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ABSTRACT A critical yet unpredictable complication following cataract surgery is intraocular lens
dislocation. Postoperative stability is imperative, as even a tiny decentration of multifocal lenses or
inadequate alignment of the torus in toric lenses due to postoperative rotation can lead to a significant drop
in visual acuity. Investigating possible intraoperative indicators that can predict post-surgical instabilities of
intraocular lenses can help prevent this complication. In this paper, we develop and evaluate the first fully
automatic framework for the computation of lens unfolding delay, rotation, and instability during surgery.
Adopting a combination of three types of CNNs, namely recurrent, region-based, and pixel-based, the
proposed framework is employed to assess the possibility of predicting postoperative lens dislocation during
cataract surgery. This is achieved via performing a large-scale study on the statistical differences between the
behavior of different brands of intraocular lenses and aligning the results with expert surgeons’ hypotheses
and observations about the lenses. We exploit a large-scale dataset of cataract surgery videos featuring four
intraocular lens brands. Experimental results confirm the reliability of the proposed framework in evaluating
the lens’ statistics during the surgery. The Pearson correlation and t-test results reveal significant correlations
between lens unfolding delay and lens rotation and significant differences between the intra-operative
rotations stability of four groups of lenses. These results suggest that the proposed framework can help
surgeons select the lenses based on the patient’s eye conditions and predict post-surgical lens dislocation.

INDEX TERMS Cataract surgery, semantic segmentation, phase recognition, action recognition, computer-
assisted intervention, irregularity detection, intraocular lens complication.

I. INTRODUCTION
Cataract refers to the cloudiness of the eye’s natural lens,
usually due to aging, resulting in vision blur, dimness,
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distortion, double vision, and degraded color perception.
Cataracts are the major cause of blindness worldwide [1].
Due to the aging population and longer life expectancies, the
World Health Organization (WHO) predicts that he incidence
of cataract-related blindness will rise to 40 million by
2025 [2]. This common disease can be remedied by replacing
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the natural lens with an artificial lens termed intraocular
lens (IOL) during cataract surgery [3], [4]. Cataract surgery
is the most frequent eye surgery and one of the most
frequently performed surgeries worldwide. With the contin-
uous introduction of technological advancements, cataract
surgery techniques are constantly evolving. The progression
has witnessed significant shifts, starting from intracapsular
cataract extraction (ICCE) in the 1960s and 1970s, to extra-
capsular cataract extraction (ECCE) in the 1980s and 1990s,
and currently, the widely adopted technique is sutureless
small-incision phacoemulsification surgery with injectable
intraocular lens (IOL) implantation.1 These advancements
in surgical methods demonstrated tangible enhancements in
visual outcomes and safety [2], [5]. Although not exceeding
10% with mostly transient effects, the intra-operative and
post-operative complications in cataract surgery may lead
to visual impairment and severe patient discontent [6], [7],
[8], [9]. Due to the prevalence of cataract surgery and its
considerable impact on the patient’s quality of life, predicting
and avoiding its post-operative complications is of prime
concern for the surgical community.

Intraocular lens dislocation is a major post-operative
complication following cataract surgery [10], [11], [12].
During the procedure, the eye’s natural lens is removed
and a folded artificial lens (IOL) is inserted into the eye’s
capsular bag. The lens then unfolds and possibly rotates
and dislocates until completely unfolded. Despite being
aligned and centralized at the end of the surgery, in some
cases, the IOL rotates or dislocates following the surgery.
Even minor misalignments of the torus in toric IOLs and
decentration and tilting of multifocal IOLs can lead to
significant vision distortion and dissatisfied patients. Follow-
up surgery is currently the only way to address this post-
operative complication, entailing additional costs, surgical
risks, and patient discomfort. There is an unmet clinical
demand to identify intra-operative indicators to predict and
avoid this post-operative complication during the surgery.

It is argued that early rotation in toric IOLs during cataract
surgery is the leading cause of post-operative misalign-
ments [13]. Since the unfolding delay differs between various
IOL brands, it is hypothesized that there is a direct correlation
between the lens’ behavior during unfolding and its post-
operative stability. Besides, an incomplete unfolding of the
IOLs at the end of surgery may lead to an inadequate pressure
of the haptics against the capsular bag, thus resulting in post-
operative rotation, decentration, or tilting of the IOL. In recent
years, extensive research has been conducted to compare
and predict the rotation stability of different IOLs [14], [15],
[16], [17], [18]. However, a reliable study for evaluating
the behavior of IOL during its unfolding or other risk
factors during the surgery requires large-scale comparisons,
necessitating an automatic lens’ feature extraction method
from surgical microscope video feeds.

1In this paper, the term ‘‘Cataract Surgery’’ refers to ‘‘Phacoemulsification
Cataract Surgery.’’

In this paper, we aim to investigate the possibility of
automating the statistical analysis for different intraocular
lens (IOL) behaviors during surgery to predict post-operative
lens rotational stability. The main contributions of this paper
are as follows.
1) We introduce the first deep-learning-based framework

for automatic analysis and comparison of four brands
of IOLs based on (i) lens unfolding delay, (ii) lens
instability, and (iii) lens rotation during the surgery.
To achieve this, three deep-learning-based architectures
are employed to tackle different problems in surgical
scene understanding: (a) a recurrent convolutional
neural network for precise implantation phase detection,
(b) a U-Net-based network for lens and pupil segmenta-
tion after the implantation phase, and (c) a region-based
network for lens’ hook detection.

2) The proposed framework is evaluated using a large-scale
dataset of cataract surgery videos.

3) Using the proposed framework with trained models,
a large-scale study is conducted based on the statistics
of four groups of intraocular lenses.

4) The fully-automated statistical comparisons among
these four brands of intraocular lenses for the first time
suggest significant correlations between lens unfolding
delay and rotation and significant differences among the
rotation degrees of different lenses.

The efficacy of each stage in the proposed framework is eval-
uated using relevant metrics, including (I) precision, recall,
f1-score, and accuracy for phase recognition, (II) Jaccard
metric and dice coefficient for semantic segmentation, and
(III) mean average precision for object detection and pose
estimation. The phase recognition network achieved 100%
accuracy in detecting the implantation phase, which is the
starting time to compute lens unfolding delay and rotation.
The segmentation network showed outstanding performance
in lens and pupil segmentation (a dice coefficient equal
to 92.62% for lens segmentation and 97.98% for pupil
segmentation). Ultimately, the proposed lens orientation
calculation method demonstrates a mean error as small as
3.707 degrees, confirming the detections’ high reliability.
Our statistical evaluation results align with the surgeons’
hypotheses regarding the correlation between lens behaviors
during and after surgery. By demonstrating the possibility
of predicting and subsequently reducing post-operative
complications of intraocular lenses through lens behavior
evaluation during surgery, our results provide evidence for
potential improvements in patient outcomes.

The rest of this paper is organized as follows. In Section II,
we position our work in the literature by reviewing state-
of-the-art methods on artificial-intelligence-assisted analysis
of cataract surgery videos. Section III details our proposed
framework for computing the IOL statistics during the
surgery. We explain the experimental setup in Section IV
and present the experimental results in Section V. Finally,
Section VI discusses the achievements of our work and
concludes the paper.
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FIGURE 1. The overall framework of the proposed intraocular lens qualification method. In the first stage, a recurrent CNN detects the implantation
phase to label the last frame of this phase as the starting point for intraocular lens statistics computation. Afterward, a semantic segmentation network
outputs the masks of the intraocular lens and pupil to be used for lens unfolding delay and instability computation. Finally, a region-based CNN is
employed to compute absolute lens rotations after full unfolding until the end of the video.

II. RELATED WORK
The field of cataract surgery has witnessed the integration
of artificial intelligence (AI) to address a spectrum of
demands spanning pre-operative, intra-operative, and post-
operative applications. Regarding pre-operative requisites,
AI has been instrumental in supporting surgical diagnosis and
decision-making, including cataract detection and grading,
as evidenced by numerous studies [19], [20], [21], [22].
Classic AI-based methods for the intra-operative and post-
operative applications focused on instrument tracking [23],
surgical process modeling [24], surgical training [25], [26],
[27], [28], robot-assisted surgery [29], [30], and surgical
time prediction [31]. Furthermore, AI has demonstrated
its effectiveness in predicting outcomes related to cataract
surgery, notably in the calculation of intraocular lens
power [32].

In recent years, convolutional neural networks (CNN)
have become the predominant driving engine in comput-
erized surgical workflow analysis. Recent studies have

showcased the capabilities of CNN-based frameworks in pre-
operative cataract diagnosis [33], [34], [35], and cataract type
and severity classification [36]. The intra-operative deep-
learning-based methods can be categorized into two primary
areas (i) operation room planning and (ii) intra-operative
surgical guidance. Operation room planning encompasses
tasks like predicting remaining surgery duration [37], [38]
and surgical site confirmation [39]. Real-time guidance in
particular phases [40] and pupil reaction detection [41] are
examples of the latter group of methods. Post-operative
cataract surgery analysis methods primarily focus on surgical
training and prognosis. Workflow analysis methods are
integral in this context and include but are not limited
to CNN architectures for phase classification [42], [43],
[44], joint phase segmentation-classification [45], instrument
tracking [46], and deblurring cataract surgery videos [47].
Furthermore, several CNN-RNN-based frameworks have
been proposed to perform relevance-based compression [48],
and surgical training expedition [49], [50]. Recent studies
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FIGURE 2. Sample frames from the pre-implantation, implantation, and post-implantation phases from two representative videos.

have also explored automated technical skill assessment in
robotic surgeries [51]. Given the fundamental role of seman-
tic segmentation in various surgical workflow analysis appli-
cations, significant efforts have been invested in improving
semantic segmentation performance in cataract surgery [52],
[53], [54]. In recent years, some efforts have been made to
enable surgical prognosis, such as post-surgical visual acuity
prediction [55]. These developments collectively underscore
the transformative role of CNNs in advancing the field of
cataract surgery and its associated analysis techniques.

Regarding research about intraocular lenses, substantial
attention has been dedicated to various pre-operative meth-
ods, including IOL power calculation [56], [57], [58], IOL
parameter verification [59], and IoL segmentation [60].
However, when it comes to the prognosis of cataract
surgery, the role of artificial intelligence remains relatively
underexplored, with limited work on predicting posterior
capsule opacification [61].
This study aims to leverage the CNNs’ power to predict

lens dislocation as a significant postoperative complication
in cataract surgery. Our primary objective is to develop a
fully automatic framework capable of computing critical
parameters such as lens unfolding delay, rotation, and
instability from cataract surgery videos. By achieving this,
we aim to facilitate an in-depth analysis that compares
intra-operative statistics across various brands of IOLs.
Moreover, this research serves as a foundational step toward
predicting and preventing post-operative lens dislocation,
a significant concern in cataract surgery.

III. METHODOLOGY
Figure 1 demonstrates the pipeline of the proposed method
for automatic lens statistic computation during cataract
surgery. The pipeline mainly consists of three modules:
(1) implantation phase recognition, (2) lens and pupil
semantic segmentation, and (3) lens’ pose estimation. For
the two first modules, we use our proposed neural network
architectures [54]. It should be mentioned that all modules
within the proposed framework are interdependent and

contribute indispensably to the overall functionality. Each
module serves a distinct purpose, and the presence of all
modules is imperative for the coherent operation of the
framework.. In this section, we detail the functionality of
each module in the proposed framework. We then explain the
lens statistic computation and correlation analysis in III-D
and III-E, respectively. The pseudocode of our proposed
framework for IOL evaluation is present in Algorithm 1.

A. IMPLANTATION-PHASE RECOGNITION
As the first step toward lens evaluation, we set the start-
ing point for lens statistics computation to be the post-
implantation phase, where the folded IOL is inserted inside
the eye using a cartridge. Figure 2 illustrates randomly
sampled frames from pre-implantation, implantation, and
post-implantation phases for two representative videos.
We utilize a recurrent CNNwith amany-to-many architecture
to detect the implantation phase accurately. Recurrent
convolutional neural networks can detect the label associated
with a sequence of input frames considering the intertwined
spatiotemporal features. Moreover, by exploiting features
from the neighboring frames, recurrent CNNs can mitigate
degraded frame quality typical in cataract surgery videos,
such as harsh motion blur and defocus blur.

To enhance the model’s robustness, we consider variations
in surgeons’ speed and intra-operative irregularities, which
can alter the order and duration of surgical phases. Con-
sequently, we develop a phase recognition technique that
is independent of both order and duration, coupled with
a random sampling strategy. This strategy avoids network
overfitting to the speed and skill level of the surgeons
and improves the network’s generalization performance.2

We address sequence length or temporal context variations
during training by employing a systematic approach. Initially,
we extracted 12 three-second video clips with overlapping

2Some other variations, such as lighting conditions, remain relatively
consistent within a single hospital. Adapting the model to different domains,
such as varying camera settings or hospitals, involves ‘‘domain adaptation’’
techniques [62], [63], [64], which are beyond the scope of this paper.

VOLUME 12, 2024 21015



N. Ghamsarian et al.: Predicting Postoperative Intraocular Lens Dislocation

FIGURE 3. The IOL segmentation results for ten consecutive frames
containing dents in the regions of instrument occlusion, and their
corresponding refined versions where occluded segments are recovered.

frames from the implantation phase of each cataract surgery
video. To handle variable-length sequences, we further divide
video segments before and after the implantation phase into
eight and four clips, respectively, resulting in a balanced
dataset. During training, each example is generated by
selecting a three-second clip with a stochastic variable. More
specifically, the network detects the associated phase label
to each three-second clip as follows: (1) the three-second
sequence with the rate of 25 frames per second is split into
five subsequences, each containing 15 consecutive frames;
(2) a frame is randomly sampled as the keyframe from
each subsequence; (3) the five sampled frames are fed to
the network, and for every frame, the network outputs the
probability of belonging to the implantation phase and (4) the
output probabilities are averaged to obtain the predicted label
for the three-second input sequence.

During inference, We utilize overlapping three-second
video clips with a two-minute overlap. The associated
label for each second in the surgery is determined using a
three-second clip centered at that time interval. We perform
uniform sampling to provide better diversity in the input
frames. Following the detection of the labels for all consecu-
tive three-second clips, we have the time-slot range of the pre-
implantation, implantation, and post-implantation phases.
We use the post-implantation phase for computing the IOL
statistics. Importantly, while the training phase maximizes
diversity by randomly selecting frames, the inference phase
uniformly samples frames to optimize information feeding
into the network.

B. LENS AND PUPIL SEMANTIC SEGMENTATION
To compute the lens unfolding time and instability, we track
changes in the size of the IOL over time. Accordingly,

we require a semantic segmentation mask of the pupil and
IOL. We employ AdaptNet, which is particularly tailored to
the challenges in segmenting the artificial lens and pupil in
cataract surgery videos [54].

Upon implantation, the transparent folded artificial lens
inherits the pupil color. The IOL unfolds rapidly, introducing
unpredictable shapes until reaching complete expansion.
Factors like occlusion, defocus blur, and motion blur further
complicate segmentation and tracking. Similarly, the diver-
sity in color and texture poses challenges in the segmentation
of the pupil. AdaptNet, our chosen solution, employs a
U-Net-based encoder-decoder architecture comprising three
key components: the encoder, utilizing the VGG16 net-
work; the cascade pooling fusion (CPF) module, which
enriches feature representation through pyramid features;
and the shape/scale-adaptive feature fusion (SSF) module,
introducing adaptability through a strategic combination of
convolutional and deformable convolutional layers. This
integrated approach ensures a nuanced handling of the
challenges posed by the artificial lens and pupil segmentation
in cataract surgery videos.

These modules can effectively deal with various dif-
ficulties in segmenting the IOL due to its transparency,
unpredictable formation during unfolding, occlusion by the
instruments, defocus blur, and motion blur.3

The lens and pupil segmentation results are then post-
processed. Since there are several phases after implantation,
the lens and pupil are usually occluded with the instruments,
and the segmentation networks cannot detect the occluded
regions. However, these regions should be included in the
area of the lens and pupil. We adopt the domain-specific
knowledge related to these objects to retrieve the occluded
regions in their semantic segmentation masks. Specifically,
since the IOL and pupil are often convex objects, we draw
a convex polygon around each detected object to retrieve
the occluded regions. Figure 3 compares the segmentation
results and refined masks for some consecutive frames. After
post-processing, the visible area of the IOL is computed by
counting the pixels belonging to its mask. To compute the
lens instabilities, we propose to track the relative location of
the lens segment inside the pupil. Hence, the pupil that is
unstable due to the unconscious eye movements and surgical
operations will be calibrated, and the relative position of the
IOL is calculated by computing the distance between the
centers of the IOL’s mask and the pupil’s mask, as shown in
Figure 4.

3It is noteworthy that incorporating deformable convolutions into the
neural network architecture may extend inference times, requiring more
robust hardware infrastructure to achieve real-time performance. However,
as detailed in Section IV-D, our algorithm offers flexibility for substituting
neural networks, dealing with tasks like phase recognition, semantic
segmentation, and object localization, with lightweight architectures in
scenarios with lower hardware configurations. This adjustment comes with
the trade-off of slightly reduced accuracy expectations.
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FIGURE 4. Visualization of lens unfolding, rotation, and instability for a representative video. The frames from left to right show the IOL unfolding
procedure. Top: sample frames from the post-implantation phase; Middle: the corresponding refined IOL and pupil masks; Bottom: the lens center
relative to the pupil center corresponding to each frame.

C. LENS POSE ESTIMATION
To compute the lens rotation amount, we propose estimating
the lens orientation per frame based on the hooks’ location.
We use the Faster R-CNN [65] framework for lens and hook
localization. The Faster R-CNN network is a region-based
CNN consisting of a backbone network and a region proposal
network (RPN) followed by two branches: (1) a localization
branch trying to output the most-fitted bounding box to
each object and (2) a classification branch that detects the
label associated with each detected object.4 We adopt several
strategies to utilize the detection results in the inference
stage. First, we only consider the detected bounding boxes
with more than 60% detection confidence. Considering that
the IOL has only two hooks that are not always visible,
we calculate the hooks’ location using the detection results
based on three scenarios:

4Region-based CNNs provide an efficient solution for localizing specific
objects within the surgical scene. In contrast, segmentation networks face
challenges in accurately segmenting intricate structures like hooks and
require additional post-processing techniques for location computation. The
region-based approach is favored for its simplicity and effectiveness in
addressing the specific characteristics of the surgical setting.

1) If the network detects up to one hook fulfilling the
determined threshold, the detected bounding box does
not undergo any post-processing step.

2) In case two hooks are detected by the network,
we consider the position of the detected bounding boxes
relative to the center of the IOL. If the angle between
the two detected hooks is around 180 degrees, both
detections are kept. Otherwise, only the detection with
the higher confidence is considered a hook.

3) In the condition that more than two bounding boxes
fulfill the confidence threshold for the hook label,
we perform hierarchical clustering with two clusters
using the centers of the detected bounding boxes.
Afterward, the bounding box with the highest detection
confidence is selected as the best bounding box among
all detections within each cluster. Having two bounding
boxes, we further check their relative positions as
described in scenario 2.

To compute lens orientation, we calculate the angle of the
line connecting the centers of the two hooks’ bounding boxes
relative to the x-axis (in case of having two final hooks) or
the angle of the line connecting the lens center and the visible
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Algorithm 1 IOL Evaluation Pseudocode
Input : The trained phase recognition network

(CNN-RNN);
The trained Semantic Segmentation network
(AdaptNet);
The trained Pose Estimation network
(Faster R-CNN [65]).

Output: Lens correlation results.
for lens brand in {Technis,AvanSee,NC1,XC1} do

for video in lens group do
Feed the video to the phase recognition network to
detect the implantation phase;
Feed the frames of the post-implantation phase to the
segmentation network to achieve the lens and pupil
segmentation results;
Refine the segmentation results by drawing a convex
polygon around the detected masks;
Compute lens-unfolding time based on the lens area
(Eq. (4));
Compute lens instability based on the relative position
of the lens inside the pupil (Eq. (5));
Feed the frames starting from the computed unfolding
time until the end of surgery to the pose estimation
network and compute lens orientation;
Compute lens rotation based on lens orientation
results (Eq. (6));

end
Compute the correlation between lens unfolding delay
and lens rotation (Eq. (7));

end
for Pair of lens brands do

Perform three T-tests to evaluate the statistical differences
between unfolding delay, instability, and rotation of the
two groups (Eq. (8)).

end

hook’s bounding box relative to the x-axis (in case of having
only one final hook). In the last case, we also consider the
location of the detected hook relative to the lens center in
calculating the lens orientation.

D. LENS STATISTIC COMPUTATION
The statistics of the IOL are calculated based on the lens’
pose, visible area, and relative position. Supposing that we
have the refined masks of the pupil (Mp

= {Mp
1, . . . ,M

p
n})

and IOL (Ml
= {Ml

1, . . . ,M
l
n}) starting from the

post-implantation phase until the end of surgery with the rate
of 25 fps (n = 25 × (tsurgery − tpost−implantation)), the masks’
centers (C) and areas (A) can be denoted as:

Pupil

{
Cp = [Cp1 , C

p
2 , . . . , C

p
n ]

Ap
= [Ap

1,A
p
2, . . . ,A

p
n]

(1)

IOL

{
Cl = [Cl1, C

l
2, . . . , C

l
n]

Al
= [Al

1,A
l
2, . . . ,A

l
n]

(2)

where A1 and C1 = [C1x , C1y] correspond to the area and
center of the masks in the first frame of the post-implantation
phase, respectively. To mitigate the effect of the lens mask’s
prediction error on lens unfolding time prediction, we pass
the lens area vector (Al) through a mean filter with a window
size of 15 frames:

Ãl
=


1
15

i+7∑
i−7

Al
i 8 < i < n− 7

Al
i else

(3)

For lens unfolding time (tU ), we compute the difference
between the starting time of the post-implantation phase and
when the frame-averaged visible lens’ area is maximum for
the first time:

tU = argmax
t

(Ãl) (4)

Lens instability (Ins) is computed based on the sum of the
lens’ absolute relative movements inside the pupil as follows:

Ins =

n−1∑
i=1

||Cli+1 − Cpi+1| − |Cli − Cpi ||. (5)

Besides, considering the vector of lens orientations as Ol
=

[Ol
1, . . . ,O

l
n], we compute lens rotation based on the sum

of absolute relative lens orientation changes, starting from
the time when the lens is unfolded based on lens unfolding
results:

Rl
=

n−1∑
i=tU

|Ol
i+1 −Ol

i | (6)

E. CORRELATION ANALYSIS
We adopt the Pearson correlation coefficient to evaluate
the correlations between lens unfolding delay and rotation.
Assuming two subsets x ⊂ X and y ⊂ Y to be
the representatives of unfolding delays and rotations of a
particular brand of IOLs (x = tU and y = Rl), the Pearson
correlation coefficient can be calculated as the covariance of
x and y divided by the multiplication of standard deviation of
these two sets:

Pearsonx,y =

∑m
i=1(xi − x)(yi − y)√∑m

i=1(xi − x)2 ×
∑m

i=1(yi − y)2
(7)

To evaluate the significant differences between the rota-
tions of different IOL brands, we employ a t-test as follows:

T =
x − y√

1
m ×

∑m
i=1(xi − x)2 ×

∑m
i=1(yi − y)2

(8)

In the last two equations, m is the number of samples
in each set, being equal to 94 in our experiments. In our
evaluations, we set the significance level as 0.05.
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IV. EXPERIMENTAL SETUP
In this section, we first describe the datasets prepared and
utilized for training the three neural network architectures
as well as our large-scale IOL evaluations using the trained
networks and the proposed framework in IV-A. Afterward,
we explain the network training settings in IV-B and introduce
the evaluation metrics in IV-C. The inference configurations
are explained in IV-D.

A. VIDEO AND IMAGE DATASETS
This study adhered to the tenets of the Declaration of Helsinki
with the approval of the ethics committee (EK 28/17). All
patients provided written informed consent before the study.
The studies follow the reporting guidelines of the Standards
for Quality Improvement Reporting Excellence (SQUIRE)
and the Standards for Reporting of Diagnostic Accuracy
(STARD). No patient received compensation or was offered
any incentive for participating in this study.

The dataset used in this study stems from the Cataract-
1k video dataset [66], containing 1000 videos of cataract
surgeries recorded at the Klinikum Klagenfurt in 2020-2021.
Since the task of intraocular lens qualification involves three
independent trained networks, namely phase recognition,
pose estimation, and semantic segmentation, we prepared
three training/testing datasets. It should be noted that all
training and testing images and videos are split patient-
wise, meaning no images in the training and testing sets are
sampled from the same video. This separation is intrinsic to
buildingmodels working in real-world conditions. In addition
to the training dataset, we use a large-scale dataset for
validation, which we denote inference dataset. The four
mentioned datasets are explained as follows5:

1) Phase recognition dataset: Contains annotations of the
implantation phase versus the rest of the phases using the
first and last implantation phase frames for 100 cataract
surgery videos.

2) Pose estimation dataset: Includes bounding box anno-
tations of the IOL and its hooks. Overall, 532 frames
from 45 videos with the condition that at least one of
the two lenses’ hooks is visible were manually selected
from the post-implantation phase. Next, 532 bounding
boxes of the lenses and 821 bounding boxes of the lens’
hooks were manually annotated. From these frames,
409 frames are used for training, and the remaining
frames are used for testing.

3) Semantic segmentation dataset: This dataset includes
the segmentation masks of the IOL and pupil. The
lens dataset contains 401 frames from 27 videos, and
the pupil dataset contains 189 frames from 16 videos.
From these annotations, we use 13 videos containing
141 frames with pupil annotation and 21 videos
containing 292 frames with lens annotation for training.
The remaining frames are utilized for testing.

5The annotated datasets will be publicly released in https://ftp.itec.aau.
at/datasets/ovid/lens-dislocation/

4) Inference dataset: Includes 376 other videos of cataract
surgery and is used for validating trained models against
different lenses’ statistics. This dataset contains lenses
from four brands: Technis, AvanSee, NC1, and XC1.
From each brand, 94 videos were included.

B. TRAINING SETTINGS
For the phase recognition stage, all networks are trained
for 20 epochs, with initial learning rates of 0.0002 for the
VGG19 backbone and 0.0004 for the Resnet50 backbone.
The learning rates are halved after ten epochs.

For the semantic segmentation task, all networks are
trained for 30 epochs. To account for differences in segmen-
tation networks used for evaluations, three different initial
learning rates (lr0 ∈ 0.0005, 0.001, 0.002) are used, with
a learning rate decrease of 0.8 every other epoch, and the
results with the highest Dice coefficient are reported for each
network.

For the pose estimation task, we use the ResNet101
backbone and set the initial learning rate to 0.001. This
network is trained for 50 epochs.

The backbones of all networks evaluated for phase
recognition, lens/pupil semantic segmentation, and lens/hook
localization are initialized with ImageNet [67] weights. The
input image size for all networks is set to 512×512×3. Data
augmentation techniques, including motion blur, Gaussian
blur, random contrast, random brightness, shift, scale, and
rotation, are applied to prevent overfitting and improve
generalization performance. For the phase recognition and
object localization tasks, we use binary cross entropy and
the region-proposal-network (RPN) loss, respectively. For the
semantic segmentation task, we adopt the cross-entropy-log-
dice loss function consisting of categorical cross entropy and
the logarithm of the soft Dice coefficient as follows:

L = λ × CE(XPred,XTrue)

−(1 − λ) × log2Dice(XPred,XTrue) (9)

where CE stands for Cross Entropy, and XPred and XTrue
are the predicted masks and ground-truth segmentations,
respectively. Besides, λ is set to 0.8 in our experiments.

C. EVALUATION METRICS
We evaluated the performance of each module separately.
Phase recognition performance is evaluated using the
standard classification metrics, namely Precision, Recall,
F1-Score, and Accuracy. We use the Dice coefficient and
intersection over union (IoU) to evaluate the semantic
segmentation performance. For pose estimation evaluation,
we adopt two schemes: (1) using the mean average precision
(mAP) metric to measure the performance in object detection
and localization, and (2) using the orientation detection error.

D. INFERENCE
Our proposed framework, leveraging the existing neural
network architectures, is capable of real-time performance
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with the support of four RTX3090 GPUs. It’s crucial to
underscore the adaptability of our framework, recognizing
the diversities in hardware infrastructures. In the case
of lower hardware configurations, our algorithm allows
for a seamless substitution of neural networks—such as
those handling phase recognition, semantic segmentation,
and object localization—with lightweight architectures. This
ensures faster inference times without seriously compromis-
ing performance.

V. EXPERIMENTAL RESULTS
In this section, we first assess the effectiveness of each
distinct module within the proposed framework based on
the results reported in Table 1. Next, we use the proposed
framework with trained networks for the statistical eval-
uations of the four mentioned IOL brands to assess the
possibility of automating IOL evaluation and post-operative
IOL irregularity prediction.

A. SURGICAL PHASE CLASSIFICATION RESULTS
Table 1-A presents the implantation phase recognition results
of the utilized recurrent CNN considering two different
backbone networks and four different recurrent layers. It can
be perceived from the table that the utilized architecture
can effectively capture the joint spatio-temporal features
associated with the implantation phase disregarding the back-
bone network’s model and the recurrent layer. Surprisingly,
the network with the bidirectional LSTM layer and the
VGG19 backbone could retrieve 100% of the three-second
clips belonging to the implantation phase. Moreover, this
network was 100% precise in discriminating the implantation
phase versus the rest of the phases. These results confirm
the effectiveness of the proposed approach in detecting the
starting point for lens statistics computation.

B. SEMANTIC SEGMENTATION RESULTS
To highlight the superiority of the utilized semantic segmen-
tation network in segmenting the artificial lens and pupil,
we have compared its results with several state-of-the-art
networks. Table 1-B lists the semantic segmentation results
of the proposed approach (AdaptNet) and rival approaches
based on the mean and standard deviation of the IoU and
Dice coefficient. According to the IoU results, AdaptNet has
achieved the best performance in segmenting both IOL and
pupil. It gains at least 4% relative improvement in IoU and
2.4% relative improvement in Dice coefficient compared to
the best alternative network (UNet++) in lens segmentation.

C. LENS’ POSE ESTIMATION RESULTS
Table 1-C lists the lens and hooks localization results based on
mean average precision (mAP) and mean average precision
at 50% intersection over union (mAP@0.5IoU ). The results
indicate that the network is 82% accurate in localizing the
bounding boxes with at least 50% intersection over union.

According to Table 1-D, the proposed lens orienta-
tion computation method shows a mean error equal to

3.707 degrees, with its standard deviation being equivalent
to 7.499 degrees. Moreover, the model shows less than
1.5 degrees error in orientation computation for at least 50%
of samples in the test set. These results confirm the reliability
of the proposed method for lens orientation computation.

D. IOL EVALUATIONS AND STATISTICAL COMPARISONS
In order to statistically compare the behavior of different
groups of lenses, we have computed lens unfolding time,
instability, and unfolded-lens rotation (rotation for short) for
four brands of intraocular lenses. Figure 5 demonstrates the
boxplots of the threementionedmeasurements for each group
of lenses containing 94 cataract surgery videos. Regarding
intra-operative rotation after unfolding, the four brands of
lenses show significantly different behaviors based on the
middle quartile and the interquartile range and the amount
of skewness. According to the unfolding plots, XC1 shows
the smallest interquartile range (IQR) and the smallest overall
spread ([Q1 − 1.5 × IQR,Q3 + 1.5 × IQR]), suggesting
that XC1 lenses have less dispersed unfolding time. On the
other hand, the Tecnis and NC1 boxplots have a substantially
higher upper whisker and positive skew, meaning more
dispersed unfolding time and non-normally distributed data.
The distant outliers in the two latter lenses can also imply
more irregularities. The boxplots of instability for all four
groups of lenses have a relatively close length of interquartile
range. We can conclude that intra-operative instability of
the lens during unfolding cannot be used as an indicator of
postoperative rotation.

We infer from the boxplots that there is a higher statistical
difference between the unfolding delay and rotation of the
four types of IOLs compared to their instabilities. Hence,
we have further computed the Pearson correlations between
the unfolding delay and rotation of these lenses. As listed
in Table 2-A, the p-values for correlations between lens
unfolding time and rotation of the AvanSee (0.0202), NC1
(0.0003), and XC1 (0.0101) are less than 0.05. This suggests
that there is a significant correlation between the unfolding
time and rotation of each mentioned group of IOLs. Besides,
we have computed the p-value based on a t-test between
the rotation of the four groups of IOLs (Table 2-B). The
t-test results confirm the statistically significant differences
between the rotations of Tecnis vs. Avansee (0.0322), Tecnis
vs. NC1 (5.01 × 10−6), Tecnis vs. XC1 (8.26 × 10−18),
AvanSee vs. NC1 (0.0019), AvanSee vs. XC1 (1.48×10−14),
and NC1 vs. XC1 (0.0363). The results of the t-test between
the unfolding time of different IOLs in Table 2-C also indicate
a nearly significant difference between the unfolding delay of
the XC1 and Tecnis lenses (0.054).

VI. DISCUSSION
We formulated a hypothesis suggesting that variations in the
unfolding delay of intraocular lenses play a significant role
in their susceptibility to post-operative rotational instability.
To substantiate this idea, we conducted a comparative analy-
sis of the unfolding time in our studies and cross-referenced
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TABLE 1. Stepwise evaluation of the proposed lens irregularity detection framework.

TABLE 2. Statistical analysis of the behavior of different intraocular lens brands. The statistically significant results are bold.

it with data published on post-operative IOL rotation,
as indicated by [15], [17], and [75].

In the study that compared the post-operative rotational
stability of the Hoya Vivinex lens (XC1) and the Tecnis
IOL, conducted by Osawa et al. [75], it was revealed that
the Hoya Vivinex lens displayed less early post-operative
rotation than the Tecnis IOL. Our research identified distinct
differences in the unfolding behavior of these two lenses,
with the Tecnis IOL exhibiting a less predictable unfolding
time and more irregularities when compared to XC1.
Furthermore, a recent cohort study involving 647 implanted
Tecnis IOLs highlighted a noteworthy post-operative rotation
issue, with 8.1% of cases experiencing rotations exceeding
5 degrees and 3.1% requiring secondary interventions for
re-positioning [15]. This pattern of high post-operative

absolute rotation in Tecnis lenses has also been corroborated
by other studies, as cited in [17].

Our proposed framework has effectively generated
features that confirm statistically significant differences
in the intra-operative rotational stability of various IOL
brands. The direct correlation between the intraoperative
rotation of a pair of lenses (Tecnis vs. XC1) and their
subsequent post-operative rotational stability reaffirms the
predictability of this complication during surgery. These
findings can provide valuable guidance to surgeons in their
IOL selection, particularly in cases where patient-specific
factors, such as myopia (where lens dislocation is more
likely and lens rotation can significantly impact vision,
as discussed in [10]), need to be considered. Ultimately,
our research contributes to the prevention of post-operative
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FIGURE 5. The lens statistics for one representative cataract surgery video.

IOL complications, enhancing patient outcomes and
satisfaction.

A. LIMITATIONS OF THE PRESENT STUDY
Evaluating the intra-operative behavior of IOLs can empower
the predictability of the post-operative IOL’s dislocation.
However, in addition to the lens characteristics, intrinsic
factors such as physicochemical and surface properties of
acrylic IOL, modifiable factors such as the temperature of
the IOL at the time of implantation, and the viscoelastic
used can play a role in the unfolding of an IOL during
cataract surgery. The proposed framework enables surgeons
to evaluate the intra-operative behavior of IOLs and correlate
them with IOLs’ early postoperative stability. These results
help the surgeons measure each factor’s influence on IOL
post-operative complications.

VII. CONCLUSION
Intraocular lens dislocation stands as a pivotal postoperative
complication in cataract surgery, warranting considerable
attention due to its implications on patient outcomes and
healthcare costs. This paper presents a pioneering framework,

representing the first endeavor to automate the extraction
of critical lens statistics including intraocular lens unfolding
delay, instability, and rotation during cataract surgery.
We have proposed, evaluated, and utilized a CNN-RNN-
based framework for a large-scale evaluation of four brands
of IOLs. These results have enabled us to measure statistical
correlations between different features in each IOL and
differences in the behavior of four commonly used IOL
brands during the surgery. The proposed framework not only
helps enhance our understanding of IOL behavior during
cataract surgery but also offers a major step toward pre-
dicting and ultimately preventing such a crucial irregularity.
By improving the predictability of complications such as
lens dislocation, we can substantially reduce the economic
burden for patients and healthcare systems alike. Beyond the
financial aspect, preventing such complications translates to
heightened patient satisfaction, improved quality of care, and
overall enhanced surgical experiences.

Expanding upon our current work, future investigations
should focus on an exhaustive examination of the mul-
tifaceted factors influencing the intraoperative behavior
of intraocular lenses (IOLs) during cataract surgery. This
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could encompass a comprehensive study of the relationships
between lens characteristics, the inherent properties of acrylic
IOLs, the temperature during implantation, and the type of
viscoelastic used. In addition to this multifaceted exploration,
the practical applicability of our framework for real-time
analysis of IOL behavior during surgical procedures is reliant
on the existing hardware infrastructure within operating
rooms. Accordingly, a key consideration for enhancing the
usability of such frameworks is the reduction of dependency
on powerful GPUs by optimizing network parameters. This
optimization will not only improve the efficiency of our
system but also promote its wider adoption across diverse
surgical environments.
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