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ABSTRACT This paper proposes a first-order multi-agent model that overcomes the limitations of previous
models by incorporating rooted leadership structure, general nonlinear dynamics, and self-adaptive feedback
mechanisms. The model consists of multiple agents positioned in a multidimensional space and a virtual
leader with environmental perception. Each agent follows fixed general nonlinear dynamics, whereas the
group’s leadership structure follows an asymmetric fixed-coupling topology. The model is stable if certain
mild assumptions about the agents’ dynamics and group coupling topology are satisfied, as proven using
the Lyapunov function method. In order to verify the effectiveness of this model in group outdoor motion,
simulation results demonstrate that all agents ultimately dynamically form a cohesive swarm and follow the
virtual leader’s movement toward the destination, even in cases where the movements of all agents have a
certain degree of randomness or in cases that the model scaled up to a much higher number of agents.

INDEX TERMS Multi-agent, nonlinear, rooted leadership, self-adaptive, stability.

I. INTRODUCTION
Individual movements interweaving and gathering together
are pervasive in biological swarm activities. By modeling,
simulating, and analyzing biological swarm activities, the
demands of engineering applications such as multi-robot
team formation control [1], [2], [3], pedestrian motion analy-
sis and control [4], [5], [6], [7] can be met. Therefore, a large
number of researchers were attracted to conduct research
in the field of multi-agent systems. Several main control
methods for multi-agent systems, such as leader-follower
method [8], graph theory method [9], virtual potential
field method [10], cooperative control method [11], and
reinforcement learning method [12], have been developed.
The analysis of flocking is traced back to the relevant

computer simulation work in [13], after which Gazi and
Pasino designed a first-order multi-agent model consisting
of several agents that can perceive environmental gradients

The associate editor coordinating the review of this manuscript and

approving it for publication was Laura Celentano .

in Euclidean space and the characteristics of flocking,
consistency, and stability of the model were studied based
on artificial potential field theory in [14] and [15]. In [16],
Olfati-Saber proposed a theoretical framework for designing
and analyzing distributed flocking algorithms, which solves
the problems of unconstrained free flocking and flockingwith
obstacles. Furthermore, the stability andmill ring solutions of
second-order multi-agent models were also studied in [17],
[18], and [19]. In the study of Qin et al. [20], aiming at the
second-order multi-agent system with clustering behavior,
two hypotheses were established for the problem of the
consistency constraint interval of agents in the system,
which was studied from two aspects, namely, agents holding
constraint interval independently and agents being affected
by constraint interval of other agents. They proved the rela-
tionship between the constraint interval and the equilibrium
point of the system by solving the nonlinear equations.
They also proved the inevitable relationship between the
equilibrium point and the system consistency by Lyapunov
stability theory. Additionally, Liu et al. introduced the impact
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of communication time delay into the multi-agent model
in [21], and their research showed that flocking behavior
occurs under certain conditions for asynchronous models
with delay. However, the swarm will diverge when the
time delay increases to a specific value. The research of
Yang et al. [22] focuses on the distributed optimization
problem of first-order multi-agent systems with time delay.
The global objective function of the multi-agent system is
assumed to be obtained by the superposition of local objective
functions of each agent, and only the member corresponding
to the local objective function knows its objective. Based
on the above assumptions, they propose a distributed
algorithm to optimize the state convergence problem among
the agents and use the Lyapunov-Karasovsky method to
prove the asymptotic consistency of the agent states, then
illustrate the analysis results through a test example. Recently,
Yuan et al. [23] focused on the clustering problem of a
partially informed multi-agent system. They assumed that
the receiving party of information was missing part of
the information in the information transmission process.
By introducing the Morse potential energy equation into
the analysis of the clustering algorithm, the stability of the
clustering algorithm was proved from two aspects: Lyapunov
stability theory and the Lassalle invariance principle. Based
on the above clustering algorithm, they also proposes an
improved algorithm to add propagandists to the system,
which can reduce the impact of information loss by making
propagandists with all the information spread as agents.
Simulation results show that such propagandists have a
significant effect on ensuring system consistency. Besides,
Das et al. introduced the chaos theory into the swarm model
to analyze the chaotic phenomena in the swarm. Using the
Lyapunov index, they studied the chaotic phenomena in
the dimensionally separated social foraging swarms in [24].
To be precise, the conditions for chaos were analyzed, and
the trajectories of agents in swarms with/without chaos
were simulated. In [25], Das further analyzed the chaotic
phenomena of dimensionally non-separable social foraging
swarms. Moreover, Das proposed a new type of group
dynamics that can be applied to automated multi-agent
systems in [26], in which its stability and chaotic phenomena
were studied. The results clarified how to control specific
parameters to make the model exhibit different chaotic or
non-chaotic behaviors.

However, the coupling topologies in the above models are
globally symmetric, and it is well known that the coupling
topology has specific influences on the model’s behavior.
So in [27] and [28], Liu et al. studied the stability and
cohesion behavior of swarms with a generally invariant
coupling topology, proving that swarms will exhibit flocking
behavior and move towards more favorable environmental
regions when the underlying coupling topology is strongly
connected. Nevertheless, this leads to another issue, as it
can be seen from [29] and [30] that there are often
leader-follower structures in natural animal groups, so their
coupling topologies generally do not meet the strongly

FIGURE 1. The left and middle parts show two rooted leadership
topologies while the right part demonstrate an unrooted leadership as
there is no direct or indirect leadership path from the overall leader
(agent 0) to agent 1.

connected requirements. To address this challenge, in [31],
Shen proposed a model with a hierarchical leadership
structure in which agents are only influenced by the upper
level of their hierarchy. Various leadership structures have
also been studied in papers such as [32], [33], [34], [35],
[36], [37], and [38]. Recently, Li considered a swarm model
in [39], where each agent has general inherent nonlinear
dynamics and the interactions between agents adhere to a
rooted leadership topology, which means that there exists
an overall leader directly or indirectly leads any other agent
(Fig.1 shows a multi-agent system’s rooted and unrooted
leadership topology containing only two agents). It is proved
that the swarm remains both stable and cohesive when the
symmetric matrix derived from the group coupling topology
is negative definite.

Most of the above papers assume that the attraction
between agents increases linearly with their relative distance
and that the attraction/repulsion functions between agents
always include a linear attraction term. To be more precisely,
the attraction/repulsion functions between each two agents
can be described in the following form:

g (y) = y (ga (∥y∥) − gr (∥y∥)) ,

where y is the vector that reflects the relative position
between two agents, and at the same time, ga (∥y∥) y and
gr (∥y∥) y represent the attractive and repulsive force between
agents, respectively. However, both were often assumed to
take certain forms like ga (∥y∥) = a and gr (∥y∥) =

−b exp
(
−

∥y∥2

c

)
, where a, b, and c are positive constants [14],

[15], [27], [28], [40]. This overly strong assumption about
attraction/repulsion functions results in a limited scope of
application of the model, as it excludes many scenarios that
have the potential to be applied to first-order multi-agent
systems, for instance, the attraction (gravitational force)
between moving celestial bodies is inversely proportional to
the square of the distance between them, rather than linearly
varying with the distance. Another reason for relaxing
the assumptions is that the leadership structure and the
attraction/repulsion functions between agents are intrinsic
factors that cannot be externally controlled and usually
have some randomness in real-life scenarios such as group
motions in outdoor environments, which means even if
the approximate range of attraction/repulsion functions are
certain, accurately fit their expressions is still impossible.
Therefore, further relaxing the assumptions and abstracting
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the attraction/repulsion functions are crucial for improving
the generality of the model to apply to more practical
scenarios. Though the swarm model recently considered by
Li in [39] no longer assumes the specific form of ga (∥y∥),
it still supposes ga (∥y∥) ∥y∥ ≤ b and retains ga (∥y∥) = a.
To address this challenge, this paper proposes a first-order
multi-agent model that incorporates a rooted leadership
structure and a nonspecific inter-agent attraction/repulsion
function and uses the self-adaptive feedback mechanisms of
the virtual leader to enhance the cohesion of the group further.
Under mild assumptions, when the undirected coupling
topology of all members has connectivity, the stability of
the model was proved by using Lyapunov function methods.
The simulation results demonstrate that, with a certain degree
of randomness of movements, agents still gather around the
virtual leader for a finite time and follow its movement, which
indicates that the proposed model is well-suited for outdoor
group motion applications.

The rest of this paper is organized as follows. Section II
introduces a multi-agent model with a rooted leadership,
general nonlinear dynamics structure, and the virtual leader’s
self-adaptive feedback mechanisms. Section III, a specific
boundary to which the population size converges, was derived
based on certain assumptions, and the convergence time
was estimated. The computational complexity of the model
and the influence of some parameters in the model on
the performance were analyzed. In Section IV, numerical
simulation experiments were provided to validate the theory.
The conclusion is presented in Section V.

II. MULTI-AGENT MODEL
This section proposes a multi-agent model with general
nonlinear dynamics and rooted leadership. A m-dimensional
space, which includes n agents and a virtual leader who
has direct leadership over these n agents, was considered
in this model. For simplifying this model, the leader and
all agents are considered particles. At any moment, there
exists a pair of relative velocity vectors in opposite directions
between any two agents of the model. Moreover, the norm
of this pair of vectors is determined by the magnitude of the
relative distance and the two fixed weights between agents
at the current moment. Thus, for any agent of the model,
the actual velocity vector at each moment is a weighted
linear superposition of the current moment’s relative velocity
vectors with all other members and with the virtual leader.
This relationship is expressed as the following equation of
motion:

ẋi =

n∑
j=0,j̸=i

wijg
(
xj − xi

)
, i = 1, 2, . . . , n, (1)

where g : Rm → Rmdenotes the relationship between the
relative velocity and relative position vector between the two
agents, and the non-negative constant wij denotes the fixed
weight of the relative velocity component affected by agent
j when calculating the actual velocity for agent i. Therefore,

a n+ 1 dimensional matrix W =
[
wij
]
(n+1)×(n+1) is defined

to reflect the rooted leadership structure of the entire group,
including all agents and the virtual leader, where wij is the
element in the ith row and jth column, and wij > 0 only if the
motion of agent i is affected by agent i, otherwise, wij = 0.

Since only the virtual leader can perceive environmental
information, it is responsible for utilizing the external
navigation data it perceives, as well as its influence on
the movement of all agents, to gather all agents into its
boundaries and guide them to their destination. Therefore,
the motion of the virtual leader should not directly depend
on the coordinates of any agents, which means w0j = 0 for
any j = 1, 2, . . . , n. Up to this point, it is shown that the first
row and diagonal elements of W are all 0. At the same time,
the rooted leadership property guarantees that the number
of positive elements in the first column is not less than the
number of connected components of the swarm, because
there needs at least one directly lead force for each connected
component to make the rooted leadership property possible.
The rest of the elements are non-negative. Thus, W has the
following form:

W =



0 0 0 · · · · · · 0
w10 0 w12 · · · · · · w1n
w20 w21 0 w2n
...

...
. . .

...
...

...
. . .

...

wn0 wn1 wn2 · · · · · · wnn


However, to enhance the cohesion of the group, the speed

of the virtual leader is partly adjusted by the feedback from
the real-time cohesion degree of the group. To be more
precise, the virtual leader will increase its speed to lead the
swarm forward faster when most agents have firmly clustered
around it. In the absence of cohesion, however, the virtual
leader prioritizes gathering all agents within their boundaries
rather than moving forward as fast as possible. Then, the
motion equation of the virtual leader can be expressed as
follows:

ẋ0 =
f (x0)

1
n

n∑
i=1

∥xi − x0∥
, (2)

where f : Rm → Rm denotes the external influences on
the leader’s velocity, and the denominator of (2) denotes the
feedback from the swarm’s cohesion. Due to the repulsion
between agents and the leader, it is ensured that ∥xi − x0∥ >

0 for any agent at any time unless the initial position of the
agent overlaps with the leader.

Moreover, it is well known that in many practical appli-
cation scenarios of multi-agent models, including outdoor
groupmotion, the positions of the agents never overlap, which
leads to an implicit condition that the mapping function g
for the m-dimensional vector can be expressed as g (y) =
µ(∥y∥)

∥y∥ y, where µ : R+
→ R, ∥y∥ > 0, lim

∥y∥→0
µ (∥y∥) = −∞.
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Therefore, themotion equation system is rewritten as follows:

ẋ0 =
f (x0)

1
n

n∑
i=1

∥xi − x0∥
.

ẋi =

n∑
j=0,j̸=i

wij
µ
(∥∥xj − xi

∥∥)∥∥xj − xi
∥∥ (

xj − xi
)
, i = 1, 2, . . . , n.

(3)

III. MODEL STABLITY ANALYSIS
A. CONVERGENCE ANALYSIS
In this section, the stability of the multi-agent model
described in (3) in terms of its cohesiveness was studied.
To accomplish this, the variable ei = xi−x0 was first defined
to portray the relative positional relationship between agent i
and the virtual leader. Then, In order to analyze the state of the
multi-agent system, a suitable Lyapunov function that reflects
the overall size of the swarm is constructed as follows:

V (e) =
1
2
∥e∥2 =

1
2

n∑
i=1

∥ei∥2 =
1
2

n∑
i=1

eTi ei, (4)

where e =
(
eT1 , eT2 , . . . , eTn

)T is a nm-dimensional column
vector. Then, from the equations of motion in (3), the
expression for the derivative of ei concerning time can be
derived as follows:

ėi = ẋi − ẋ0

= −
nf (x0)
n∑
i=1

∥ei∥
+ wi0

µ (∥x0 − xi∥)
∥x0 − xi∥

(x0 − xi)

+

n∑
j=1

wij
µ
(∥∥xj − xi

∥∥)∥∥xj − xi
∥∥ (

xj − xi
)

= −
nf (x0)
n∑
i=1

∥ei∥
− wi0

µ (∥ei∥)
∥ei∥

ei

+

n∑
j=1

wij
µ
(∥∥ej − ei

∥∥)∥∥ej − ei
∥∥ (

ej − ei
)
, i = 1, 2, . . . , n.

(5)

According to the previous discussion, firstly, the attrac-
tion/repulsion between agents follows near-repulsion and far-
attraction. However, the function of the attraction/repulsion
does not have a specific form that necessarily has a linear
component. Secondly, when the initial positions of each agent
do not overlap, it is clear that there exists rmin > 0 such that
the distance of any agent at any time t satisfies

∥∥xj − xi
∥∥ ≥

rmin, which means that µ has a lower bound. Thirdly, f is
an external navigation input from the environment that is
adjusted by the currunt cohesion degree of the swarm. Finally,
the coupling topology of the swarm, which is embodied in
matrix W, has specific influences on the model’s behavior.

Therefore, the following three assumptions are made about
f , µ and W .
Assumption 1: For all x ∈ Rm, there exists a positive

constant θ such that ∥f (x)∥ ≤ θ , which is the bound of
external inputs on the leader in (2).
Assumption 2: The continuous function µ in (3) exists a

unique zero point r0 > 0 and aminimum distance 0 < rmin <

r0 for any pair of agents during all time. Suppose the distance
between agents is ∥y∥, then µ satisfies µ (∥y∥) > 0 when
∥y∥ > r0, −M ≤ µ (∥y∥) < 0 when rmin ≤ ∥y∥ < r0, where
M is a positive constant.
Assumption 3: The matrix (W + W T ) has connectivity

during all the time. Thismeans a direct or indirect relationship
always exists between any two agents after all the directed
edges representing the leadership relationship in matrix W
are transformed into undirected edges.

1) CONVERGENCE SIZE ESTIMATED
By utilizing the Lyapunov function constructed in (4), the
following theorem is derived.
Theorem 1: Considering the multi-agent system described

in (3), given arbitrary initial positions where all agents do not
coincide, then all agents will eventually enter into a bounded
region around the leader under the conditions of Assump-
tions 1, 2, and 3, which means V (e (t)) → γ 2 when t → ∞,

where γ =

√
nβd+

√
nβ2d

2
+
(
2δr0nλ+4nθ

)
(vd+αλ2(1−m

n ))
2(vd+αλ2(1−m

n ))
, m, n,

r0, θ have the meanings mentioned earlier, whereas β, α, d ,
d , λ, λ2 are parameters related toW , f , µ.

Proof: According to (4) and (5), the derivative of
function V (e (t)) with time t is represented as follows:

V̇ (e) =
1
2

n∑
i=1

(
eTi ėi + ėTi ei

)
=

n∑
i=1

eTi ėi

=

n∑
i=1

eTi

−
nf (x0)
n∑
i=1

∥ei∥
− wi0

µ (∥ei∥)
∥ei∥

ei


+

n∑
i=1

eTi

n∑
j=1

wij
µ
(∥∥ej − ei

∥∥)∥∥ej − ei
∥∥ (

ej − ei
)
. (6)

For the first term of (6), the following can be inferred from
the Assumption 1 and (2).

n∑
i=1

eTi

−
nf (x0)
n∑
i=1

∥ei∥

 ≤

∥∥∥∥ n∑
i=1

eTi

∥∥∥∥
n∑
i=1

∥ei∥
∥−nf (x0)∥

≤

n∑
i=1

∥ei∥

n∑
i=1

∥ei∥
n ∥f (x0)∥ ≤ nθ. (7)
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SinceAssumption 2 is satisfied, the following two sets are
defined to delineate the agents that lie within and outside the
attraction/repulsion equilibrium distance of the virtual leader.

A1 : = {i |i = 1, 2, . . . , n , ∥ei∥ ≤ r0,wi0 > 0} .

A2 : = {i |i = 1, 2, . . . , n , ∥ei∥ > r0,wi0 > 0} .

Then for the second term of (6), there is

−

n∑
i=1

wi0eTi
µ (∥ei∥)

∥ei∥
ei

= −

∑
i∈A1

wi0eTi
µ (∥ei∥)

∥ei∥
ei −

∑
i∈A2

wi0eTi
µ (∥ei∥)

∥ei∥
ei

= −

∑
i∈A1

wi0eTi
M

∥ei∥
ei −

∑
i∈A2

wi0eTi
µ (∥ei∥)

∥ei∥
ei

−

∑
i∈A1

wi0eTi

(
µ (∥ei∥) −M ∥ei∥

∥ei∥

)
ei. (8)

Define v := min{i∈A2}

(
M ,

µ(∥ei∥)
∥ei∥

)
≥ 0 (v = 0 if and only

if A2 is an empty set) to merge the first and third terms of (8)
to obtain the following form:

−

n∑
i=1

wi0eTi
µ (∥ei∥)

∥ei∥
ei ≤

∑
i∈A1

wi0eTi

(
−µ (∥ei∥) +M ∥ei∥

∥ei∥

)
ei

− v
n∑
i=1

wi0eTi ei. (9)

Define β := max{i∈A1}
(
−µ (∥ei∥) +M ∥ei∥

)
≥ 0 (β =

0 if and only if A1 is an empty set) to further reduce (9) to
inequality below.

−

n∑
i=1

wi0eTi
µ (∥ei∥)

∥ei∥
ei ≤ −v

n∑
i=1

wi0eTi ei + β
∑
i∈A1

wi0
∥ei∥

eTi ei.

(10)

Define d := max{i=1,2,...,n} (wi0) ≥ 0 and d :=

min{i=1,2,...,n} (wi0) ≥ 0, which denote the maxi-
mum/minimum weights of the virtual leader’s impact on all
agents, respectively, and this leads to the further deflation
of (10) as follows:

−

n∑
i=1

wi0eTi
µ (∥ei∥)

∥ei∥
ei ≤ −vd

n∑
i=1

eTi ei + βd
∑
i∈A1

eTi
ei

∥ei∥

≤ −2vdV (e) + βd
n∑
i=1

eTi
ei

∥ei∥
.

(11)

Then, by using the mean inequality

n∑
i=1

eTi
ei

∥ei∥
≤

√√√√n
n∑
i=1

eTi ei =

√
2nV (e)

in (11), the final form of the second term of (6) is obtained as
follows:

−

n∑
i=1

wi0eTi
µ (∥ei∥)

∥ei∥
ei ≤ −2vdV (e) + βd

√
2nV (e). (12)

Now, as for the third term of (6), it conforms to the
following transformation:

n∑
i=1

eTi

n∑
j=1

wij
µ
(∥∥ej − ei

∥∥)∥∥ej − ei
∥∥ (

ej − ei
)

=

n∑
i=1

n∑
j=1

wijeTi
µ
(∥∥ej − ei

∥∥)∥∥ej − ei
∥∥ (

ej − ei
)

=
1
2

n∑
i=1

n∑
j=1

wijeTi
µ
(∥∥ej − ei

∥∥)∥∥ej − ei
∥∥ (

ej − ei
)

+
1
2

n∑
i=1

n∑
j=1

wjieTj
µ
(∥∥ej − ei

∥∥)∥∥ej − ei
∥∥ (

ei − ej
)

= −
1
2

n∑
i=1

n∑
j=1

(
wij + wji

) (
ej − ei

)T µ
(∥∥ej − ei

∥∥)∥∥ej − ei
∥∥ (

ej − ei
)
.

(13)

The subsequent treatment is similar to the second term
of (6). Two sets are defined below to delineate pairs of agents
that are within and outside the equilibrium distance of their
attraction/repulsion.

A3
:=
{
(i, j) |i, j ∈ {1, 2, . . . n} ,

∥∥ei−ej∥∥ ≤ r0,wij + wji > 0
}
.

A4
:=
{
(i, j) |i, j ∈ {1, 2, . . . n} ,

∥∥ei−ej∥∥ > r0,wij + wji > 0
}
.

So (13) is transformed into

n∑
i=1

eTi


n∑
j=1

wij
µ
(∥∥ej − ei

∥∥)∥∥ej − ei
∥∥ (

ej − ei
)

= −
1
2

∑
(i,j)∈A3

(
wij + wji

) (
ej − ei

)T µ
(∥∥ej − ei

∥∥)∥∥ej − ei
∥∥ (

ej − ei
)

−
1
2

∑
(i,j)∈A4

(
wij + wji

) (
ej − ei

)T µ
(∥∥ej − ei

∥∥)∥∥ej − ei
∥∥ (

ej − ei
)

= −
1
2

∑
(i,j)∈A4

(
wij + wji

) (
ej − ei

)T µ
(∥∥ej − ei

∥∥)∥∥ej − ei
∥∥ (

ej − ei
)

−
1
2

∑
(i,j)∈A3

(
wij + wji

) (
ej − ei

)TM (
ej − ei

)
−

1
2

∑
(i,j)∈A3

{
µ
(∥∥ej − ei

∥∥)−M
∥∥ej − ei

∥∥∥∥ej − ei
∥∥

×
(
wij + wji

) (
ej − ei

)T (ej − ei
)}

. (14)
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Furtherly, define α := min{(i,j)∈A4}

(
M ,

µ(∥ei−ej∥)
∥ei−ej∥

)
≥ 0

(α = 0 if and only if A4 is an empty set) and δ :=

max{(i,j)∈A3}
(
−µ

(∥∥ei − ej
∥∥)+M

∥∥ei − ej
∥∥) ≥ 0 (δ = 0 if

and only if A3 is an empty set), thus (14) can further
written as

n∑
i=1

eTi

n∑
j=1

wij
µ
(∥∥ej − ei

∥∥)∥∥ej − ei
∥∥ (

ej − ei
)

≤ −
1
2
α

n∑
i=1

n∑
j=1

(
wij + wji

) (
ej − ei

)T (ej − ei
)

+
1
2

∑
(i,j)∈A3

{
−µ

(∥∥ej − ei
∥∥)+M

∥∥ej − ei
∥∥∥∥ej − ei

∥∥
×
(
wij + wji

) (
ej − ei

)T (ej − ei
)}

≤ −
1
2
α

n∑
i=1

n∑
j=1

(
wij + wji

) (
ej − ei

)T (ej − ei
)

+
1
2

∑
(i,j)∈A3

(
wij + wji

) (
ej − ei

)T δ∥∥ej − ei
∥∥ (ej − ei

)

= −
1
2
α

n∑
i=1

n∑
j=1

(
wij + wji

) (
ej − ei

)T (ej − ei
)

+
1
2
δ
∥∥ej − ei

∥∥ ∑
(i,j)∈A3

(
wij + wji

) (ej − ei
)T∥∥ej − ei
∥∥
(
ej − ei

)∥∥ej − ei
∥∥

≤ −
1
2
α

n∑
i=1

n∑
j=1

(
wij + wji

) (
ej − ei

)T (ej − ei
)

+
1
2
δr0

∑
(i,j)∈A3

(
wij + wji

)
≤ −

1
2
α

n∑
i=1

n∑
j=1

(
wij + wji

) (
ej − ei

)T (ej − ei
)

+
1
2
δr0

n∑
i=1

n∑
j=1

(
wij + wji

)
. (15)

For further treatment of (15), define symmetric matrix Y =[
yij
]
n×n, where yij = wij+wji, and the Laplacian of matrix Y

is denoted by L =
[
lij
]
n×n, where

lij =


−yij, i ̸= j

n∑
j=1,j̸=i

yij, i = j
(16)

By the definition of Laplacian L of coupling matrix, it is
deduced that the second term of (15) can turns into

1
2
δr0

n∑
i=1

n∑
j=1

(
wij + wji

)

=
1
2
δr0

n∑
i=1

n∑
j=1

yij

=
1
2
δr0

n∑
i=1

lii =
1
2
δr0Tr (L) =

1
2
δr0nλ > 0, (17)

where Tr represents the trace of the matrix, and λ =

1
n

n∑
i=1

λi > 0 is the arithmetic mean of all eigenvalues of L.

Meanwhile, the first item of (15) is treated as follows

−
1
2
α

n∑
i=1

n∑
j=1

(
wij + wji

) (
ej − ei

)T (ej − ei
)

= −
1
2
α

n∑
i=1

n∑
j=1

yij
(
eTj ej + eTi ei − eTj ei − eTi ej

)

= −
1
2
α

 n∑
j=1

eTj ej
n∑
i=1

yij +
n∑
i=1

eTi ei
n∑
j=1

yij


+ α

n∑
i=1

n∑
j=1

yijeTi ej

= −α

 n∑
i=1

liieTi ei −
n∑
i=1

n∑
j=1,j̸=i

yijeTi ej


= −α

 n∑
i=1

liieTi ei +
n∑
i=1

n∑
j=1,j̸=i

lijeTi ej


= −α

n∑
i=1

n∑
j=1

lijeTi ej = eT (L ⊗ Im) e. (18)

Note that the real symmetric matrix L corresponds to a
unique orthogonal matrix P satisfying PTLP = 3, where 3

is a diagonal matrix with elements on the main diagonal from
λ1 to λn. And [41] proved that all eigenvalues of the Laplacian
matrix of n-th order symmetric matrix with connectivity like
Y satisfy 0 = λ1 < λ2 ≤ . . . . . . ≤ λn. So after presuming
that eT (P⊗ Im) = (c1, c2, . . . cm×n), there is

eT (L ⊗ Im) e

= eT (P⊗ Im) (3 ⊗ Im) (P⊗ Im)T e

= λ1

m∑
i=1

c2i + λ2

2m∑
i=m+1

c2i + . . . + λn

mn∑
i=m(n−1)+1

c2i

= λ2

2m∑
i=m+1

c2i + . . . + λn

mn∑
i=m(n−1)+1

c2i . (19)

Since the elements of each row of L sum to 0, the first
column of P is the only linearly independent eigenvector p1
corresponding to the single eigenvalue λ1 = 0 of L, which
means all elements in p1 are 1

√
n , and the form of the first m
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columns of P⊗ Im are as follows:

Qmn×m = (P⊗ Im) (:, 1 : m) =



1
√
n

. . .

1
√
n

...
...

...
1

√
n

. . .

1
√
n


(20)

Therefore
m∑
i=1

c2i = eTQQT e

=

(
1

√
n

n∑
i=1

ei

)T (
1

√
n

n∑
i=1

ei

)
=

1
n

∥∥∥∥∥
n∑
i=1

ei

∥∥∥∥∥
2

. (21)

Substituting (21) into (19) yields

eT (L ⊗ Im) e

= λ2

2m∑
i=m+1

c2i + . . . + λn

mn∑
i=m(n−1)+1

c2i

≥λ2

mn∑
i=m+1

c2i = λ2

(
mn∑
i=1

c2i −

m∑
i=1

c2i

)

= λ2

∥e∥2 −
1
n

∥∥∥∥∥
n∑
i=1

ei

∥∥∥∥∥
2


=λ2

∥e∥2 −
1
n

n∑
i=1

 m∑
j=1

ei:j

2


≥ λ2

∥e∥2 −
1
n

n∑
i=1

m
m∑
j=1

e2i:j


= λ2

∥e∥2 −
m
n

n∑
i=1

m∑
j=1

e2i:j

 = λ2

(
1 −

m
n

)
∥e∥2,

(22)

where ei:j is the jth element of ei. Obviously, m ≪ n in
practical application scenarios, so

eT (L ⊗ Im) e ≥ λ2

(
1 −

m
n

)
∥e∥2

= 2λ2
(
1 −

m
n

)
V (e) > 0. (23)

Then the final scaling result of (6) was obtained below by
comprehensively considering (7), (12), (17), (23).

V̇ (e) ≤ −

(
vd + αλ2

(
1 −

m
n

))
2V (e)

+
√
nβd

√
2V (e) +

1
2
δr0nλ + nθ. (24)

Thus the sufficient condition for V̇ (e) < 0 to be derived
by (24) is

∥e∥ > γ

=

√
nβd+

√
nβ2d

2
+n

(
2δr0λ+4θ

) (
vd + αλ2

(
1 −

m
n

))
2
(
vd + αλ2

(
1 −

m
n

)) .

(25)

That means all agents will eventually converge to a bounded
area within a specific range near the leader, as shown in
Theorem 1. It should be noted that due to the widespread
use of the scaling method in various assumptions and proofs
presented in this section, the result of Theorem 1 is a very
conservative estimate, so the actual size that the entire swarm
converges to should be less than γ . Moreover, the proof
of Theorem 1 fails if both v and α are 0 (theoretically
possible) because the denominator of γ is 0. However, the
occurrence of this situation means that the distance between
any pair of agents (including the overall leader) is less than the
equilibrium distance of the repulsive/attractive force. That is,
only the repulsive force exists between agents, which means
that the swarm has converged to an extremely tight state
that is impossible to stabilize and must diverge back to the
actual steady state. Therefore, this paper will only consider
the discussion without this situation.

2) CONVERGENCE TIME ESTIMATED
Furthermore, the convergence time can also be estimated
from (24).
Theorem 2: Consider the converged V (e) estimated in

Theorem 1. for any ρ1 > ρ2 > 1
2γ

2
1 , the time required for

V (e) to converge from ρ1 to ρ2 will not exceed k (ρ1, ρ2) =

h (ρ1) − h (ρ2), where

h (ρ) =
1

2
√

1

{
γ1 ln

(√
2ρ − γ1

)
− γ2 ln

(√
2ρ − γ2

)}
,

ρ >
1
2
γ 2
1 . (26)

1 =
1
4
nβ2d

2
+

(
1
2
δr0nλ + nθ

)(
vd + αλ2

(
1 −

m
n

))
.

(27)

γ1 = γ =

1
2
√
nβd +

√
1

vd + αλ2
(
1 −

m
n

) > 0. (28)

γ2 =

1
2
√
nβd −

√
1

vd + αλ2
(
1 −

m
n

) < 0. (29)
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Proof: The following derivation from (24) is a simple
way to obtain an estimate of convergence time of V (e)
d (V (e))

dt
≤ −

(
vd + αλ2

(
1 −

m
n

)) (√
2V (e) − γ1

)
×

(√
2V (e) − γ2

)
.∫ T2

T1
dt

≤ −

∫ V (e(T2))
V (e(T1))

(
1

√
2V (e)−γ1

−
1

√
2V (e)−γ2

)
d (V (e))(

vd + αλ2
(
1 −

m
n

))
(γ1 − γ2)

.

T

≤−

{
γ1 ln

(√
2V (e)−γ1

)
− γ2 ln

(√
2V (e) − γ2

)}∣∣V (e(T2))
V (e(T1))

2
√

1

= h (e (T1)) − h (e (T2)) = k (e (T1) , e (T2)) . (30)

B. COMPUTATIONAL COMPLEXITY ANALYSIS
After the estimated convergence size and time were obtained
at (25) and (30), respectively, analyzing their computational
complexity is beneficial for evaluating the scalability and
practicality of the model. A straightforward method to
achieve this involves analyzing the time and space complexity
needed to compute each parameter in their expression. Since
m, n, and r0 are the dimension of the space, the number
of agents, and the unique zero point of attractive/repulsive
function µ, respectively, their time and space complexity are
both O(1); θ is the upper bound on the modulus of the virtual
leader’s motion equation f , which is a m-dimensional vector.
Therefore, the space and time complexity of θ equals O(m);
d and d are the maximum and minimum values of the n
elements in the first column (except the first element w00)
of the topology matrixW , respectively. Thus, their space and
time complexity are O(1) and O(n), respectively; Review the
definitions of the four parameters β, v, δ, andα in the previous
part of this section. It is evident that their values change
over time, and the computations of β and v at each moment
need calculating all n modulus of m-dimensional vectors ∥ei∥
first, while δ and α need calculating n(n − 1)/2 modulus of
m-dimensional vectors since their parameters are

∥∥ei − ej
∥∥

rather than ∥ei∥. Therefore, the time complexity of β and
v are both O(mn), while δ and α are both O(mn2). And the
space complexities of all these four parameters are O(1); As
for λ and λ2, they are the most computationally intensive
since the calculation of matrix eigenvalues was involved.
According to (16), time and space complexity for computing
and storing all elements of the Laplacian matrix L after
optimization are both O(n2), the further calculation of the
average eigenvalues λ is equivalent to calculating the trace of
L, whichmeansO(n) andO(1) for time and space complexity,
respectively. Not many efficient methods exist for calculating
the minimum positive eigenvalue, especially for large-scale
and sparse matrices. One class of relatively efficient methods
is the Krylov subspacemethod [42], which has time and space

FIGURE 2. Partial image of the attraction/repulsion function between
agents in case 1(a = 1, b = 2, r0 = 4).

complexities of O(kn2) and O(n2) per iteration, respectively,
where k is less than n and represents the dimension of the
subspace Kk (L, b) = span{b,Lb,L2b, . . . ,Lk−1b}, and the
n-dimensional vector b needs to be carefully chosen to ensure
that b through Lk−1b are k linearly independent basis vectors
ofKk (L, b). In summary, the space-time complexity required
to estimate the size and time of model convergence depends
mainly on the complexity of computing the eigenvalues of
the team topological matrix. However, it should be noted that
the above analysis of the computation complexity assumes
that the space-time complexity of the two functions f and
µ are both O(1). Though the specific forms of f and µ

considered in this paper’s ‘‘Numerical simulation’’ section
meet the assumption, additional analysis is still needed for
the case that they have more complex forms.

C. PARAMETERS ANALYSIS
1) MINIMUM POSITIVE EIGENVALUE OF SWARM
TOPOLOGY’S LAPLACIAN MATRIX
Given that λ2 plays a pivotal role in the related calculations
of model convergence, the specific effects of its changes
on the model performance need to be elaborated further.
Firstly, the form of the estimated convergence size γ in (25)
demonstrates that it decreases monotonically as λ2 increases,
which can be easily proved by finding the partial derivative of
γ concerning λ2. This means that the increases of λ2 to some
extent, hence the convergence of the proposed multi-agent
model, and generally speaking, the stronger the convergence,
the more stable the system because the fluctuation range of
the agent motion also decreases in a smaller convergence
space. In addition, the effect of the change in λ2 on the
convergence rate of the model can be deduced from the
conclusion of Theorem 2.
Theorem 3: For any ρ1 > ρ2 > 1

2γ
2
1 , the estimated

maximum time required for V (e) to converge from ρ1 to ρ2
in Theorem 2 decreases with the increase of λ2 when other
conditions are equal.

Proof: The following derivatives of 1, γ1, and γ2 with
respect to λ2 can be obtained from (27), (28), (29),
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TABLE 1. Comparison among various first-order multi-agent systems using the Lyapunov function method for stability analysis.

FIGURE 3. Leadership topology of all agents in case 1.

respectively.

d1

dλ2
= α (n− m)

(
1
2
δr0λ + θ

)
. (31)

dγ1

dλ2
=

d1
dλ2

2
√

1
(
vd + αλ2

(
1 −

m
n

))
−

α
(
1 −

m
n

) ( 1
2
√
nβd +

√
1
)

(
vd + αλ2

(
1 −

m
n

))2
=

α
(
1 −

m
n

) ( 1
2δr0nλ + nθ

) (
vd + αλ2

(
1 −

m
n

))
2
√

1
(
vd + αλ2

(
1 −

m
n

))2

−

α
(
1 −

m
n

) (√
n1βd + 21

)
2
√

1
(
vd + αλ2

(
1 −

m
n

))2
=

α
(
1 −

m
n

) (
1 −

1
4nβ

2d
2
−

√
n1βd − 21

)
2
√

1
(
vd + αλ2

(
1 −

m
n

))2
= −

α
(
1 −

m
n

) ( 1
2
√
nβd +

√
1
)2

2
√

1
(
vd + αλ2

(
1 −

m
n

))2
= −

α
(
1 −

m
n

)
2
√

1
γ 2
1 < 0. (32)

dγ2

dλ2
=

−
d1
dλ2

2
√

1
(
vd + αλ2

(
1 −

m
n

))
−

α
(
1 −

m
n

) ( 1
2
√
nβd −

√
1
)

(
vd + αλ2

(
1 −

m
n

))2
= −

α
(
1 −

m
n

) ( 1
2δr0nλ + nθ

) (
vd + αλ2

(
1 −

m
n

))
2
√

1
(
vd + αλ2

(
1 −

m
n

))2
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FIGURE 4. The thick solid and thin dashed lines represent the leader’s and agents’ motion trajectories in case 1 from the initial time to times
t = 0, 10, 20, 30, 40, 50, respectively. The circles and squares indicate the initial and final positions, respectively.

FIGURE 5. The relationship between the trend of swarm size over time
during 0 ≤ t ≤ 50 and the θ in case 1.

−

α
(
1 −

m
n

) (√
n1βd − 21

)
2
√

1
(
vd + αλ2

(
1 −

m
n

))2
=

α
(
1 −

m
n

) (
−

(
1 −

1
4nβ

2d
2
)

−
√
n1βd + 21

)
2
√

1
(
vd + αλ2

(
1 −

m
n

))2
=

α
(
1 −

m
n

) ( 1
2
√
nβd −

√
1
)2

2
√

1
(
vd + αλ2

(
1 −

m
n

))2

FIGURE 6. The relationship between the trend of swarm size over time
during 0 ≤ t ≤ 50 and the d in case 1.

=
α
(
1 −

m
n

)
2
√

1
γ 2
2 > 0. (33)

According to the definition of k (ρ1, ρ2) in Theorem 2, its
specific expressions are as follows:

k (ρ1, ρ2) =

γ1 ln
(√

2ρ1−γ1√
2ρ2−γ1

)
+ γ2 ln

(√
2ρ2−γ2√
2ρ1−γ2

)
2
√

1
,

ρ1 > ρ2 >
1
2
γ 2
1 >

1
2
γ 2
2 , γ1 > 0 > γ2, (34)
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as it is evident that the denominator 2
√

1 of k in the above
equation is monotonically increasing about λ2, the negativity
of the partial derivative of the function k concerning λ2 will
be determined in the following derivation process only by
proving the negativity of the derivative of k’s numerator

concerning λ2, namely, proving
∂
(
2
√

1k(ρ1,ρ2)
)

∂λ2
< 0.

∂
(
2
√

1k (ρ1, ρ2)
)

∂λ2

=

∂
(
γ1 ln

(√
2ρ1−γ1√
2ρ2−γ1

)
+ γ2 ln

(√
2ρ2−γ2√
2ρ1−γ2

))
∂λ2

=
dγ1

dλ2

(
ln
(√

2ρ1 − γ1
√
2ρ2 − γ1

)
+

γ1
(√

2ρ1 −
√
2ρ2

)(√
2ρ1 − γ1

) (√
2ρ2 − γ1

))

−
dγ2

dλ2

(
ln
(√

2ρ1 − γ2
√
2ρ2 − γ2

)
+

γ2
(√

2ρ1 −
√
2ρ2

)(√
2ρ1−γ2

) (√
2ρ2−γ2

)) .

(35)

Since dγ1
dλ2

< 0 and dγ2
dλ2

> 0 have been proved in (32)
and (33), respectively, and parameters in (35) satisfied ρ1 >

ρ2 > 1
2γ

2
1 > 1

2γ
2
2 . Therefore,

∂
(
2
√

1k(ρ1,ρ2)
)

∂λ2
< 0, which

also means ∂k(ρ1,ρ2)
∂λ2

< 0.
Theorem 3 shows that the smallest positive eigenvalue

λ2 of the swarm topology’s Laplacianmatrix L characterizing
the convergence rate of the multi-agent system, with a larger
smallest eigenvalue commonly indicating faster convergence,
which is consistent with the conclusions of many previous
studies [43], [44], [45], [46], [47], [48]. However, the specific
effects of λ2’s changes on the model performance will not be
simulated in this paper. A crucial reason is that modifying
the matrix to precisely adjust (most of the time maximizing)
its minimum eigenvalue is very complex and sufficient to
support another paper [49], [50].

2) WEIGHTS OF THE VIRTUAL LEADER’S IMPACT ON ALL
AGENTS
In addition to λ2, the effects of d and d on the model
performance are worth analyzing, since they denote the
maximum/minimum weights of the virtual leader’s impact
on all agents, respectively. However, it is intuitive to observe
that their effect on the estimated converged size γ in (25)
is opposite, as the growth of d increases γ and the
opposite for d . In order to explore the specific effects of
the leader’s attraction/repulsion weights for agents on the
model’s performance and simplify the analysis, it is better to
assume d = d = d > 0 and let t =

1
d . Therefore, the partial

derivative of γ to t is calculated as follows:

∂γ

∂t

=

∂
( √

nβ+
√

∇

2(v+αλ2(1−m
n )t)

)
∂t

=
2n
(
δr0λ̄+2θ

) (
v+2αλ2

(
1−

m
n

)
t
) (
v+αλ2

(
1−

m
n

)
t
)

4
√

∇
(
v+αλ2

(
1−

m
n

)
t
)2

−

2αλ2
(
1−

m
n

) (√
nβ+

√
∇

)
4
(
v+αλ2

(
1−

m
n

)
t
)2

=

∇−nβ2

t

(
v+2αλ2

(
1−

m
n

)
t
)

4
√

∇
(
v+αλ2

(
1−

m
n

)
t
)2 −

2αλ2
(
1−

m
n

) (√
nβ+

√
∇

)
4
(
v+αλ2

(
1−

m
n

)
t
)2

=

(
√
nβ+

√
∇

) (√
∇−

√
nβ
) (
v+2αλ2

(
1−

m
n

)
t
)

4
√

∇t
(
v+αλ2

(
1−

m
n

)
t
)2

−

(
√
nβ+

√
∇

)
αλ2t

(
1−

m
n

)
2t
(
v+αλ2

(
1−

m
n

)
t
)2

=

(
√
nβ+

√
∇

) ((√
∇−

√
nβ
)
v−2αλ2t

(
1−

m
n

)√
nβ
)

4
√

∇t
(
v+αλ2

(
1−

m
n

)
t
)2 ,

(36)

where

∇ = nβ2
+ 2nt

(
δr0λ + 2θ

) (
v+ αλ2

(
1 −

m
n

)
t
)

,

and the key to determining whether ∂γ
∂t is positive or negative

is in the following molecular part of (36):(√
∇ −

√
nβ
)
v− 2αλ2t

(
1 −

m
n

)√
nβ. (37)

According to the definition of v, v = 0 only if all
agents are within equilibrium distance of the leader’s
attraction/repulsion, which means all agents are subject to a
repulsive force from the leader at this time. Therefore, the
convergence of themodel will beweakenedwhen d increases,
which means ∂γ

∂t < 0, which is consistent with the positive
and negative nature of (37) at v = 0. When v > 0, the
following transformation can be applied to (37):(√

∇−
√
nβ
)
v−2αλ2t

(
1−

m
n

)√
nβ

=

v
(
∇−

(
2α
v λ2t

(
1−

m
n

)
+ 1

)2nβ2
)

√
∇ +

(
2α
v λ2t

(
1−

m
n

)
+ 1

)√
nβ

=

2ntv
(
αλ2t

(
1−

m
n

)
+ v

) (
δr0λ + 2θ−2 α

v2
λ2
(
1−

m
n

)
β2
)

√
∇ +

(
2α
v λ2t

(
1−

m
n

)
+ 1

)√
nβ

.

(38)

Now the key for judging ∂γ
∂t becomes:

δr0λ + 2θ − 2
α

v2
λ2

(
1 −

m
n

)
β2. (39)

However, it is challenging to draw straightforward conclu-
sions about ∂γ

∂t based on (39) without any specific cases
because parameters contained in (39) involving information
about the leadership topology of the swarm (λ, λ2), attraction
and repulsion functions (r0), and the motion equation of the
leader (θ ), not to mention the four time-varying parameters
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which reflect the real-time states of the system (δ, α, v, β).
Thus, in practical application scenarios of the model, the
calculation of (39) based on the real-time values of the
parameters is needed to determine the trend of the effect of
d on the convergence of the model.

3) NUMBER OF AGENTS
Besides, it can be easily determined that the convergence size
of the model is substantially unaffected by the number of
agents n. According to (25), the sum of the squares of the
distances from all agents to the leader ∥e∥2 eventually does
not exceed γ 2, which means:

∥e∥2

=

n∑
i=1

∥ei∥2 ≤ γ 2

= n

βd+

√
β2d

2
+
(
2δr0λ+4θ

) (
vd+αλ2

(
1−

m
n

))
2
(
vd+αλ2

(
1−

m
n

))
2

.

(40)

Therefore, the maximum estimated mean of the final distance
from each agent to the leader is as follow:

1
n

n∑
i=1

∥ei∥

≤

√√√√1
n

n∑
i=1

∥ei∥2

≤
βd +

√
β2d

2
+
(
2δr0λ + 4θ

) (
vd + αλ2

(
1 −

m
n

))
2
(
vd + αλ2

(
1 −

m
n

)) .

(41)

Since it has been assumed in the proof of Theorem 1 that
m ≪ n (between (22) and (23)), the value of (41) is
independent of n when the eigenvalue-related parameters λ

and λ2 do not vary with the size of leadership topology
matrixW . It is sufficient to approximately accomplish this by
keeping all elements of W (except for the diagonal, the first
row, and the first column) identical and inversely proportional
to the matrix size n because the eigenvalues of the Laplacian
matrix L derived from such matricesW satisfy

0 = λ1 < λ2 = λ3 = · · · · · · = λn = 2nw,

which means for fixed λ and λ2, the identical elements w
of the matrix W remain inversely proportional to the matrix
size n. For the whole swarm, this means that all agents
are equivalent, the weights of the forces on them (except
those exerted by the leader) are evenly distributed among the
remaining agents, and each of their total weights does not
vary with the number of agents. As a result, for a swarm with
the above characteristics, the convergence size is independent
of the number of agents. For those swarms with general
leadership topologies that do not have this specialization, the

FIGURE 7. Partial image of the attraction/repulsion function between
agents in case 2(a = 0.13, b = 3, c = 4).

FIGURE 8. Leadership topology of all agents in case 2.

effect of agent num on the convergence size will be more
complex and not be discussed in this paper.

In summary of the analysis of Section III, a comparison
between the proposed multi-agent model and similar first-
order multi-agent model of prior works is summarized in
Table 1.

IV. NUMERICAL SIMULATION
This section provides numerical simulations of several cases
to illustrate the theoretical analysis. The multi-agent system
that contains a virtual leader and ten agents (i.e.n = 10,
m = 2) in a two-dimensional space was considered in the
following three cases.
Case 1: The attraction/repulsion function µ (y) is chosen

as the following simple form that satisfies Assumption 2

µ (y) = alogb

(
y
r0

)
where the positive constants a and b is used to control the
amplitude of µ, and the positive constant r0 denotes the
critical distance at which the attractive and repulsive forces
are balanced. Let a = 1, b = 2, r0 = 4, then the function
image of µ (y) = log2

( y
4

)
is shown in Fig.2.

In order to verify the sufficient condition for convergence
of the model in Theorem 1 that the symmetric matrix Y
derived from the coupling matrix W has connectivity, taking
w15 = w21 = w41 = w51 = w38 = w87 = w62 =

w72 = w67 = w83 = w93 = w10,3 = w76 = w10,9 = 1,
and w10 = w20 = w30 = w40 = w50 = w60 = w70 =

w80 = w90 = w10,0 = 2, while all other elements are 0. The
leadership topology structure of all agents is shown in Fig.3,
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FIGURE 9. The thick solid and thin dashed lines represent the leader’s and agents’ motion trajectories in case 2 from the initial time to times
t = 0, 10, 20, 30, 40, 50, respectively. The circles and squares indicate the initial and final positions, respectively.

FIGURE 10. The relationship between the trend of swarm size over time
during 0 ≤ t ≤ 50 and the θ in case 2.

in which the agent at the beginning of each arrow influences
the agent at the end.

The nonlinear function f describing the external navigation
input and the feedback from real-time swarm size is of
the form f (xi) =

3
n∑
i=1

∥ei∥

(
sin
( xi1
50

)
, cos

( xi2
50

))
that satisfies

Assumption 1, and so θ = 3.
Fig.4 shows the motion trajectories of the virtual leader

and all agents in the two-dimensional space, which indicateas

FIGURE 11. The relationship between the trend of swarm size over time
during 0 ≤ t ≤ 50 and the d in case 2.

that all agents form a cohesive swarm and follow the leader’s
movement.

Fig.5 shows that the average distance between agents and
the leader is affected by θ (from 1 to 10) under the same other
conditions, such that the convergence size decreases with the
increase in θ , which is consistent with the conclusion of (25).

Fig.6 illustrates the effect of d on the average distance
between the leader and the agents (suppose d = d =

d from 0.5 to 5.0) under the same other conditions. It is
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FIGURE 12. The thick solid and thin dashed lines represent the leader’s and agents’ motion trajectories in case 3 from the initial time to times
t = 0, 10, 20, 30, 40, 50, respectively. The circles and squares indicate the initial and final positions, respectively.

FIGURE 13. The relationship between the trend of swarm size over time
during 0 ≤ t ≤ 50 and the θ in case 3.

demonstrated that a more significant d implies more robust
convergence for the model. However, the system oscillates
within a specific range when d increases to 5.0, which is
due to the leader’s overly strong attraction/repulsion effect
on the agents, causing the agents to approach the leader too
fast and after crossing the equilibrium position dramatically,
they are subjected to stronger repulsion and pushed back
out of the equilibrium position, and the cycle repeats itself.
This phenomenon does not contradict the conclusion of

FIGURE 14. The relationship between the trend of swarm size over time
during 0 ≤ t ≤ 50 and the d in case 3.

Theorem 1, which only indicates that the system converges
to a certain range rather than specific behavior in this range.
Case 2: Regarding the attraction/repulsion functions µ (y)

between agents, a common form was usually took in many
papers as follows:

µ (y) = y
(
a− b exp

(
−
y2

c

))
where the positive constants a, b, and c are used to control the
amplitude of attraction and repulsion terms, respectively, let
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FIGURE 15. Two-dimensional plots of xi (t), 0 ≤ i ≤ 100 in case 4 at time t = 0, 10, 20, 30, 40, 50. The larger red square and the smaller black dots
represent the leader and agents, respectively.

a = 0.13, b = 3, c = 4, then the function image of µ (y) =

y
(
0.13 − 3 exp

(
−
y2

4

))
is shown in Fig.7. In contrast to

case 1, the non-necessity of condition in Theorem 1 is
verified by depriving the connectivity of Y in this case, thus
the positive entries of W are w51 = w61 = w72 = w82 =

w93 = w10,4 = 1, and w10 = w20 = w30 = w40 =

w50 = w60 = w70 = w80 = w90 = w10,0 = 2.
The leadership topology structure of all agents is shown
in Fig.8. And the nonlinear function f is now given by
f (xi) =

3
n∑
i=1

∥ei∥

(
cos

( xi1
40

)
, sin

( xi2
40

))
. Though Y no longer has

connectivity, that is, Assumption 3 is not satisfied. We are
about to see that the group with the same initial positions as
case 1 still forms a cohesive swarm and follows the leader’s
motion in the corresponding simulation in Fig.9. From Fig.9,
it is seen that there is a phenomenon of overlap among agents
due to the convergence of the attraction/repulsion function
to the origin. The specifics of the overlap between all agents
are determined by their initial positions and the leadership
topology.

In analogy to case 1, the swarm bound increases as the
parameter θ increases, which can be seen in Fig.10.

Fig.11 is analogous to Fig.6, both reflecting a similar trend
in the effect of d on model performance. A slight difference
is that since the repulsive force of the attraction/repulsion
function of case2 is more severe than that of case1 for most
of the interval within the attractive/repulsive equilibrium
distance, the oscillation of the system occurs at d = 4.0, and
the magnitude is also more extensive than that of case1.

Case 3: According to the previous discussion, a certain
degree of randomness exists in the movement of agents in
natural multi-agent groups. The accuracy of communication
and positioning between agents depends on their relative
distance, and the randomness of motion caused by this effect
usually increases with the increase of distance, whether
in robot formations or biological communities. Therefore,
the actual value of ∥g (y)∥ was randomly taken between(
1 −

2
π
arctan ∥y∥

)
µ (∥y∥) and

(
1 +

2
π
arctan ∥y∥

)
µ (∥y∥)

in this case, while other conditions are adopted as in case 1.
Two-dimensional plots and trajectories of xi (t) for 0 ≤ i ≤

10 and 0 ≤ t ≤ 50 are depicted in Fig.12. Although
there are fluctuations in the trajectory of agents compared to
case 1, similar swarming and following behavior can still be
observed.Moreover, the relationship between swarm size and
θ , shown in Fig.13, basically conforms to the same rules as in
the first two cases, and so does Fig.14, which demonstrates
the relationship between swarm size and d .
Case 4: This case will demonstrate the numerical stability

performed when the system scaled up to a much higher
number of agents. Consider a reciprocal multi-agent system
with one virtual leader and a hundred agents, with the same
conditions as in case 1 except for the leadership topology of
the swarm. Based on the preconditions used in Section III-C3
for analyzing the number of agents, we are taking all entries
of W equal to 0.02 except those in the diagonal, the first
row, and the first column. Two-dimensional plots of xi(t),
0 ≤ i ≤ 100 are depicted in Fig.15, in which the swarming
behavior still occurs with the agents on this quantitative scale.
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FIGURE 16. The relationship between the trend of swarm size over time
during 0 ≤ t ≤ 50 and the d in case 3.

Moreover, the relationship between the trend of swarm size
over time during 0 ≤ t ≤ 50 and the number of agents n
are depicted in Fig.16, in which the identical positive entries
of W are 2

n . The results shown in Fig.16 consistent with the
analysis in Section III-C3. That is, the convergence size of a
reciprocal multi-agent system is independent of the number
of agents when the total weight of the force on each agent
is identically constant and always evenly distributed among
other agents.

V. CONCLUSION
This paper proposes a novel first-order multi-agent model
suitable for outdoor group motions and provides stability
analysis research results. In this model, only a unique
virtual leader with a self-adaptive feedback mechanism can
directly perceive external navigation input. At the same
time, all agents follow a rooted leadership structure and
have inherent nonlinear dynamics that follow the principle
of near-repulsion and far-attraction. It is proved that the
multi-agent system will ultimately achieve cohesion if a
symmetric matrix derived from the coupling topology matrix
has connectivity and the repulsion force is indeed bounded.
Moreover, the estimates of convergence size and time are
obtained. In addition, the computational complexity of the
model and the effect of most of the parameters in the
model on the model performance were analyzed. Numerical
simulations show that the conclusions still apply after
introducing a certain degree of motion randomness because
flocking and following behaviors occur in the system, which
verifies the theoretical results.

Nevertheless, one limitation of this paper is the multi-
agent model’s rooted leadership property, which guarantees
that even if the leadership topology of the swarm changes
at some point, this kind of change will not cause the direct
or indirect leadership relationship between each agent and
the overall leader to disappear. While this direct or indirect
leader-following relationship being temporarily weakened

and disappears was frequently observed in nature. In that
case, more than a single overall leader may be needed to keep
the convergence of the swarm since the model’s leadership
is unrooted, and the stability needs further analysis. Another
area for improvement is the ignorance of obstacles that may
be common in practical scenarios. Since it defaults that agents
are ‘‘blind’’ to environmental information, how to set leaders
to guide agents to avoid obstacles needs to be carefully
considered. In some complex situations, it may be difficult
for a single leader to meet this requirement. Furthermore, the
convergence size and time estimated in this paper are very
conservative. Thus far, to the best of our knowledge, it is still
hard to accurately calculate the convergence results of the
stability of multi-agent models. We leave these challenges for
our future work.

ACKNOWLEDGMENT
Zhibin Zeng was a visiting scholar (funded by the China
Scholarship Council) at the University of Adelaide when
this work was done. S. J. Chen and C. Fumeaux are with
the School of Electrical and Electronic Engineering, The
University of Adelaide, Adelaide, Australia.

REFERENCES
[1] J. H. Reif and H. Wang, ‘‘Social potential fields: A distributed behavioral

control for autonomous robots,’’ Robot. Auto. Syst., vol. 27, no. 3,
pp. 171–194, May 1999.

[2] B. Wang, S. Nersesov, and H. Ashrafiuon, ‘‘Formation regulation and
tracking control for nonholonomic mobile robot networks using polar
coordinates,’’ IEEE Control Syst. Lett., vol. 6, pp. 1909–1914, 2022.

[3] E. Restrepo, A. Loría, I. Sarras, and J. Marzat, ‘‘Leader-follower consensus
of unicycles with communication range constraints via smooth time-
invariant feedback,’’ IEEE Control Syst. Lett., vol. 5, no. 2, pp. 737–742,
Apr. 2021.

[4] Q. Wang, H. Dong, B. Ning, L. Y. Wang, and G. Yin, ‘‘Two-time-scale
hybrid traffic models for pedestrian crowds,’’ IEEE Trans. Intell. Transp.
Syst., vol. 19, no. 11, pp. 3449–3460, Nov. 2018.

[5] A. Tordeux, M. Chraibi, and A. Seyfried, ‘‘Collision-free speed model for
pedestrian dynamics,’’ in Traffic and Granular Flow ’15, V. L. Knoop and
W. Daamen, Eds. Cham, Switzerland: Springer, 2016, pp. 225–232.

[6] Q. Xu, M. Chraibi, A. Tordeux, and J. Zhang, ‘‘Generalized collision-
free velocity model for pedestrian dynamics,’’ Phys. A, Stat. Mech. Appl.,
vol. 535, Dec. 2019, Art. no. 122521.

[7] R.-Y. Guo, S. C. Wong, H.-J. Huang, P. Zhang, and W. H. K.
Lam, ‘‘A microscopic pedestrian-simulation model and its application
to intersecting flows,’’ Phys. A, Stat. Mech. Appl., vol. 389, no. 3,
pp. 515–526, Feb. 2010.

[8] S.-L. Dai, S. He, X. Chen, and X. Jin, ‘‘Adaptive leader-follower formation
control of nonholonomic mobile robots with prescribed transient and
steady-state performance,’’ IEEE Trans. Ind. Informat., vol. 16, no. 6,
pp. 3662–3671, Jun. 2020.

[9] Y. Xu, Z. Wang, and J. Chen, ‘‘Formation tracking control for multi-
agent systems on directed graphs,’’ in Proc. Chin. Control Conf. (CCC),
Jul. 2019, pp. 47–52.

[10] Q. Yao, Z. Zheng, L. Qi, H. Yuan, X. Guo, M. Zhao, Z. Liu, and
T. Yang, ‘‘Path planning method with improved artificial potential
field—A reinforcement learning perspective,’’ IEEE Access, vol. 8,
pp. 135513–135523, 2020.

[11] Y. Ma, Y. Liu, L. Zhao, and M. Zhao, ‘‘A review on cooperative control
problems of multi-agent systems,’’ in Proc. 41st Chin. Control Conf.
(CCC), Jul. 2022, pp. 4831–4836.

[12] Y. Hou, M. Sun, Y. Zeng, Y.-S. Ong, Y. Jin, H. Ge, and Q. Zhang, ‘‘A
multi-agent cooperative learning system with evolution of social roles,’’
IEEE Trans. Evol. Comput., early access, pp. 1–14, 2023.

20652 VOLUME 12, 2024



Z. Zeng et al.: Multi-Agent Model Based on Rooted Leadership Structure and General Dynamics

[13] C. W. Reynolds, ‘‘Flocks, herds and schools: A distributed behavioral
model,’’ in Proc. 14th Annu. Conf. Comput. Graph. Interact. Techn.,
Aug. 1987, pp. 25–34.

[14] V. Gazi and K. M. Passino, ‘‘Stability analysis of swarms,’’ IEEE Trans.
Autom. Control, vol. 48, no. 4, pp. 692–697, Apr. 2003.

[15] V. Gazi and K. M. Passino, ‘‘Stability analysis of social foraging swarms,’’
IEEE Trans. Syst., Man Cybern., B, Cybern., vol. 34, no. 1, pp. 539–557,
Feb. 2004.

[16] R. Olfati-Saber, ‘‘Flocking for multi-agent dynamic systems: Algorithms
and theory,’’ IEEE Trans. Autom. Control, vol. 51, no. 3, pp. 401–420,
Mar. 2006.

[17] T. Kolokolnikov, H. Sun, D. Uminsky, andA. L. Bertozzi, ‘‘Stability of ring
patterns arising from two-dimensional particle interactions,’’ Phys. Rev. E,
Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 84, no. 1, Jul. 2011,
Art. no. 015203.

[18] G. Albi, D. Balagué, J. A. Carrillo, and J. von Brecht, ‘‘Stability analysis of
flock and mill rings for second order models in swarming,’’ SIAM J. Appl.
Math., vol. 74, no. 3, pp. 794–818, Jan. 2014.

[19] J. A. Carrillo, Y. Huang, and S. Martin, ‘‘Nonlinear stability of flock
solutions in second-order swarming models,’’Nonlinear Anal., Real World
Appl., vol. 17, pp. 332–343, Jun. 2014.

[20] J. Qin, Q. Ma, P. Yi, and L. Wang, ‘‘Multiagent interval consensus
with flocking dynamics,’’ IEEE Trans. Autom. Control, vol. 67, no. 8,
pp. 3965–3980, Aug. 2022.

[21] Q. Liu, L. Wang, and X. Liao, ‘‘Stability analysis of swarms with
interaction time delays,’’ Inf. Sci., vol. 192, pp. 244–254, Jun. 2012.

[22] Z. Yang, X. Pan, Q. Zhang, and Z. Chen, ‘‘Distributed optimiza-
tion for multi-agent systems with time delay,’’ IEEE Access, vol. 8,
pp. 123019–123025, 2020.

[23] J. Yuan, G. Jiang, and X.-B. Chen, ‘‘Flocking with informed
agents based on incomplete information,’’ IEEE Access, vol. 10,
pp. 87069–87082, 2022.

[24] S. Das, U. Halder, and D. Maity, ‘‘Chaotic dynamics in social foraging
swarms—An analysis,’’ IEEE Trans. Syst., Man, Cybern., B, Cybern.,
vol. 42, no. 4, pp. 1288–1293, Aug. 2012.

[25] S. Das, ‘‘Chaotic patterns in the discrete-time dynamics of social foraging
swarms with attractant-repellent profiles: An analysis,’’ Nonlinear Dyn.,
vol. 82, no. 3, pp. 1399–1417, Nov. 2015.

[26] S. Das, D. Goswami, S. Chatterjee, and S. Mukherjee, ‘‘Stability and
chaos analysis of a novel swarm dynamics with applications to multi-agent
systems,’’ Eng. Appl. Artif. Intell., vol. 30, pp. 189–198, Apr. 2014.

[27] B. Liu, T. Chu, L. Wang, and Z. Wang, ‘‘Collective motion of a class
of social foraging swarms,’’ Chaos, Solitons Fractals, vol. 38, no. 1,
pp. 277–292, Oct. 2008.

[28] W. Li, ‘‘Stability analysis of swarms with general topology,’’ IEEE Trans.
Syst., Man, Cybern., B, Cybern., vol. 38, no. 4, pp. 1084–1097, Aug. 2008.

[29] I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin, ‘‘Effective
leadership and decision-making in animal groups on the move,’’ Nature,
vol. 433, no. 7025, pp. 513–516, Feb. 2005.

[30] M. Nagy, Z. Ákos, D. Biro, and T. Vicsek, ‘‘Hierarchical group dynamics
in pigeon flocks,’’ Nature, vol. 464, no. 7290, pp. 890–893, Apr. 2010.

[31] J. Shen, ‘‘Cucker–Smale flocking under hierarchical leadership,’’ SIAM
J. Appl. Math., vol. 68, no. 3, pp. 694–719, Jan. 2008.

[32] Z. Li and X. Xue, ‘‘Cucker–Smale flocking under rooted leadership with
fixed and switching topologies,’’ SIAM J. Appl. Math., vol. 70, no. 8,
pp. 3156–3174, Jan. 2010.

[33] Z. Li and X. Xue, ‘‘Cucker–Smale flocking under rooted leadership with
free-will agents,’’ Phys. A, Stat. Mech. Appl., vol. 410, pp. 205–217,
Sep. 2014.

[34] F. Dalmao and E. Mordecki, ‘‘Cucker–Smale flocking under hierarchical
leadership and random interactions,’’ SIAM J. Appl. Math., vol. 71, no. 4,
pp. 1307–1316, Jan. 2011.

[35] J. Dong, ‘‘Flocking under hierarchical leadership with a free-will leader,’’
Int. J. Robust Nonlinear Control, vol. 23, no. 16, pp. 1891–1898,
Nov. 2013.

[36] C.-H. Li and S.-Y. Yang, ‘‘A new discrete Cucker–Smale flocking model
under hierarchical leadership,’’ Discrete Continuous Dyn. Syst. B, vol. 21,
no. 8, pp. 2587–2599, Sep. 2016.

[37] Z. Li, ‘‘Effectual leadership in flocks with hierarchy and individ-
ual preference,’’ Discrete Continuous Dyn. Syst. A, vol. 34, no. 9,
pp. 3683–3702, 2014.

[38] Z. Li, S.-Y. Ha, and X. Xue, ‘‘Emergent phenomena in an ensemble
of Cucker–Smale particles under joint rooted leadership,’’ Math. Models
Methods Appl. Sci., vol. 24, no. 7, pp. 1389–1419, Jun. 2014.

[39] C.-H. Li, ‘‘Stability analysis of a swarm model with rooted leadership,’’
Phys. Lett. A, vol. 383, no. 1, pp. 1–9, Jan. 2019.

[40] W. Yu, G. Chen, M. Cao, J. Lü, and H.-T. Zhang, ‘‘Swarming behaviors
in multi-agent systems with nonlinear dynamics,’’ Chaos, Interdiscipl. J.
Nonlinear Sci., vol. 23, no. 4, Nov. 2013, Art. no. 043118.

[41] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 2012.

[42] J. Liesen and Z. Strakos. Krylov Subspace Methods: Principles and
Analysis (Numerical Mathematics and Scientific Computation). Oxford,
U.K.: Oxford Univ. Press, 2013.

[43] R. Olfati-Saber and R. M. Murray, ‘‘Consensus problems in networks of
agents with switching topology and time-delays,’’ IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[44] A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt, ‘‘Controllability of
multi-agent systems from a graph-theoretic perspective,’’ SIAM J. Control
Optim., vol. 48, no. 1, pp. 162–186, Jan. 2009.

[45] M. Pirani and S. Sundaram, ‘‘On the smallest eigenvalue of grounded
Laplacian matrices,’’ IEEE Trans. Autom. Control, vol. 61, no. 2,
pp. 509–514, Feb. 2016.

[46] D. Zelazo and M. Bürger, ‘‘On the robustness of uncertain consensus
networks,’’ IEEE Trans. Control Netw. Syst., vol. 4, no. 2, pp. 170–178,
Jun. 2017.

[47] H. Liu, X. Xu, J.-A. Lu, G. Chen, and Z. Zeng, ‘‘Optimizing pinning
control of complex dynamical networks based on spectral properties of
grounded Laplacian matrices,’’ IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 51, no. 2, pp. 786–796, Feb. 2021.

[48] B. Wang, H. Liu, J. Xu, and J. Liu, ‘‘Pining control algorithm for complex
networks,’’ in Proc. Chin. Control Conf. (CCC), Jul. 2019, pp. 964–969.

[49] A. Clark, Q. Hou, L. Bushnell, and R. Poovendran, ‘‘Maximizing the
smallest eigenvalue of a symmetric matrix: A submodular optimization
approach,’’ Automatica, vol. 95, pp. 446–454, Sep. 2018.

[50] X. Zhou, H. Sun, W. Li, and Z. Zhang, ‘‘Optimization on the smallest
eigenvalue of grounded Laplacian matrix via edge addition,’’ Theor.
Comput. Sci., vol. 980, Nov. 2023, Art. no. 114220.

ZHIBIN ZENG (Member, IEEE) received the B.E.
degree in information engineering from theWuhan
Technical University of Surveying and Mapping,
Wuhan, China, in 1998, and the M.E. degree
in information and communication engineering
and the Ph.D. degree in electronic science and
technology from Xidian University, Xi’an, China,
in 2004 and 2010, respectively. Since 2011,
he has been an Associate Professor with the
School ofMicroelectronics, XidianUniversity. His

current research interests include design of embedded systems, wireless
communication, high-speed signal processing, and signal integrity.

ZILUO XIE received the B.E. degree in infor-
mation engineering from the Hefei University of
Technology, Anhui, China, in 2021. He is currently
pursuing the master’s degree with the School of
Microelectronics, Xidian University. His current
research interests include the design of embedded
systems, wireless communication, andmulti-agent
systems.

ZHENYU JIANG received the B.E. degree in
electronical information science and technology
from the Shaanxi University of Science and
Technology, Xi’an, China, in 2022. He is currently
pursuing the master’s degree with the School of
Microelectronics, Xidian University. His current
research interests include digital IC and the design
of system-on-chip.

VOLUME 12, 2024 20653


