approach are better
equipped to accurately delineate the expected results in the
context of lesion segmentation.

4) ANALYSIS OF THE NUMBER OF NETWORK CHANNELS
Furthermore, our investigation on the impact of channel
count on various aspects of network performance within the
MLU-Net framework is presented in Table 2. Here, LOW
encompasses channel counts of 16, 32, 128, 160, and 256,
reflecting our selected channel numbers. MID encompasses
32, 64, 128, 256, and 512, and HIGH represents 64, 128,
256, 512, and 1024. The segmentation experiments on brain
tumors illustrate that the reduction in channel count not
only significantly reduces network computational overhead
but also enhances performance to some extent without
compromising network efficacy.

F. EXPERIMENTS ON BRAIN TUMORS DATASETS
1) COMPARISON OF SEGMENTATION EFFECTS
We compared the performance of MLU-Net with widely
used medical image segmentationframeworks, which are

TABLE 2. Comparison experiments with different number of channels,
the format of the evaluation index for IoU and Dice is ‘‘mean±std.’’

TABLE 3. Comparison of metrics for brain tumor segmentation results,
the format of the evaluation index for IoU and Dice is ‘‘mean±std.’’

U-Net [11], U-Net++ [12], [13] and ResUNet [24] by using
of convolutional methods, and R2Net [20] and R2AttNet
by using of transformer baselines. Dice coefficient and
Intersection over Union (IoU) score constitute critical compo-
nents in the evaluation of segmentation performance metrics,
taking into consideration the computational complexity as
reflected by the number of model parameters. Our experiment
results shown in Table 3, clearly demonstrate that MLU-Net
outperforms all the base networks in terms of segmentation
quality and computational efficiency. The segmentation
effect of different networks on some brain tumor images is
demonstrated in Figure 10.

However, the most striking point here is the disparity in the
number of parameters, whereMLU-Net andUNeXt [31] have
substantially smaller computations than the other networks,
because these two networks do not use a large number
of network channels and complex processing modules.
In particular, we note that UNeXt has only 9.48M parameters,
while MLU-Net has 0.88M parameters. The MLU-Net
network is heavily optimized for light weight, while ensuring
better network performance. In Figure 10, we observe that
MLU-Net achieves excellent results across various types of
brain tumor samples.

2) COMPARISON OF PARAMETERS AND FLOPS
We show the IoU indices and parameters of the different
network models along with the scatter plot of computational
FLOPs, the closer the location of the points in the figure to
the upper left the more desirable the effect is. It is clear from
Figure 11 that proposed model performs well in terms of
performance and complexity and does not lose the network
performance due to the lightweighting of the network.

G. EXPERIMENTS ON SKIN LESION DATASETS
Furthermore, to validate the robustness of the model, we tran-
sitioned to an entirely different type of medical image data.
Segmentation experiments were conducted on lesion data
obtained from skin imaging using dermatoscopes. Unlike
brain tumorMRI images, skin data is captured through a lens,
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FIGURE 10. Some effects of different networks in brain tumor segmentation.

FIGURE 11. Scatter plot of different networks IoU compared to Parameters and FLOPs respectively (the closer the points are to
the top left indicates better results).

resulting in rich and diverse color variations with varying
lesion types and structures. In this experiment, UNeXt [31]
demonstrated competitive performance. Benefiting from the
feature-preserving capability of the frequency representation
method and the computational efficiency of MLP, our
network maintained a competitive edge in segmentation
accuracy under a lightweight structure compared to other
networks, as shown in Table 4. It is noteworthy that the
proposed network did not exhibit as pronounced an advantage
in the skin lesion dataset as observed in the brain tumor
data. This analysis may be attributed to the relatively small
size of the dataset, highlighting the network’s capability
more prominently. The segmentation results are illustrated in
Figure 12.

V. DISCUSSION AND FUTURE WORK
In this work, we introduce a multi-level segmentation
network, MLU-Net, based on the U-Net architecture. The
overarching structure ofMLU-Net comprises three frequency
domain layers and two multilayer perceptron (MLP) layers,
delivering exemplary segmentation accuracy while main-
taining network lightweight attributes. Within the frequency

TABLE 4. Results of skin lesion segmentation on different networks, the
format of the evaluation index for IoU and Dice is ‘‘mean±std.’’

domain layers, we incorporate multiple downsampling and
frequency domain upsampling modules that are specifically
tailored for downsampling and upsampling processes. These
modules enhance the network’s capacity to learn high-
level semantic information relevant to segmentation targets.
Furthermore, the modules built on this method can be
conveniently integrated to replace existing deep learning
modules. The application of MLP layers involves tokenized
MLP modules for learning latent feature information, con-
tributing to the network’s capability to supplement global
information of the segmentation target, beyond its proficiency
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FIGURE 12. Effectiveness of different networks in skin lesion segmentation. The blue line is the ground truth and the red line is the prediction.

in local feature learning. This enhancement serves to augment
the network’s ability to acquire richer feature information,
thereby elevating the precision of the entire lesion target
segmentation process.

We conducted comprehensive ablation experiments on
brain tumor datasets, revealing that both the frequency
domain and MLP layers within MLU-Net play pivotal roles
in enhancing the network segmentation model. Furthermore,
we extended our experiments to skin lesion segmentation
tasks, with results showcasing the exceptional performance
of MLU-Net across distinct datasets. In the brain tumor seg-
mentation experiment, our network has better experimental
results than U-Net by use of only 1/39 of the number of
parameters and 1/61 of the computation under the same
preprocessing condition. The experiments mean that the
proposed lightweight approach could be applied to a wider
range of medical scenarios in the future.

MLU-Net excels in its feature information awareness and
lightweight characteristics. However, it exhibits diminished
efficacy when confronted with large-scale data tasks. For
instance, its advantages in skin lesion segmentation are
somewhat less pronounced compared to brain tumor seg-
mentation, highlighting the challenge of reconciling network
lightweight attributes with task scale–a conundrum faced
by many researchers. In this study, our research focused
exclusively on images of brain tumors and skin lesions, and
the scalability of the proposed methodology is a subject of
inquiry.

In forthcoming research, we intend to delve deeper into
the spatial relationships among image pixels and their
neighboring points. This is pivotal for understanding latent
patterns within images and optimizing image preprocessing.
Additionally, we plan to conduct a more profound exploration
of frequency domain characteristics and introduce attention
mechanisms to facilitate a more in-depth investigation into
medical image segmentation tasks. Such research endeavors
are poised to make valuable contributions to the development

of critical medical assistive tools for future healthcare
applications.

The efficient and rapid segmentation capabilities of
lightweight medical image segmentation networks contribute
to enhanced diagnostic efficiency for healthcare profes-
sionals. Particularly, in real-time monitoring and surgical
assistance, these networks offer precise information to
facilitate surgical procedures. Such networks are well-
suited for mobile medical applications, facilitating remote
diagnostics and image analysis in mobile environments,
with particular benefits for resource-constrained regions. The
lightweight nature of these models reduces data processing
requirements, thereby aiding in improving data privacy and
security, and mitigating the risks associated with patient
information transmission. In terms of cost-effectiveness, the
adoption of lightweight models reduces healthcare equipment
costs, presenting economic advantages for resource-limited
healthcare institutions. In summary, lightweight medical
image segmentation networks play a pivotal role in advancing
the overall efficiency, cost-effectiveness, and security of
medical image processing.

VI. CONCLUSION
In this study, we propose a multi-layer lightweight U-Net
network named MLU-Net, which focuses on the segmenta-
tion of structurally abnormal regions of tumors and lesions
in medical images. MLU-Net adopts a lightweight network
structure including frequency domain layers and layers based
on the MLP method, which significantly reduces the network
parameters and computational complexity, and at the same
time, it can efficiently extract tumor and lesion regions in
medical images. At the same time, it can effectively extract
the low-frequency contour information and overall structure
information of the lesion region in medical images, realizing
fast training and accurate segmentation of the model. This
makes medical image segmentation more applicable to
various clinical scenarios.
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